E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3328
Number of Logic Elements/Cells	29952
Total RAM Bits	589824
Number of I/O	487
Number of Gates	1500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1500-5fgg676c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

	Available User I/Os and Differential (Diff) I/O Pairs by Package Type																			
Package	VQ1 VQG	100 100	CP1 CPC	32 <mark>(1)</mark> 132	TQ1 TQG	44 144	PQ2 PQG	208 208	FT2 FTG	256 256	FG3 FGG	320 320	FG4 FGG	156 456	FG6 FGG	676 676	FG9 FGG	900 900	FG11 FGG	56 <mark>(1)</mark> 1156
Footprint (mm)	16 x	16	8 >	c 8	22 x	22	30.6 x	30.6	17 x	17	19 x	19	23 x	23	27 x	27	31 x	31	35 >	c 35
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XC3S50	63	29	89 ⁽¹⁾	44 ⁽¹⁾	97	46	124	56	-	-	-	-	-	-	-	-	-	-	-	-
XC3S200	63	29	-	-	97	46	141	62	173	76	-	_	-	_	-	_	-	-	-	-
XC3S400	-	_	-	-	97	46	141	62	173	76	221	100	264	116	-	-	-	-	-	-
XC3S1000	-	-	-	-	-	-	-	-	173	76	221	100	333	149	391	175	-	-	-	-
XC3S1500	-	-	-	-	-	-	-	-	-	-	221	100	333	149	487	221	-	-	-	-
XC3S2000	-	-	-	-	-	-	-	-	-	-	-	-	333	149	489	221	565	270	-	-
XC3S4000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	489	221	633	300	712 <mark>(1)</mark>	312 <mark>(1)</mark>
XC3S5000	_	-	_	_	_	_	_	_	_	_	1	_	_	_	489	221	633	300	784 <mark>(1)</mark>	344 <mark>(1)</mark>

Table 3: Spartan-3 Device I/O Chart

Notes:

1. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

2. All device options listed in a given package column are pin-compatible.

3. User = Single-ended user I/O pins. Diff = Differential I/O pairs.

Package Marking

Figure 2 shows the top marking for Spartan-3 FPGAs in the quad-flat packages. Figure 3 shows the top marking for Spartan-3 FPGAs in BGA packages except the 132-ball chip-scale package (CP132 and CPG132). The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for Spartan-3 FPGAs in the CP132 and CPG132 packages.

The "5c" and "41" part combinations may be dual marked as "5c/41". Devices with the dual mark can be used as either -5C or -4I devices. Devices with a single mark are only guaranteed for the marked speed grade and temperature range. Some specifications vary according to mask revision. Mask revision E devices are errata-free. All shipments since 2006 have been mask revision E.

Figure 2: Spartan-3 FPGA QFP Package Marking Example for Part Number XC3S400-4PQ208C

Figure 8: Clocking the DDR Register

Aside from high bandwidth data transfers, DDR can also be used to reproduce, or "mirror", a clock signal on the output. This approach is used to transmit clock and data signals together. A similar approach is used to reproduce a clock signal at multiple outputs. The advantage for both approaches is that skew across the outputs will be minimal.

Some adjacent I/O blocks (IOBs) share common routing connecting the ICLK1, ICLK2, OTCLK1, and OTCLK2 clock inputs of both IOBs. These IOB pairs are identified by their differential pair names IO_LxxN_# and IO_LxxP_#, where "xx" is an I/O pair number and '#' is an I/O bank number. Two adjacent IOBs containing DDR registers must share common clock inputs, otherwise one or more of the clock signals will be unroutable.

Pull-Up and Pull-Down Resistors

The optional pull-up and pull-down resistors are intended to establish High and Low levels, respectively, at unused I/Os. The pull-up resistor optionally connects each IOB pad to V_{CCO} . A pull-down resistor optionally connects each pad to GND. These resistors are placed in a design using the PULLUP and PULLDOWN symbols in a schematic, respectively. They can also be instantiated as components, set as constraints or passed as attributes in HDL code. These resistors can also be selected for all unused I/O using the Bitstream Generator (BitGen) option UnusedPin. A Low logic level on HSWAP_EN activates the pull-up resistors on all I/Os during configuration (see The I/Os During Power-On, Configuration, and User Mode, page 21).

The Spartan-3 FPGAs I/O pull-up and pull-down resistors are significantly stronger than the "weak" pull-up/pull-down resistors used in previous Xilinx FPGA families. See Table 33, page 61 for equivalent resistor strengths.

Keeper Circuit

Each I/O has an optional keeper circuit that retains the last logic level on a line after all drivers have been turned off. This is useful to keep bus lines from floating when all connected drivers are in a high-impedance state. This function is placed in a design using the KEEPER symbol. Pull-up and pull-down resistors override the keeper circuit.

ESD Protection

Clamp diodes protect all device pads against damage from Electro-Static Discharge (ESD) as well as excessive voltage transients. Each I/O has two clamp diodes: One diode extends P-to-N from the pad to V_{CCO} and a second diode extends N-to-P from the pad to GND. During operation, these diodes are normally biased in the off state. These clamp diodes are always connected to the pad, regardless of the signal standard selected. The presence of diodes limits the ability of Spartan-3 FPGA I/Os to tolerate high signal voltages. The V_{IN} absolute maximum rating in Table 28, page 58 specifies the voltage range that I/Os can tolerate.

Slew Rate Control and Drive Strength

Two options, FAST and SLOW, control the output slew rate. The FAST option supports output switching at a high rate. The SLOW option reduces bus transients. These options are only available when using one of the LVCMOS or LVTTL standards, which also provide up to seven different levels of current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the appropriate drive strength level is yet another means to minimize bus transients.

Table 7 shows the drive strengths that the LVCMOS and LVTTL standards support.

Signal Standard	Current Drive (mA)									
(IOSTANDARD)	2	4	6	8	12	16	24			
LVTTL	1	1	1	1	1	1	1			
LVCMOS33	~	1	1	1	1	1	1			
LVCMOS25	~	1	1	1	1	1	1			
LVCMOS18	1	1	1	1	1	1	-			
LVCMOS15	1	1	1	1	1	-	-			
LVCMOS12	1	1	1	-	-	-	-			

Table 7: Programmable Output Drive Current

Boundary-Scan Capability

All Spartan-3 FPGA IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. During boundary- scan operations such as EXTEST and HIGHZ the I/O pull-down resistor is active. For more information, see Boundary-Scan (JTAG) Mode, page 50, and refer to the "Using Boundary-Scan and BSDL Files" chapter in <u>UG331</u>.

SelectIO Interface Signal Standards

The IOBs support 18 different single-ended signal standards, as listed in Table 8. Furthermore, the majority of IOBs can be used in specific pairs supporting any of eight differential signal standards, as shown in Table 9.

To define the SelectIO[™] interface signaling standard in a design, set the IOSTANDARD attribute to the appropriate setting. Xilinx provides a variety of different methods for applying the IOSTANDARD for maximum flexibility. For a full description of different methods of applying attributes to control IOSTANDARD, refer to the "Using I/O Resources" chapter in <u>UG331</u>.

Together with placing the appropriate I/O symbol, two externally applied voltage levels, V_{CCO} and V_{REF} , select the desired signal standard. The V_{CCO} lines provide current to the output driver. The voltage on these lines determines the output voltage swing for all standards except GTL and GTLP.

All single-ended standards except the LVCMOS, LVTTL, and PCI varieties require a Reference Voltage (V_{REF}) to bias the input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use such a signal standard, a few specifically reserved I/O pins on the same bank automatically convert to V_{REF} inputs. When using one of the LVCMOS standards, these pins remain I/Os because the V_{CCO} voltage biases the input-switching threshold, so there is no need for V_{REF} . Select the V_{CCO} and V_{REF} levels to suit the desired single-ended standard according to Table 8.

The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 16. The clock outputs drive simultaneously; however, the High Frequency mode only supports a subset of the outputs available in the Low Frequency mode. See DLL Frequency Modes, page 35. Signals that initialize and report the state of the DLL are discussed in The Status Logic Component, page 41.

Table 16: DLL Signals

			Mode Support		
Signal	Direction	Description	Low Frequency	High Frequency	
CLKIN	Input	Accepts original clock signal.	Yes	Yes	
CLKFB	Input	Accepts either CLK0 or CLK2X as feed back signal. (Set CLK_FEEDBACK attribute accordingly).		Yes	
CLK0	Output	Generates clock signal with same frequency and phase as CLKIN.	Yes	Yes	
CLK90	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 90°.	Yes	No	
CLK180	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 180°.	Yes	Yes	
CLK270	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 270°.	Yes	No	
CLK2X	Output	Generates clock signal with same phase as CLKIN, only twice the frequency.	Yes	No	
CLK2X180	Output	Generates clock signal with twice the frequency of CLKIN, phase-shifted 180° with respect to CLKIN.	Yes	No	
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.	Yes	Yes	

The clock signal supplied to the CLKIN input serves as a reference waveform, with which the DLL seeks to align the feedback signal at the CLKFB input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network to all the registers it synchronizes. These registers are either internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay elements to cancel out the clock skew. Once the DLL has brought the CLK0 signal in phase with the CLKIN signal, it asserts the LOCKED output, indicating a "lock" on to the CLKIN signal.

