E·XFL

AMD Xilinx - XC3S200-4TQ144C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	480
Number of Logic Elements/Cells	4320
Total RAM Bits	221184
Number of I/O	97
Number of Gates	200000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s200-4tq144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Coarse Phase Shift Outputs of the DLL Component

In addition to CLK0 for zero-phase alignment to the CLKIN signal, the DLL also provides the CLK90, CLK180 and CLK270 outputs for 90°, 180° and 270° phase-shifted signals, respectively. These signals are described in Table 16, page 33. Their relative timing in the Low Frequency Mode is shown in Figure 22, page 37. The CLK90, CLK180 and CLK270 outputs are not available when operating in the High Frequency mode. (See the description of the DLL_FREQUENCY_MODE attribute in Table 17, page 33.) For control in finer increments than 90°, see Phase Shifter (PS), page 39.

Basic Frequency Synthesis Outputs of the DLL Component

The DLL component provides basic options for frequency multiplication and division in addition to the more flexible synthesis capability of the DFS component, described in a later section. These operations result in output clock signals with frequencies that are either a fraction (for division) or a multiple (for multiplication) of the incoming clock frequency. The CLK2X output produces an in-phase signal that is twice the frequency of CLKIN. The CLK2X180 output also doubles the frequency, but is 180° out-of-phase with respect to CLKIN. The CLKDIV output generates a clock frequency that is a predetermined fraction of the CLKIN frequency. The CLKDV_DIVIDE attribute determines the factor used to divide the CLKIN frequency. The attribute can be set to various values as described in Table 17. The basic frequency synthesis outputs are described in Table 16. Their relative timing in the Low Frequency Mode is shown in Figure 22.

The CLK2X and CLK2X180 outputs are not available when operating in the High Frequency mode. See the description of the DLL_FREQUENCY_MODE attribute in Table 18.

Duty Cycle Correction of DLL Clock Outputs

The CLK2X⁽¹⁾, CLK2X180, and CLKDV⁽²⁾ output signals ordinarily exhibit a 50% duty cycle—even if the incoming CLKIN signal has a different duty cycle. A 50% duty cycle means that the High and Low times of each clock cycle are equal. The DUTY_CYCLE_CORRECTION attribute determines whether or not duty cycle correction is applied to the CLK0, CLK90, CLK180 and CLK270 outputs. If DUTY_CYCLE_CORRECTION is set to TRUE, then the duty cycle of these four outputs is corrected to 50%. If DUTY_CYCLE_CORRECTION is set to FALSE, then these outputs exhibit the same duty cycle as the CLKIN signal. Figure 22 compares the characteristics of the DLL's output signals to those of the CLKIN signal.

^{1.} The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock.

^{2.} The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when the CLKDV_DIVIDE attribute is set to a non-integer value *and* the DLL is operating in the High Frequency mode.

The output frequency (f_{CLKEX}) can be expressed as a function of the incoming clock frequency (f_{CLKIN}) as follows:

Regarding the two attributes, it is possible to assign any combination of integer values, provided that two conditions are met:

- The two values fall within their corresponding ranges, as specified in Table 18.
- The f_{CLKFX} frequency calculated from the above expression accords with the DCM's operating frequency specifications.

For example, if $CLKFX_MULTIPLY = 5$ and $CLKFX_DIVIDE = 3$, then the frequency of the output clock signal would be 5/3 that of the input clock signal.

DFS Frequency Modes

The DFS supports two operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DFS_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits the two DFS outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows both these outputs to operate at the highest possible frequencies.

DFS With or Without the DLL

The DFS component can be used with or without the DLL component:

Without the DLL, the DFS component multiplies or divides the CLKIN signal frequency according to the respective CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating a clock with the new target frequency on the CLKFX and CLKFX180 outputs. Though classified as belonging to the DLL component, the CLKIN input is shared with the DFS component. This case does not employ feedback loop; therefore, it cannot correct for clock distribution delay.

With the DLL, the DFS operates as described in the preceding case, only with the additional benefit of eliminating the clock distribution delay. In this case, a feedback loop from the CLK0 output to the CLKFB input must be present.