DLL Attributes and Related Functions

A number of different functional options can be set for the DLL component through the use of the attributes described in Table 17. Each attribute is described in detail in the sections that follow:

Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, 1X, 2X
DLL_FREQUENCY_MODE	Chooses between High Frequency and Low Frequency modes	LOW, HIGH
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	TRUE, FALSE
CLKDV_DIVIDE	Selects constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16.
DUTY_CYCLE_CORRECTION	Enables 50% duty cycle correction for the CLK0, CLK90, CLK180, and CLK270 outputs	TRUE, FALSE

Table 17: DLL Attributes

Table 28: Absolute Maximum Ratings (Cont'd)

Symbol	Description Conditions			Max	Units
Ι _{ΙΚ}	Input clamp current per I/O pin	$-0.5 \text{ V} < \text{V}_{\text{IN}} < (\text{V}_{\text{CCO}} + 0.5 \text{ V})$	-	±100	mA
V _{ESD} Electrostatic Discharge Voltage pins relativ		Human body model	-	±2000	V
	to GND	Charged device model	-	±500	V
		Machine model	-	±200	V
TJ	Junction temperature		_	125	°C
T _{SOL}	Soldering temperature ⁽⁴⁾	-	220	°C	
T _{STG}	Storage temperature	-65	150	°C	

Notes:

- 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely affects device reliability.
- All User I/O and Dual-Purpose pins (DIN/D0, D1–D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) draw power from the V_{CCO} power rail of the associated bank. Keeping VIN within 500 mV of the associated V_{CCO} rails or ground rail ensures that the internal diode junctions that exist between each of these pins and the V_{CCO} and GND rails do not turn on. Table 32 specifies the V_{CCO} range used to determine the max limit. Input voltages outside the –0.5V to V_{CCO}+0.5V voltage range are permissible provided that the I_{IK} input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. Prolonged exposure to such current may compromise device reliability. A sustained current of 10 mA will not compromise device reliability. See <u>XAPP459</u>, *Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Generation FPGAs* for more details. The VIN limits apply to both the DC and AC components of signals. Simple application solutions are available that show how to handle overshoot/undershoot as well as achieve PCI compliance. Refer to the following application notes: XAPP457, *Powering and Configuring Spartan-3 Generation FPGAs in Compliant PCI Applications* and <u>XAPP659</u>, *Virtex®-II Pro / Virtex-II Pro X 3.3V I/O Design Guidelines*.
- All Dedicated pins (M0–M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} rail do not turn on. Table 32 specifies the V_{CCAUX} range used to determine the max limit. When V_{CCAUX} is at its maximum recommended operating level (2.625V), V_{IN} max < 3.125V. As long as the V_{IN} max specification is met, oxide stress is not possible. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface, page 47. See also XAPP459.
- 4. For soldering guidelines, see UG112, Device Packaging and Thermal Characteristics and XAPP427, Implementation and Solder Reflow Guidelines for Pb-Free Packages.

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO4T}	Threshold for the V _{CCO} Bank 4 supply	0.4	1.0	V

Table 29: Supply Voltage Thresholds for Power-On Reset

Notes:

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 4, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

3. If a brown-out condition occurs where V_{CCAUX} or V_{CCINT} drops below the retention voltage indicated in Table 31, then V_{CCAUX} or V_{CCINT} must drop below the minimum power-on reset voltage in order to clear out the device configuration content.

V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies may be applied in any order. When applying V_{CCINT} power before V_{CCAUX} power, the FPGA may draw a *surplus* current in addition to the quiescent current levels specified in Table 34. Applying V_{CCAUX} eliminates the surplus current. The FPGA does not use any of the surplus current for the power-on process. For this power sequence, make sure that regulators with foldback features will not shut down inadvertently.

Table 50: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (Cont'd)

Cianal Standard	Package							
(IOSTANDARD)	VQ100	TQ144	PQ208	CP132	FT256, FG320, FG456, FG676, FG900, FG1156			
PCI33_3	9	9	9	9	9			
SSTL18_I	13	13	13	13	17			
SSTL18_I_DCI	13	13	13	13	17			
SSTL18_II	8	8	8	8	9			
SSTL2_I	10	10	10	10	13			
SSTL2_I_DCI	10	10	10	10	13			
SSTL2_II	6	6	6	6	9			
SSTL2_II_DCI	6	6	6	6	9			
Differential Standards (Number of I/O Pairs or Ch	nannels)	•	•	•				
LDT_25 (ULVDS_25)	5	5	5	5	5			
LVDS_25	7	5	5	12	20			
BLVDS_25	2	1	1		4			
LVDSEXT_25	5	5	5	5	5			
LVPECL_25	2	1	1		4			
RSDS_25	7	5	5	12	20			
DIFF_HSTL_II_18	4	4	4	4	4			
DIFF_HSTL_II_18_DCI	4	4	4	4	4			
DIFF_SSTL2_II	3	3	3	3	4			
DIFF_SSTL2_II_DCI	3	3	3	3	4			

Notes:

1. The numbers in this table are recommendations that assume the FPGA is soldered on a printed circuit board using sound practices. This table assumes the following parasitic factors: combined PCB trace and land inductance per V_{CCO} and GND pin of 1.0 nH, receiver capacitive load of 15 pF. Test limits are the V_{IL}/V_{IH} voltage limits for the respective I/O standard.

2. Regarding the SSO numbers for all DCI standards, the R_{REF} resistors connected to the VRN and VRP pins of the FPGA are 50W.

3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations.

4. Results are based on actual silicon testing using an FPGA soldered on a typical printed-circuit board.

Internal Logic Timing

Table 51: CLB Timing

Symbol	Description		-5		-4	Units
		Min	Max	Min	Max	
Clock-to-Output T	imes					
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output		0.63	-	0.72	ns
Setup Times						
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.46	-	0.53	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB		-	1.57	-	ns
Hold Times	-			·	-	•
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0	-	0	-	ns
Т _{СКDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0.25	-	0.29	-	ns
Clock Timing	-			·		•
Т _{СН}	CLB CLK signal High pulse width	0.69	∞	0.79	∞	ns
T _{CL}	CLB CLK signal Low pulse width	0.69	∞	0.79	∞	ns
F _{TOG}	Maximum toggle frequency (for export control)	-	725	-	630	MHz
Propagation Time	2S					
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.53	-	0.61	ns
Set/Reset Pulse V	Vidth					
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	0.76	-	0.87	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 32.

2. The timing shown is for SLICEM.

3. For minimums, use the values reported by the Xilinx timing analyzer.

Revision History

Date	Version	Description
04/11/03	1.0	Initial Xilinx release.
07/11/03	1.1	Extended Absolute Maximum Rating for junction temperature in Table 28. Added numbers for typical quiescent supply current (Table 34) and DLL timing.
02/06/04	1.2	Revised V _{IN} maximum rating (Table 28). Added power-on requirements (Table 30), leakage current number (Table 33), and differential output voltage levels (Table 38) for Rev. 0. Published new quiescent current numbers (Table 34). Updated pull-up and pull-down resistor strengths (Table 33). Added LVDCI_DV2 and LVPECL standards (Table 37 and Table 38). Changed CCLK setup time (Table 66 and Table 67).
03/04/04	1.3	Added timing numbers from v1.29 speed files as well as DCM timing (Table 58 through Table 63).
08/24/04	1.4	Added reference to errata documents on page 49. Clarified Absolute Maximum Ratings and added ESD information (Table 28). Explained V_{CCO} ramp time measurement (Table 30). Clarified I _L specification (Table 33). Updated quiescent current numbers and added information on power-on and surplus current (Table 34). Adjusted V _{REF} range for HSTL_III and HSTL_I_18 and changed V _{IH} min for LVCMOS12 (Table 35). Added note limiting V _{TT} range for SSTL2_II signal standards (Table 36). Calculated V _{OH} and V _{OL} levels for differential standards (Table 38). Updated Switching Characteristics with speed file v1.32 (Table 40 through Table 48 and Table 51 through Table 56). Corrected IOB test conditions (Table 41). Updated DCM timing with latest characterization data (Table 58 through Table 62). Improved DCM CLKIN pulse width specification (Table 58). Recommended use of Virtex-II FPGA Jitter calculator (Table 61). Improved DCM PSCLK pulse width specification (Table 62). Changed Phase Shifter lock time parameter (Table 63). Because the BitGen option Centered_x#_y# is not necessary for Variable Phase Shift mode, removed BitGen command table and referring text. Adjusted maximum CCLK frequency for the slave serial and parallel configuration modes (Table 66). Inverted CCLK waveform (Figure 37). Adjusted JTAG setup times (Table 68).
12/17/04	1.5	Updated timing parameters to match v1.35 speed file. Improved V_{CCO} ramp time specification (Table 30). Added a note limiting the rate of change of V_{CCAUX} (Table 32). Added typical quiescent current values for the XC3S2000, XC3S4000, and XC3S5000 (Table 34). Increased I _{OH} and I _{OL} for SSTL2-I and SSTL2-II standards (Table 36). Added SSO guidelines for the VQ, TQ, and PQ packages as well as edited SSO guidelines for the FT and FG packages (Table 50). Added maximum CCLK frequencies for configuration using compressed bitstreams (Table 66 and Table 67). Added specifications for the HSLVDCI standards (Table 35, Table 36, Table 44, Table 47, Table 48, and Table 50).
08/19/05	1.6	Updated timing parameters to match v1.37 speed file. All Spartan-3 FPGA part types, except XC3S5000, promoted to Production status. Removed V _{CCO} ramp rate restriction from all mask revision 'E' and later devices (Table 30). Added equivalent resistance values for internal pull-up and pull-down resistors (Table 33). Added worst-case quiescent current values for XC3S2000, XC3S4000, XC3S5000 (Table 34). Added industrial temperature range specification and improved typical quiescent current values (Table 34). Improved the DLL minimum clock input frequency specification from 24 MHz down to 18 MHz (Table 58). Improved the DFS minimum and maximum clock output frequency specifications (Table 60, Table 61). Added new miscellaneous DCM specifications (Table 64), primarily affecting Industrial temperature range applications. Updated Simultaneously Switching Output Guidelines and Table 50 for QFP packages. Added information on SSTL18_II I/O standard and timing to support DDR2 SDRAM interfaces. Added differential (or complementary single-ended) DIFF_HSTL_II_18 and DIFF_SSTL2_II I/O standards, including DCI terminated versions. Added electro-static discharge (ESD) data for the XC3S2000 and larger FPGAs (Table 28). Added link to Spartan-3 FPGA errata notices and how to receive automatic notifications of data sheet or errata changes.
04/03/06	2.0	Upgraded Module 3, removing Preliminary status. Moved XC3S5000 to Production status in Table 39. Finalized I/O timing on XC3S5000 for v1.38 speed files. Added minimum timing values for various logic and I/O paths. Corrected labels for R_{PU} and R_{PD} and updated R_{PD} conditions for in Table 33. Added final mask revision 'E' specifications for LVDS_25, RSDS_25, LVDSEXT_25 differential outputs to Table 38. Added BLVDS termination requirements to Figure 34. Improved recommended Simultaneous Switching Outputs (SSOs) limits in Table 50 for quad-flat packaged based on silicon testing using devices soldered on a printed circuit board. Updated Note 2 in Table 63. Updated Note 6 in Table 30. Added INIT_B minimum pulse width specification, T_{INIT} , to Table 65.
04/26/06	2.1	Updated document links.

www.xilinx.com

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS. The 1% precision impedance-matching resistor attached to the VRN_# pin controls the pull-down impedance of NMOS transistor in the input or output buffer. Consequently, the VRN_# pin must connect to VCCO. The 'N' character in "VRN" indicates that this pin controls the I/O buffer's NMOS transistor impedance. The VRN_# pin is only used for split termination.

Each VRN or VRP reference input requires its own resistor. A single resistor cannot be shared between VRN or VRP pins associated with different banks.

During configuration, these pins behave exactly like user-I/O pins. The associated DCI behavior is not active or valid until after configuration completes.

Also see Digitally Controlled Impedance (DCI), page 16.

DCI Termination Types

If the I/O in an I/O bank do not use the DCI feature, then no external resistors are required and both the VRP # and VRN # pins are available for user I/O, as shown in section [a] of Figure 42.

If the I/O standards within the associated I/O bank require single termination—such as GTL_DCI, GTLP_DCI, or HSTL_III_DCI—then only the VRP_# signal connects to a 1% precision impedance-matching resistor, as shown in section [b] of Figure 42. A resistor is not required for the VRN # pin.

Finally, if the I/O standards with the associated I/O bank require split termination—such as HSTL 1 DCI, SSTL2 1 DCI, SSTL2_II_DCI, or LVDS_25_DCI and LVDSEXT_25_DCI receivers—then both the VRP_# and VRN_# pins connect to separate 1% precision impedance-matching resistors, as shown in section [c] of Figure 42. Neither pin is available for user I/O.

GCLK: Global Clock Buffer Inputs or General-Purpose I/O Pins

These pins are user-I/O pins unless they specifically connect to one of the eight low-skew global clock buffers on the device, specified using the IBUFG primitive.

There are eight GCLK pins per device and two each appear in the top-edge banks, Bank 0 and 1, and the bottom-edge banks, Banks 4 and 5. See Figure 40 for a picture of bank labeling.

During configuration, these pins behave exactly like user-I/O pins.

Also see Global Clock Network, page 42.

CONFIG: Dedicated Configuration Pins

The dedicated configuration pins control the configuration process and are not available as user-I/O pins. Every package has seven dedicated configuration pins. All CONFIG-type pins are powered by the +2.5V VCCAUX supply.

Also see Configuration, page 46.

HSWAP_EN: Disable Pull-up Resistors During Configuration

As shown in Table 76, a Low on this asynchronous pin enables pull-up resistors on all user I/Os not actively involved in the configuration process, although only until device configuration completes. A High disables the pull-up resistors during configuration, which is the desired state for some applications.

The dedicated configuration CONFIG pins (CCLK, DONE, PROG_B, HSWAP_EN, M2, M1, M0), the JTAG pins (TDI, TMS, TCK, TDO) and the INIT_B always have active pull-up resistors during configuration, regardless of the value on HSWAP_EN.

After configuration, HSWAP_EN becomes a "don't care" input and any pull-up resistors previously enabled by HSWAP_EN are disabled. If a user I/O in the application requires a pull-up resistor after configuration, place a PULLUP primitive on the associated I/O pin or, for some pins, set the associated bitstream generator option.

Table 76: HSWAP_EN Encoding

HSWAP_EN	Function							
During Configu	During Configuration							
0	Enable pull-up resistors on all pins not actively involved in the configuration process. Pull-ups are only active until configuration completes. See Table 79.							
1	No pull-up resistors during configuration.							
After Configuration, User Mode								
Х	This pin has no function except during device configuration.							

Notes:

1. X =don't care, either 0 or 1.

The Bitstream generator option HswapenPin determines whether a pull-up resistor to VCCAUX, a pull-down resistor, or no resistor is present on HSWAP_EN after configuration.

JTAG: Dedicated JTAG Port Pins

Table 77: JTAG Pin Descriptions

Pin Name	Direction	Description	Bitstream Generation Option
ТСК	Input	Test Clock: The TCK clock signal synchronizes all boundary scan operations on its rising edge.	The BitGen option TckPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TDI	Input	Test Data Input: TDI is the serial data input for all JTAG instruction and data registers. This input is sampled on the rising edge of TCK.	The BitGen option TdiPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TMS	Input	Test Mode Select: The TMS input controls the sequence of states through which the JTAG TAP state machine passes. This input is sampled on the rising edge of TCK.	The BitGen option TmsPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TDO	Output	Test Data Output: The TDO pin is the data output for all JTAG instruction and data registers. This output is sampled on the rising edge of TCK. The TDO output is an active totem-pole driver and is not like the open-collector TDO output on Virtex [®] -II Pro FPGAs.	The BitGen option TdoPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.

These pins are dedicated connections to the four-wire IEEE 1532/IEEE 1149.1 JTAG port, shown in Figure 43 and described in Table 77. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and possibly an additional serial port for the application. These pins are dedicated and are not available as user-I/O pins. Every package has four dedicated JTAG pins and these pins are powered by the +2.5V VCCAUX supply.

For additional information on JTAG configuration, see Boundary-Scan (JTAG) Mode, page 50.