The DLL and DFS components work together to achieve this phase correction as follows: Given values for the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL selects the delay element for which the output clock edge coincides with the input clock edge whenever mathematically possible. For example, when CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input and output clock edges will coincide every three input periods, which is equivalent in time to five output periods.

Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values achieve faster lock times. With no factors common to the two attributes, alignment will occur once with every number of cycles equal to the CLKFX_DIVIDE value. Therefore, it is recommended that the user reduce these values by factoring wherever possible. For example, given CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both value-pairs will result in the multiplication of clock frequency by 3/2, the latter value-pair will enable the DLL to lock more quickly.

Table 18: DFS Attributes

Attribute Description		Values
DFS_FREQUENCY_MODE	Chooses between High Frequency and Low Frequency modes	Low, High
CLKFX_MULTIPLY	Frequency multiplier constant	Integer from 2 to 32
CLKFX_DIVIDE	Frequency divisor constant	Integer from 1 to 32

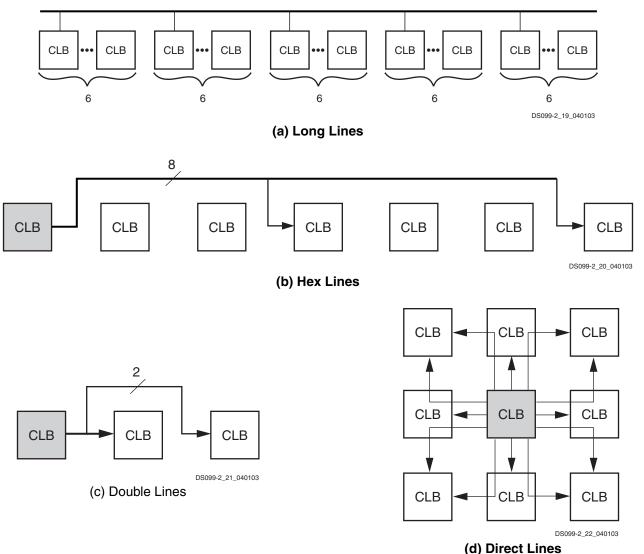
Table 19: DFS Signals

Signal	Direction	Description			
CLKFX	Output	Multiplies the CLKIN frequency by the attribute-value ratio (CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency.			
CLKFX180	Output	Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.			

XILINX.

Interconnect

Interconnect (or routing) passes signals among the various functional elements of Spartan-3 devices. There are four kinds of interconnect: Long lines, Hex lines, Double lines, and Direct lines.

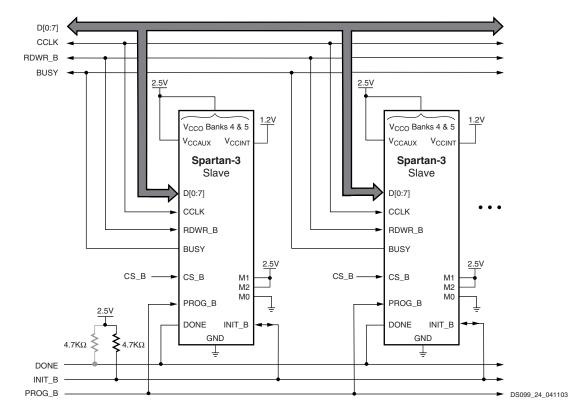

Long lines connect to one out of every six CLBs (see section [a] of Figure 25). Because of their low capacitance, these lines are well-suited for carrying high-frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock Inputs are already committed and there remain additional clock signals to be assigned, Long lines serve as a good alternative.

Hex lines connect one out of every three CLBs (see section [b] of Figure 25). These lines fall between Long lines and Double lines in terms of capability: Hex lines approach the high-frequency characteristics of Long lines at the same time, offering greater connectivity.

Double lines connect to every other CLB (see section [c] of Figure 25). Compared to the types of lines already discussed, Double lines provide a higher degree of flexibility when making connections.

Direct lines afford any CLB direct access to neighboring CLBs (see section [d] of Figure 25). These lines are most often used to conduct a signal from a "source" CLB to a Double, Hex, or Long line and then from the longer interconnect back to a Direct line accessing a "destination" CLB.