Table 79: Pin Behavior After Power-Up, During Configuration (Cont'd)

		Bitstream					
Pin Name	Serial Modes		SelectMap Parallel Modes		JTAG Mode	Configuration	
	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	<1:0:1>	Option	
JTAG: JTAG interface pins (pull-up resistor to VCCAUX always active during configuration, regardless of HSWAP_E							
TDI	TDI (I)	TDI (I)	TDI (I)	TDI (I)	TDI (I)	TdiPin	
TMS	TMS (I)	TMS (I)	TMS (I)	TMS (I)	TMS (I)	TmsPin	
ТСК	TCK (I)	TCK (I)	TCK (I)	TCK (I)	TCK (I)	TckPin	
TDO	TDO (O)	TDO (O)	TDO (O)	TDO (O)	TDO (O)	TdoPin	

Table 91: TQ144 Package Pinout (Cont'd)

Bank	XC3S50, XC3S200, XC3S400 Pin Name	TQ144 Pin Number	Туре
5	IO_L32P_5/GCLK2	P52	GCLK
6	IO_L01N_6/VRP_6	P36	DCI
6	IO_L01P_6/VRN_6	P35	DCI
6	IO_L20N_6	P33	I/O
6	IO_L20P_6	P32	I/O
6	IO_L21N_6	P31	I/O
6	IO_L21P_6	P30	I/O
6	IO_L22N_6	P28	I/O
6	IO_L22P_6	P27	I/O
6	IO_L23N_6	P26	I/O
6	IO_L23P_6	P25	I/O
6	IO_L24N_6/VREF_6	P24	VREF
6	IO_L24P_6	P23	I/O
6	IO_L40N_6	P21	I/O
6	IO_L40P_6/VREF_6	P20	VREF
7	IO/VREF_7	P4	VREF
7	IO_L01N_7/VRP_7	P2	DCI
7	IO_L01P_7/VRN_7	P1	DCI
7	IO_L20N_7	P6	I/O
7	IO_L20P_7	P5	I/O
7	IO_L21N_7	P8	I/O
7	IO_L21P_7	P7	I/O
7	IO_L22N_7	P11	I/O
7	IO_L22P_7	P10	I/O
7	IO_L23N_7	P13	I/O
7	IO_L23P_7	P12	I/O
7	IO_L24N_7	P15	I/O
7	IO_L24P_7	P14	I/O
7	IO_L40N_7/VREF_7	P18	VREF
7	IO_L40P_7	P17	I/O
0,1	VCCO_TOP	P126	VCCO
0,1	VCCO_TOP	P138	VCCO
0,1	VCCO_TOP	P115	VCCO
2,3	VCCO_RIGHT	P106	VCCO
2,3	VCCO_RIGHT	P75	VCCO
2,3	VCCO_RIGHT	P91	VCCO
4,5	VCCO_BOTTOM	P54	VCCO
4,5	VCCO_BOTTOM	P43	VCCO
4,5	VCCO_BOTTOM	P66	VCCO
6,7	VCCO_LEFT	P19	VCCO

www.xilinx.com

Table 96: FT256 Package Pinout (Cont'd)

Bank	XC3S200, XC3S400, XC3S1000 Pin Name	FT256 Pin Number	Туре
2	VCCO_2	G11	VCCO
2	VCCO_2	H11	VCCO
2	VCCO_2	H12	VCCO
3	ю	K15	I/O
3	IO_L01N_3/VRP_3	P16	DCI
3	IO_L01P_3/VRN_3	R16	DCI
3	IO_L16N_3	P15	I/O
3	IO_L16P_3	P14	I/O
3	IO_L17N_3	N16	I/O
3	IO_L17P_3/VREF_3	N15	VREF
3	IO_L19N_3	M14	I/O
3	IO_L19P_3	N14	I/O
3	IO_L20N_3	M16	I/O
3	IO_L20P_3	M15	I/O
3	IO_L21N_3	L13	I/O
3	IO_L21P_3	M13	I/O
3	IO_L22N_3	L15	I/O
3	IO_L22P_3	L14	I/O
3	IO_L23N_3	K12	I/O
3	IO_L23P_3/VREF_3	L12	VREF
3	IO_L24N_3	K14	I/O
3	IO_L24P_3	K13	I/O
3	IO_L39N_3	J14	I/O
3	IO_L39P_3	J13	I/O
3	IO_L40N_3/VREF_3	J16	VREF
3	IO_L40P_3	K16	I/O
3	VCCO_3	J11	VCCO
3	VCCO_3	J12	VCCO
3	VCCO_3	K11	VCCO
4	Ю	T12	I/O
4	10	T14	I/O
4	IO/VREF_4	N12	VREF
4	IO/VREF_4	P13	VREF
4	IO/VREF_4	T10	VREF
4	IO_L01N_4/VRP_4	R13	DCI
4	IO_L01P_4/VRN_4	T13	DCI
4	IO_L25N_4	P12	I/O
4	IO_L25P_4	R12	I/O
4	IO_L27N_4/DIN/D0	M11	DUAL
4	IO_L27P_4/D1	N11	DUAL

www.xilinx.com

Table 98: FG320 Package Pinout (Cont'd)

Bank	XC3S400, XC3S1000, XC3S1500 Pin Name	FG320 Pin Number	Туре
0	VCCO_0	G9	VCCO
1	IO	A11	I/O
1	IO	B13	I/O
1	IO	D10	I/O
1	IO/VREF_1	A12	VREF
1	IO_L01N_1/VRP_1	A16	DCI
1	IO_L01P_1/VRN_1	A17	DCI
1	IO_L10N_1/VREF_1	A15	VREF
1	IO_L10P_1	B15	I/O
1	IO_L15N_1	C14	I/O
1	IO_L15P_1	C15	I/O
1	IO_L16N_1	A14	I/O
1	IO_L16P_1	B14	I/O
1	IO_L24N_1	D14	I/O
1	IO_L24P_1	D13	I/O
1	IO_L27N_1	E13	I/O
1	IO_L27P_1	E12	I/O
1	IO_L28N_1	C12	I/O
1	IO_L28P_1	D12	I/O
1	IO_L29N_1	F11	I/O
1	IO_L29P_1	E11	I/O
1	IO_L30N_1	C11	I/O
1	IO_L30P_1	D11	I/O
1	IO_L31N_1/VREF_1	A10	VREF
1	IO_L31P_1	B10	I/O
1	IO_L32N_1/GCLK5	E10	GCLK
1	IO_L32P_1/GCLK4	F10	GCLK
1	VCCO_1	B11	VCCO
1	VCCO_1	C13	VCCO
1	VCCO_1	G10	VCCO
1	VCCO_1	G11	VCCO
2	IO	J13	I/O
2	IO_L01N_2/VRP_2	C16	DCI
2	IO_L01P_2/VRN_2	C17	DCI
2	IO_L16N_2	B18	I/O
2	IO_L16P_2	C18	I/O
2	IO_L17N_2	D17	I/O
2	IO_L17P_2/VREF_2	D18	VREF
2	IO_L19N_2	D16	I/O
2	IO_L19P_2	E16	I/O

Table 100: FG456 Package Pinout (Cont'd)

Bank	3S400 Pin Name	3S1000, 3S1500, 3S2000 Pin Name	FG456 Pin Number	Туре
N/A	GND	GND	B21	GND
N/A	GND	GND	C9	GND
N/A	GND	GND	C14	GND
N/A	GND	GND	J3	GND
N/A	GND	GND	J9	GND
N/A	GND	GND	J10	GND
N/A	GND	GND	J11	GND
N/A	GND	GND	J12	GND
N/A	GND	GND	J13	GND
N/A	GND	GND	J14	GND
N/A	GND	GND	J20	GND
N/A	GND	GND	K9	GND
N/A	GND	GND	K10	GND
N/A	GND	GND	K11	GND
N/A	GND	GND	K12	GND
N/A	GND	GND	K13	GND
N/A	GND	GND	K14	GND
N/A	GND	GND	L9	GND
N/A	GND	GND	L10	GND
N/A	GND	GND	L11	GND
N/A	GND	GND	L12	GND
N/A	GND	GND	L13	GND
N/A	GND	GND	L14	GND
N/A	GND	GND	M9	GND
N/A	GND	GND	M10	GND
N/A	GND	GND	M11	GND
N/A	GND	GND	M12	GND
N/A	GND	GND	M13	GND
N/A	GND	GND	M14	GND
N/A	GND	GND	N9	GND
N/A	GND	GND	N10	GND
N/A	GND	GND	N11	GND
N/A	GND	GND	N12	GND
N/A	GND	GND	N13	GND
N/A	GND	GND	N14	GND
N/A	GND	GND	P3	GND
N/A	GND	GND	P9	GND
N/A	GND	GND	P10	GND
N/A	GND	GND	P11	GND
N/A	GND	GND	P12	GND

Table 100: FG456 Package Pinout (Cont'd)

Bank	3S400 Pin Name	3S1000, 3S1500, 3S2000 Pin Name	FG456 Pin Number	Туре
N/A	GND	GND	P13	GND
N/A	GND	GND	P14	GND
N/A	GND	GND	P20	GND
N/A	GND	GND	Y9	GND
N/A	GND	GND	Y14	GND
N/A	VCCAUX	VCCAUX	A6	VCCAUX
N/A	VCCAUX	VCCAUX	A17	VCCAUX
N/A	VCCAUX	VCCAUX	AB6	VCCAUX
N/A	VCCAUX	VCCAUX	AB17	VCCAUX
N/A	VCCAUX	VCCAUX	F1	VCCAUX
N/A	VCCAUX	VCCAUX	F22	VCCAUX
N/A	VCCAUX	VCCAUX	U1	VCCAUX
N/A	VCCAUX	VCCAUX	U22	VCCAUX
N/A	VCCINT	VCCINT	G7	VCCINT
N/A	VCCINT	VCCINT	G8	VCCINT
N/A	VCCINT	VCCINT	G15	VCCINT
N/A	VCCINT	VCCINT	G16	VCCINT
N/A	VCCINT	VCCINT	H7	VCCINT
N/A	VCCINT	VCCINT	H16	VCCINT
N/A	VCCINT	VCCINT	R7	VCCINT
N/A	VCCINT	VCCINT	R16	VCCINT
N/A	VCCINT	VCCINT	T7	VCCINT
N/A	VCCINT	VCCINT	T8	VCCINT
N/A	VCCINT	VCCINT	T15	VCCINT
N/A	VCCINT	VCCINT	T16	VCCINT
VCCAUX	CCLK	CCLK	AA22	CONFIG
VCCAUX	DONE	DONE	AB21	CONFIG
VCCAUX	HSWAP_EN	HSWAP_EN	B3	CONFIG
VCCAUX	MO	MO	AB2	CONFIG
VCCAUX	M1	M1	AA1	CONFIG
VCCAUX	M2	M2	AB3	CONFIG
VCCAUX	PROG_B	PROG_B	A2	CONFIG
VCCAUX	ТСК	ТСК	A21	JTAG
VCCAUX	TDI	TDI	B1	JTAG
VCCAUX	TDO	TDO	B22	JTAG
VCCAUX	TMS	TMS	A20	JTAG

Table 103: FG676 Package Pinout (Cont'd)

3 VCC0_3 VCC0_3 VCC0_3 VCC0_3 VCC0_3 VCC0_3 VA4 VCC0_3 4 IO IO IO IO IO IO AA20 IIO 4 IO IO IO IO IO AA20 IIO 4 IO IO IO IO IO AA20 IIO 4 IO IO IO IO IO AA22 IIO 4 IO IO IO IO IO AA22 IIO 4 IO IO IO IO IO AA22 IIO 4 IO IO IO IO IO IIO IIO IIO IIO 4 IO IO IO IO IIO	Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
4 IO IO IO IO IO A200 IO 4 IO IO IO IO IO IO AA200 IO 4 IO IO IO IO IO AA201 IO 4 IO IO IO IO IO IO AA201 IO 4 IO IO IO IO IO IO AA201 IO 4 IO IO IO IO IO IO AA201 IO 4 IO IO IO IO IO IO W15 IO 4 IOVREF.4	3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	VCCO_3	Y24	VCCO
4 IO O O IO IO AD15 IO 4 IOC IO IO IO IO IO AD19 IO 4 IO IO IO IO IO IO AD19 IO 4 IO IO IO IO IO IO AP21 IO 4 IO IO IO IO IO IO AP21 IO 4 IO IO IO IO IO IO W18 IO 4 IO/REF_4 IO/REF_4 IO/REF_4 IO/REF_4 IO/REF_4 IO/REF_4 IO/REF_4 IO/REF_4 IO/IN_4/RP_4 IO_IO1_4/RIN_4 A222 DCI 4 IO_LOIN_4/RP_4 IO_LOIN_4/RP_4 IO_LOIN_4/RP_4 IO_LOIN_4/RP_4 IO_LOIN_4/RIN_4 IO_LOIN_4/RIN_4<	4	Ю	Ю	IO	IO	10	AA20	I/O
4 NC.(●) 0 0 0 0 AD19 10 4 IO IO IO IO IO IO AD23 IO 4 IO IO IO IO IO IO AD23 IO 4 IO IO IO IO IO IO AP22 IO 4 IO IO IO IO IO IO W15 IO 4 IO IO IO IO IO W16 IO 4 IOVREF_4 IOUVREF_4 IOLIN_4 A222 DCI 4 IO_LOPA IO_LOPA IO_LOPA IO_LOPA	4	Ю	Ю	IO	IO	IO	AD15	I/O
4 10 10 10 10 10 10 AP21 100 4 10 10 10 10 10 10 AP22 100 4 10 10 10 10 10 10 AP22 100 4 10 10 10 10 10 10 W15 100 4 10 10 10 10 10 W15 100 4 10 10 10 10 10 W15 100 4 10 10 10 W15 10 W15 10 4 10 10 W16F_4 10 W16F_4 10 W17F_4 AD25 W16F 4 10 10 10 10 10 W17F_4 10 L017_4 W17F_4 AD25 W16F 4 10 10.017_4 10 10 10 L017F_4 10	4	N.C. (�)	Ю	Ю	Ю	Ю	AD19	I/O
4 IO IO IO IO IO AP21 IO 4 IO IO IO IO IO IO AP22 IO 4 IO IO IO IO IO IO IO IO IO 4 IO/REF_4 IO/INA IO_LOIN_4/RP_4 AB22 DCI 4 IO_LOIP_4/RNA_4 IO_LOIN_4 IO_LOIN_4 IO_LOIN_4 AB22 DCI 4 IO_LOAN_4 IO_LOAN_4 IO_LOAN_4 IO_LOAN_4 AA224 IO 4 IO_LOAN_4 IO_LOAN_4 IO_LOAN_4 IO_LOAN_4 IO_LOAN_4 IO_LOAN_4 A224 IO 4 IO_LOAN_4	4	Ю	Ю	IO	IO	Ю	AD23	I/O
4 IO IO IO IO IO IO IO AP22 IO 4 IO IO IO IO IO IO W16 IO 4 IO IO IO IO IO IO W16 IO 4 IOVREF_4 IOURATVRP_4 IO_LOIN_4VRP_4 IO_LOIN_4VRP_4 IO_LOIN_4VRP_4 IO_LOIN_4VRP_4 IO_LOIN_4VRP_4 IO_LOIN_4VRP_4 IO_LOIN_4 AC22 DCI 4 IO_LORP_4	4	Ю	Ю	IO	IO	Ю	AF21	I/O
4 IO IO IO IO IO IO IO IO 4 IO IO IO IO IO IO IO IO 4 IOVREF_4 IOURE_4 IOUR	4	IO	Ю	Ю	IO	Ю	AF22	I/O
4 IO IO IO IO IO IO W16 IO 4 IOVREF_4 IOURA IOLON_4VREF_4 IOLON_4 IOLON_4 IOLON_4	4	IO	Ю	Ю	IO	Ю	W15	I/O
4 IOVREF_4 IOLORLAUREF_4 IOLORLAUREF_4 <thiolorlauref_4< th=""> <thiolorlauref_4< th=""> <thiolo< td=""><td>4</td><td>IO</td><td>Ю</td><td>Ю</td><td>IO</td><td>Ю</td><td>W16</td><td>I/O</td></thiolo<></thiolorlauref_4<></thiolorlauref_4<>	4	IO	Ю	Ю	IO	Ю	W16	I/O
4 IOVREF_4 IOURIT_4VRP_4 IOURIT_4 IOURIT_4VRP_4 IOURIT_4	4	IO/VREF_4	IO/VREF_4	IO/VREF_4	IO/VREF_4	IO/VREF_4	AB14	VREF
4 IOVREF_4 IOVREF_4 IOVREF_4 IOVREF_4 IOVREF_4 IOVREF_4 IOVREF_4 IOVREF_4 IOLIN_4/VRP_4 IOLIN_4 IP23 I/O 4 IOLIOSP_4 IOLIOSP_4 <td>4</td> <td>IO/VREF_4</td> <td>IO/VREF_4</td> <td>IO/VREF_4</td> <td>IO/VREF_4</td> <td>IO/VREF_4</td> <td>AD25</td> <td>VREF</td>	4	IO/VREF_4	IO/VREF_4	IO/VREF_4	IO/VREF_4	IO/VREF_4	AD25	VREF
4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIN_4/VRP_4 IO_LOIP_4/VRN_4 IO_LOIP_4 IO_LOIP_4 IO_LOIP_4 IO_LOIP_4 IO_LOIP_4/VREF_4 IO_LOIP_4 IO_LOIP_4 <thio_loip_4< th=""> IO_LO</thio_loip_4<>	4	IO/VREF_4	IO/VREF_4	IO/VREF_4	IO/VREF_4	IO/VREF_4	Y17	VREF
4 IO_L01P_4/VRN_4 IO_L01P_4/VRN_4 IO_L01P_4/VRN_4 IO_L01P_4/VRN_4 IO_L01P_4/VRN_4 AC22 DCI 4 IO_L04N_4 IO_L04N_4 IO_L04N_4 IO_L04N_4 AC22 DCI 4 IO_L04P_4 IO_L04P_4 IO_L04P_4 IO_L04P_4 AE24 I/O 4 IO_L05P_4 IO_L05P_4 IO_L05P_4 IO_L05P_4 IO_L05P_4 AF23 I/O 4 IO_L05P_4 IO_L06P_4 IO_L05P_4 IO_L06P_4 AF23 I/O 4 IO_L06P_4 IO_L06P_4 IO_L06P_4 IO_L06P_4 AF23 I/O 4 IO_L06P_4 IO_L06P_4 IO_L06P_4 IO_L06P_4 AE22 I/O 4 IO_L06P_4 IO_L07P_4 IO_L07P_4 AE21 I/O I/O 4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L07P_4 AE21 I/O 4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 AC20 I/O 4 IO_L08P_	4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	AB22	DCI
4 IO_LOAN_4 IO_LOAN_4 <thio_loan_4< th=""> <thio_loan< td=""><td>4</td><td>IO_L01P_4/VRN_4</td><td>IO_L01P_4/VRN_4</td><td>IO_L01P_4/VRN_4</td><td>IO_L01P_4/VRN_4</td><td>IO_L01P_4/VRN_4</td><td>AC22</td><td>DCI</td></thio_loan<></thio_loan_4<>	4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	AC22	DCI
4 IO_LOAP_4 IO_LOAP_4 IO_LOAP_4 IO_LOAP_4 IO_LOAP_4 AF24 IO 4 IO_LOSN_4 IO_LOSN_4 IO_LOSN_4 IO_LOSN_4 IO_LOSN_4 IO_LOSN_4 AF23 IO 4 IO_LOSP_4 IO_LOSP_4 IO_LOSP_4 IO_LOSP_4 IO_LOSP_4 AF23 IO 4 IO_LOSP_4 IO_LOSP_4 IO_LOSP_4 IO_LOSP_4 IO_LOSP_4 AF22 IVREF 4 IO_LOSP_4 IO_LOS	4	IO_L04N_4	IO_L04N_4	IO_L04N_4	IO_L04N_4	IO_L04N_4	AE24	I/O
4 IO_L05N_4 IO_L05N_4 IO_L05N_4 IO_L05N_4 IO_L05N_4 AE23 I/O 4 IO_L05P_4 IO_L05P_4 IO_L05P_4 IO_L05P_4 IO_L05P_4 AF23 I/O 4 IO_L06N_4V/REF_4 IO_L06P_4.4/VREF_4 IO_L06P_4.4/VREF_4 IO_L06P_4.4/VREF_4 AD22 VREF 4 IO_L07P_4 IO_L06P_4.4 IO_L07P_4.4 IO_L07P_4.4 IO_L07P_4.4 AE21 I/O 4 IO_L07P_4.4 IO_L07P_4.4 IO_L07P_4.4 IO_L07P_4.4 AD21 I/O 4 IO_L08P_4.4 IO_L07P_4.4 IO_L07P_4.4 IO_L08N_4.4 IO_L010N_4.4 IO_L010N_4.4	4	IO_L04P_4	IO_L04P_4	IO_L04P_4	IO_L04P_4	IO_L04P_4	AF24	I/O
4 IO_L05P_4 IO_L05P_4 IO_L05P_4 IO_L05P_4 AF23 I/O 4 IO_L05N_4/VREF_4 IO_L06N_4/VREF_4 IO_L06N_4/VREF_4 IO_L06N_4/VREF_4 IO_L06N_4/VREF_4 AD22 VREF 4 IO_L06P_4 IO_L06N_4/VREF_4 IO_L06P_4 IO_L06P_4 IO_L06P_4 AD22 VREF 4 IO_L07N_4 IO_L07N_4 IO_L07N_4 IO_L07N_4 IO_L07N_4 IO_L07P_4 AD21 I/O 4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 AD21 I/O 4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 AD21 I/O 4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 AD21 I/O 4 IO_L08N_4 IO_L08P_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 AD21 I/O 4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 AD22 I/O 4 IO_L08N_4	4	IO_L05N_4	IO_L05N_4	IO_L05N_4	IO_L05N_4	IO_L05N_4	AE23	I/O
4 IO_LOGN_4V/REF_4 IO_LOGN_4/VREF_4 IO_LOGN_4/VREF_4 IO_LOGN_4/VREF_4 IO_LOGP_4 IO_IO_1OGP_4 IO_IO_1OGP	4	IO_L05P_4	IO_L05P_4	IO_L05P_4	IO_L05P_4	IO_L05P_4	AF23	I/O
4IO_L06P_4IO_L06P_4IO_L06P_4IO_L06P_4IO_L06P_4AE22I/O4IO_L07N_4IO_L07N_4IO_L07N_4IO_L07N_4IO_L07N_4IO_L07N_4AE21I/O4IO_L07P_4IO_L07P_4IO_L07P_4IO_L07P_4IO_L07P_4AC21I/O4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4AC21I/O4IO_L08P_4IO_L08P_4IO_L08P_4IO_L08P_4IO_L08P_4AE21I/O4IO_L09N_4IO_L09N_4IO_L09N_4IO_L09N_4IO_L09N_4AE20I/O4IO_L09P_4IO_L09P_4IO_L09P_4IO_L09P_4AC20I/O4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10P_4AE20I/O4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4AC20I/O4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4AE20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4AE20I/O4IO_L10P_4IO_L11N_4IO_L10N_4IO_L10N_4AE20I/O4IO_L10P_4IO_L11N_4IO_L11N_4IO_L10N_4AE20I/O4IO_L10P_4IO_L11N_4IO_L11N_4IO_L10N_4AE20I/O4IO_L11N_4IO_L11N_4IO_L11N_4IO_L10N_4AE20I/O4IO_L11P_4IO_L11N_4IO_L11N_4IO_L11N_4AE20I/O4I	4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	AD22	VREF
4IO_L07N_4IO_L07N_4IO_L07N_4IO_L07N_4IO_L07N_4AB21I/O4IO_L07P_4IO_L07P_4IO_L07P_4IO_L07P_4IO_L07P_4AC21I/O4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4AC21I/O4IO_L08P_4IO_L08P_4IO_L08P_4IO_L08P_4IO_L08P_4AC21I/O4IO_L09P_4IO_L09P_4IO_L09N_4IO_L08P_4IO_L08P_4AC20I/O4IO_L09P_4IO_L09P_4IO_L09P_4IO_L09P_4IO_L09P_4AC20I/O4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4AC20I/O4IO_L10P_4IO_L10P_4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4I/O4N.C.(•)IO_L11N_4IO_L11N_4IO_L11N_4IO_L12N_4IO_L12N_4AC19I/O <t< td=""><td>4</td><td>IO_L06P_4</td><td>IO_L06P_4</td><td>IO_L06P_4</td><td>IO_L06P_4</td><td>IO_L06P_4</td><td>AE22</td><td>I/O</td></t<>	4	IO_L06P_4	IO_L06P_4	IO_L06P_4	IO_L06P_4	IO_L06P_4	AE22	I/O
4IO_L07P_4IO_L07P_4IO_L07P_4IO_L07P_4IO_L07P_4AC21I/O4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4IO_L08N_4AD21I/O4IO_L08P_4IO_L08P_4IO_L08P_4IO_L08P_4IO_L08P_4AE21I/O4IO_L09N_4IO_L09N_4IO_L09N_4IO_L09N_4IO_L09N_4AE20I/O4IO_L09P_4IO_L09P_4IO_L09P_4IO_L09P_4AC20I/O4IO_L10N_4IO_L10P_4IO_L10P_4IO_L10N_4AE20I/O4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10N_4AE20I/O4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4AF20I/O4IO_L10P_4IO_L11P_4IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_44N.C. (•)IO_L11P_4IO_L11P_4IO_L11P_4IO_L11N_4IO_L11N_44N.C. (•)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4AB19I/O4N.C. (•)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4AC19I/O4N.C. (•)IO_L12N_4IO_L15N_4IO_L15N_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4A618I/O <t< td=""><td>4</td><td>IO_L07N_4</td><td>IO_L07N_4</td><td>IO_L07N_4</td><td>IO_L07N_4</td><td>IO_L07N_4</td><td>AB21</td><td>I/O</td></t<>	4	IO_L07N_4	IO_L07N_4	IO_L07N_4	IO_L07N_4	IO_L07N_4	AB21	I/O
4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 IO_L08N_4 AD21 I/O 4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L09N_4 IO_L09N_4 IO_L09N_4 IO_L09N_4 AE21 I/O 4 IO_L09N_4 IO_L09N_4 IO_L09N_4 IO_L09P_4 IO_L09N_4 AB20 I/O 4 IO_L09P_4 IO_L09P_4 IO_L09P_4 IO_L09P_4 IO_L09P_4 AC20 I/O 4 IO_L10N_4 IO_L10N_4 IO_L10P_4 IO_L10P_4 IO_L10P_4 AF20 I/O 4 IO_L10P_4 IO_L11N_4 IO_L11P_4 IO_L11P_4 IO_L11N_4 IO_L11N_4 IO_L11N_4 IO_L11P_4 IO_L11P_4 IO_L11N_4 IO_L11N_4 IO_L11N_4 IO_L11P_4 IO_L11P_4 IO_L11P_4 IO_L11P_4 IO_L11P_4 IO_L11P_4 IO_L12N_4 AB19 I/O 4 N.C. (•) IO_L12P_4 IO_L12P_4 IO_L12P_4 IO_L12P_4 AF19 I/O I/O <	4	IO_L07P_4	IO_L07P_4	IO_L07P_4	IO_L07P_4	IO_L07P_4	AC21	I/O
4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 IO_L08P_4 AE21 I/O 4 IO_L09N_4 IO_L09N_4 IO_L09N_4 IO_L09N_4 IO_L09N_4 AB20 I/O 4 IO_L09P_4 IO_L09P_4 IO_L09P_4 IO_L09P_4 IO_L09P_4 AC20 I/O 4 IO_L10N_4 IO_L10P_4 IO_L10P_4 IO_L10P_4 IO_L10P_4 AE20 I/O 4 IO_L10P_4 IO_L10P_4 IO_L10P_4 IO_L10P_4 IO_L10P_4 AF20 I/O 4 IO_L10P_4 IO_L11P_4 IO_L11P_4 IO_L11P_4 IO_L11P_4 IO_L11N_4 Y19 I/O 4 N.C. (•) IO_L11P_4 IO_L12N_4 IO_L11P_4 IO_L12N_4 IO_L12N_	4	IO_L08N_4	IO_L08N_4	IO_L08N_4	IO_L08N_4	IO_L08N_4	AD21	I/O
4 IO_LO9N_4 IO_LO9N_4 IO_LO9N_4 IO_LO9N_4 IO_LO9P_4 IO_LO10P_4 IO_LO10P_4 IIO_LO10P_4	4	IO_L08P_4	IO_L08P_4	IO_L08P_4	IO_L08P_4	IO_L08P_4	AE21	I/O
4IO_L09P_4IO_L09P_4IO_L09P_4IO_L09P_4IO_L09P_4AC20I/O4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4AE20I/O4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4AF20I/O4N.C. (\blacklozenge)IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_4Y19I/O4N.C. (\blacklozenge)IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4AA19I/O4N.C. (\blacklozenge)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12P_4AA19I/O4N.C. (\blacklozenge)IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AC19I/O4IO_L16N_4IO_L16N_4IO_L15P_4IO_L15P_4IO_L15P_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_44IO_L16P_4IO_L16N_4IO_L16N_4IO_L16P_4IO_L16P_4AA18I/O4N.C. (\blacklozenge)IO_L17N_4IO_L17N_4IO_L17N_4IO_L17N_4AB18I/O4N.C. (\blacklozenge)IO_L18N_4IO_L16P_4IO_L16P_4AC18I/O4N.C. (\blacklozenge)IO_L18N_4IO_L17N_4IO_L17N_4IO_L17N_4AC18I/O4N.C. (\blacklozenge)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4 <td< td=""><td>4</td><td>IO_L09N_4</td><td>IO_L09N_4</td><td>IO_L09N_4</td><td>IO_L09N_4</td><td>IO_L09N_4</td><td>AB20</td><td>I/O</td></td<>	4	IO_L09N_4	IO_L09N_4	IO_L09N_4	IO_L09N_4	IO_L09N_4	AB20	I/O
4IO_L10N_4IO_L10N_4IO_L10N_4IO_L10N_4AE20I/O4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4AF20I/O4N.C. (\diamond)IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_4Y19I/O4N.C. (\diamond)IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4AA19I/O4N.C. (\diamond)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4AA19I/O4N.C. (\diamond)IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4N.C. (\diamond)IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AE19I/O4IO_L15N_4IO_L15N_4IO_L15P_4IO_L15N_4IO_L15P_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16P_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16P_4IO_L17N_4IO_L17N_4IO_L17N_4AA18I/O4N.C. (\diamond)IO_L17P_4IO_L17N_4IO_L17N_4IO_L17N_4AC18I/O4N.C. (\diamond)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4AD18I/O4N.C. (\diamond)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4AE18I/O4N.C.	4	IO_L09P_4	IO_L09P_4	IO_L09P_4	IO_L09P_4	IO_L09P_4	AC20	I/O
4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4IO_L10P_4AF20I/O4N.C. (\diamond)IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_4Y19I/O4N.C. (\diamond)IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4AA19I/O4N.C. (\diamond)IO_L12N_4IO_L12N_4IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_44N.C. (\diamond)IO_L12N_4IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AE19I/O4IO_L16P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16N_4IO_L16P_4IO_L16P_4IO_L16P_4AA18I/O4IO_L16P_4IO_L17N_4IO_L17N_4IO_L17N_4AA18I/O4N.C. (\diamond)IO_L17P_4IO_L17N_4IO_L17P_4AC18I/O4N.C. (\diamond)IO_L18P_4IO_L18P_4IO_L18N_4IO_L18N_4AE18I/O4N.C. (\diamond)IO_L18P_4IO_L18P_4IO_L18P_4IO_L18P_4AC17I/O4N.C. (\diamond)IO_L18P_4IO_L18P_4IO_L18N_4IO_L18N_4AC18I/O4N.C. (\diamond)IO_L18P_4IO_L18P_4IO_L18P_4IO_L18P_4 <td< td=""><td>4</td><td>IO_L10N_4</td><td>IO_L10N_4</td><td>IO_L10N_4</td><td>IO_L10N_4</td><td>IO_L10N_4</td><td>AE20</td><td>I/O</td></td<>	4	IO_L10N_4	IO_L10N_4	IO_L10N_4	IO_L10N_4	IO_L10N_4	AE20	I/O
4N.C. (\diamond)IO_L11N_4IO_L11N_4IO_L11N_4IO_L11N_4Y19I/O4N.C. (\diamond)IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4AA19I/O4N.C. (\diamond)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4AB19I/O4N.C. (\diamond)IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AE19I/O4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L16P_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16P_4IO_L16P_4IO_L16P_4IO_L16P_4AA18I/O4N.C. (\diamond)IO_L17N_4IO_L17N_4IO_L17N_4IO_L17N_4AB18I/O4N.C. (\diamond)IO_L18N_4IO_L17P_4IO_L17P_4AC18I/O4N.C. (\diamond)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4AD18I/O4N.C. (\diamond)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18P_4AC17I/O4IO_L19N_4IO_L19N_4IO_L19N_4IO_L19N_4AC17I/O4IO_L19N_4IO_L19N_4IO_L19P_4IO_L19P_4AA17I/O	4	IO_L10P_4	IO_L10P_4	IO_L10P_4	IO_L10P_4	IO_L10P_4	AF20	I/O
4N.C. (\diamond)IO_L11P_4IO_L11P_4IO_L11P_4IO_L11P_4AA19I/O4N.C. (\diamond)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4AB19I/O4N.C. (\diamond)IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AE19I/O4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L16N_44IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16P_4IO_L16P_4IO_L16P_4IO_L16P_4AA18I/O4N.C. (\diamond)IO_L17N_4IO_L17N_4IO_L17N_4IO_L17N_4AB18I/O4N.C. (\diamond)IO_L17P_4IO_L17P_4IO_L17P_4IO_L18N_4AD18I/O4N.C. (\diamond)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4AD18I/O4N.C. (\diamond)IO_L18P_4IO_L18P_4IO_L18P_4IO_L19N_4AC17I/O4IO_L19N_4IO_L19N_4IO_L19N_4IO_L19N_4IO_L19N_4AC17I/O4IO_L19P_4IO_L19P_4IO_L19P_4IO_L19P_4IO_L19P_4AA17I/O	4	N.C. (�)	IO_L11N_4	IO_L11N_4	IO_L11N_4	IO_L11N_4	Y19	I/O
4N.C. (\blacklozenge)IO_L12N_4IO_L12N_4IO_L12N_4IO_L12N_4AB19I/O4N.C. (\blacklozenge)IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AE19I/O4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16P_4IO_L16P_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16P_4IO_L16P_4IO_L16P_4IO_L16P_4AA18I/O4N.C. (\blacklozenge)IO_L17N_4IO_L17N_4IO_L17N_4IO_L17N_4AB18I/O4N.C. (\blacklozenge)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4AC18I/O4N.C. (\blacklozenge)IO_L18N_4IO_L18N_4IO_L18P_4IO_L18P_4AE18I/O4N.C. (\blacklozenge)IO_L18N_4IO_L18N_4IO_L18P_4AE18I/O4IO_L19N_4IO_L19N_4IO_L19N_4IO_L19N_4AC17I/O4IO_L19P_4IO_L19N_4IO_L19N_4IO_L19P_4AA17I/O	4	N.C. (�)	IO_L11P_4	IO_L11P_4	IO_L11P_4	IO_L11P_4	AA19	I/O
4N.C. (\blacklozenge)IO_L12P_4IO_L12P_4IO_L12P_4IO_L12P_4AC19I/O4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4IO_L15N_4AE19I/O4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4IO_L15P_4AF19I/O4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4IO_L16N_4Y18I/O4IO_L16P_4IO_L16N_4IO_L16P_4IO_L16P_4IO_L16P_4AA18I/O4N.C. (\blacklozenge)IO_L17N_4IO_L17N_4IO_L17N_4IO_L17N_4AB18I/O4N.C. (\blacklozenge)IO_L17P_4IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_44N.C. (\blacklozenge)IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4IO_L18N_4AD18I/O4N.C. (\blacklozenge)IO_L18P_4IO_L18P_4IO_L18N_4IO_L18P_4AC18I/O4N.C. (\blacklozenge)IO_L18P_4IO_L18P_4IO_L18P_4IO_L18P_4AC17I/O4IO_L19N_4IO_L19N_4IO_L19N_4IO_L19N_4IO_L19P_4AA17I/O	4	N.C. (�)	IO_L12N_4	IO_L12N_4	IO_L12N_4	IO_L12N_4	AB19	I/O
4 IO_L15N_4 IO_L15N_4 IO_L15N_4 IO_L15N_4 IO_L15N_4 AE19 I/O 4 IO_L15P_4 IO_L15P_4 IO_L15P_4 IO_L15P_4 IO_L15P_4 IO_L15P_4 AF19 I/O 4 IO_L16N_4 IO_L16N_4 IO_L16N_4 IO_L16N_4 IO_L16N_4 IO_L16N_4 Y18 I/O 4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 AA18 I/O 4 N.C. (•) IO_L17N_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 AC18 I/O 4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 AC18 I/O 4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AC18 I/O 4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AE18 I/O 4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18N_4 AE18 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17	4	N.C. (�)	IO_L12P_4	IO_L12P_4	IO_L12P_4	IO_L12P_4	AC19	I/O
4 IO_L15P_4 IO_L15P_4 IO_L15P_4 IO_L15P_4 IO_L15P_4 AF19 I/O 4 IO_L16N_4 IO_L16N_4 IO_L16N_4 IO_L16N_4 IO_L16N_4 Y18 I/O 4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 AA18 I/O 4 IO_L16P_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 AB18 I/O 4 N.C. (�) IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 AC18 I/O 4 N.C. (•) IO_L18N_4 AE18 I/O 4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 AE18 I/O 4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 AE18 I/O 4 N.C. (•) IO_L19P_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L17P_4 AE18 I/O I/O </td <td>4</td> <td>IO_L15N_4</td> <td>IO_L15N_4</td> <td>IO_L15N_4</td> <td>IO_L15N_4</td> <td>IO_L15N_4</td> <td>AE19</td> <td>I/O</td>	4	IO_L15N_4	IO_L15N_4	IO_L15N_4	IO_L15N_4	IO_L15N_4	AE19	I/O
4 IO_L16N_4 IO_L16N_4 IO_L16N_4 IO_L16N_4 Y18 I/O 4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 AA18 I/O 4 IO_L16P_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 AB18 I/O 4 N.C. (•) IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 AC18 I/O 4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (•) IO_L19P_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	IO_L15P_4	IO_L15P_4	IO_L15P_4	IO_L15P_4	IO_L15P_4	AF19	I/O
4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 IO_L16P_4 AA18 I/O 4 N.C. (♦) IO_L17N_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 AB18 I/O 4 N.C. (♦) IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 AC18 I/O 4 N.C. (♦) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (♦) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (♦) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18N_4 AD18 I/O 4 N.C. (♦) IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	IO_L16N_4	IO_L16N_4	IO_L16N_4	IO_L16N_4	IO_L16N_4	Y18	I/O
4 N.C. (\blacklozenge) IO_L17N_4 IO_L17N_4 IO_L17N_4 IO_L17N_4 AB18 I/O 4 N.C. (\blacklozenge) IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 AC18 I/O 4 N.C. (\blacklozenge) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (\blacklozenge) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 AE18 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	IO_L16P_4	IO_L16P_4	IO_L16P_4	IO_L16P_4	IO_L16P_4	AA18	I/O
4 N.C. (•) IO_L17P_4 IO_L17P_4 IO_L17P_4 IO_L17P_4 AC18 I/O 4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 AE18 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	N.C. (�)	IO_L17N_4	IO_L17N_4	IO_L17N_4	IO_L17N_4	AB18	I/O
4 N.C. (•) IO_L18N_4 IO_L18N_4 IO_L18N_4 IO_L18N_4 AD18 I/O 4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L19P_4 AE18 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	N.C. (�)	IO_L17P_4	IO_L17P_4	IO_L17P_4	IO_L17P_4	AC18	I/O
4 N.C. (•) IO_L18P_4 IO_L18P_4 IO_L18P_4 IO_L18P_4 AE18 I/O 4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	N.C. (�)	IO_L18N_4	IO_L18N_4	IO_L18N_4	IO_L18N_4	AD18	I/O
4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 IO_L19N_4 AC17 I/O 4 IO_L19P_4 IO_L19	4	N.C. (�)	IO_L18P_4	IO_L18P_4	IO_L18P_4	IO_L18P_4	AE18	I/O
4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 IO_L19P_4 AA17 I/O	4	IO_L19N_4	IO_L19N_4	IO_L19N_4	IO_L19N_4	IO_L19N_4	AC17	I/O
	4	IO_L19P_4	IO_L19P_4	IO_L19P_4	IO_L19P_4	IO_L19P_4	AA17	I/O

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
N/A	VCCAUX	VCCAUX	Y5	VCCAUX
N/A	VCCINT	VCCINT	AA13	VCCINT
N/A	VCCINT	VCCINT	AA22	VCCINT
N/A	VCCINT	VCCINT	AB13	VCCINT
N/A	VCCINT	VCCINT	AB14	VCCINT
N/A	VCCINT	VCCINT	AB15	VCCINT
N/A	VCCINT	VCCINT	AB16	VCCINT
N/A	VCCINT	VCCINT	AB19	VCCINT
N/A	VCCINT	VCCINT	AB20	VCCINT
N/A	VCCINT	VCCINT	AB21	VCCINT
N/A	VCCINT	VCCINT	AB22	VCCINT
N/A	VCCINT	VCCINT	AC12	VCCINT
N/A	VCCINT	VCCINT	AC17	VCCINT
N/A	VCCINT	VCCINT	AC18	VCCINT
N/A	VCCINT	VCCINT	AC23	VCCINT
N/A	VCCINT	VCCINT	M12	VCCINT
N/A	VCCINT	VCCINT	M17	VCCINT
N/A	VCCINT	VCCINT	M18	VCCINT
N/A	VCCINT	VCCINT	M23	VCCINT
N/A	VCCINT	VCCINT	N13	VCCINT
N/A	VCCINT	VCCINT	N14	VCCINT
N/A	VCCINT	VCCINT	N15	VCCINT
N/A	VCCINT	VCCINT	N16	VCCINT
N/A	VCCINT	VCCINT	N19	VCCINT
N/A	VCCINT	VCCINT	N20	VCCINT
N/A	VCCINT	VCCINT	N21	VCCINT
N/A	VCCINT	VCCINT	N22	VCCINT
N/A	VCCINT	VCCINT	P13	VCCINT
N/A	VCCINT	VCCINT	P22	VCCINT
N/A	VCCINT	VCCINT	R13	VCCINT
N/A	VCCINT	VCCINT	R22	VCCINT
N/A	VCCINT	VCCINT	T13	VCCINT
N/A	VCCINT	VCCINT	T22	VCCINT
N/A	VCCINT	VCCINT	U12	VCCINT
N/A	VCCINT	VCCINT	U23	VCCINT
N/A	VCCINT	VCCINT	V12	VCCINT
N/A	VCCINT	VCCINT	V23	VCCINT
N/A	VCCINT	VCCINT	W13	VCCINT
N/A	VCCINT	VCCINT	W22	VCCINT
N/A	VCCINT	VCCINT	Y13	VCCINT

User I/Os by Bank

Note: The FG(G)1156 package is discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

Table 111 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 in the FG1156 package. Similarly, Table 112 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S5000 in the FG1156 package.

Pookogo Edgo			All Possible I/O Pins by Type				
Package Euge	Bank		I/O	DUAL	DCI	VREF	GCLK
Ton	0	90	79	0	2	7	2
юр	1	90	79	0	2	7	2
Diabt	2	88	80	0	2	6	0
night	3	88	79	0	2	7	0
Bottom	4	90	73	6	2	7	2
	5	90	73	6	2	7	2
1.04	6	88	79	0	2	7	0
Leit	7	88	79	0	2	7	0

Table 111: User I/Os Per Bank for XC3S4000 in FG1156 Package

Notes:

1. The FG1156 and FGG1156 packages are discontinued. See <u>www.xilinx.com/support/documentation/spartan-3.htm#19600</u>.

Package Edge	I/O	Maximum I/O	All Possible I/O Pins by Type				
	Bank	Maximum VO	I/O	DUAL	DCI	VREF	GCLK
Ton	0	100	89	0	2	7	2
юр	1	100	89	0	2	7	2
Diaht	2	96	87	0	2	7	0
right	3	96	87	0	2	7	0
Bottom	4	100	83	6	2	7	2
	5	100	83	6	2	7	2
1.54	6	96	87	0	2	7	0
Len	7	96	87	0	2	7	0

Table 112: User I/Os Per Bank for XC3S5000 in FG1156 Package

Notes:

1. The FG1156 and FGG1156 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.