For more details, refer to the "Using Interconnect" chapter in UG331.



(d) Direct L

Figure 25: Types of Interconnect

(e.g. all configuration pins taken together) when operating in the User mode. This is accomplished by setting the *Persist* option to *Yes*.

Multiple FPGAs can be configured using the Slave Parallel mode and can be made to start-up simultaneously. Figure 27 shows the device connections. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data.

Notes:

- 1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.
- 2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then asserting the CS_B of the other FPGA.
- 3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.

Figure 27: Connection Diagram for Slave Parallel Configuration

Additional Configuration Details

Additional details about the Spartan-3 FPGA configuration architecture and command set are available in <u>UG332</u>: *Spartan-3 Generation Configuration User Guide* and in application note <u>XAPP452</u>: *Spartan-3 Advanced Configuration Architecture*.

Powering Spartan-3 FPGAs

Voltage Regulators

Various power supply manufacturers offer complete power solutions for Xilinx FPGAs, including some with integrated multi-rail regulators specifically designed for Spartan-3 FPGAs. The Xilinx Power Corner web page provides links to vendor solution guides as well as Xilinx power estimation and analysis tools.

Power Distribution System (PDS) Design and Bypass/Decoupling Capacitors

Good power distribution system (PDS) design is important for all FPGA designs, especially for high-performance applications. Proper design results in better overall performance, lower clock and DCM jitter, and a generally more robust system. Before designing the printed circuit board (PCB) for the FPGA design, review application note <u>XAPP623</u>: *Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors*.

Power-On Behavior

Spartan-3 FPGAs have a built-in Power-On Reset (POR) circuit that monitors the three power rails required to successfully configure the FPGA. At power-up, the POR circuit holds the FPGA in a reset state until the V_{CCINT} , V_{CCAUX} , and V_{CCO} Bank 4 supplies reach their respective input threshold levels (see Table 29, page 59). After all three supplies reach their respective threshold, the POR reset is released and the FPGA begins its configuration process.

Because the three supply inputs must be valid to release the POR reset and can be supplied in any order, there are no specific voltage sequencing requirements. However, applying the FPGA's V_{CCAUX} supply before the V_{CCINT} supply uses the least I_{CCINT} current.

Once all three supplies are valid, the minimum current required to power-on the FPGA is equal to the worst-case quiescent current, as specified in Table 34, page 62. Spartan-3 FPGAs do not require Power-On Surge (POS) current to successfully configure.

Surplus I_{CCINT} if V_{CCINT} Applied before V_{CCAUX}

If the V_{CCINT} supply is applied before the V_{CCAUX} supply, the FPGA may draw a surplus I_{CCINT} current in addition to the I_{CCINT} quiescent current levels specified in Table 34. The momentary additional I_{CCINT} surplus current might be a few hundred milliamperes under nominal conditions, significantly less than the instantaneous current consumed by the bypass capacitors at power-on. However, the surplus current immediately disappears when the V_{CCAUX} supply is applied, and, in response, the FPGA's I_{CCINT} quiescent current demand drops to the levels specified in Table 34. The FPGA does not use nor does it require the surplus current to successfully power-on and configure. If applying V_{CCINT} before V_{CCAUX} , ensure that the regulator does not have a foldback feature that could inadvertently shut down in the presence of the surplus current.

Maximum Allowed V_{CCINT} Ramp Rate on Early Devices, if $V_{\text{VCCINT}} \text{Supply is Last in Sequence}$

All devices with a mask revision code 'E' or later do not have a V_{CCINT} ramp rate requirement. See Mask and Fab Revisions, page 58.

Early Spartan-3 FPGAs were produced at a 200 mm wafer production facility and are identified by a fabrication/process code of "FQ" on the device top marking, as shown in Package Marking, page 5. These "FQ" devices have a maximum V_{CCINT} ramp rate requirement if and only if V_{CCINT} is the last supply to ramp, after the V_{CCAUX} and V_{CCO} Bank 4 supplies. This maximum ramp rate appears as T_{CCINT} in Table 30, page 60.

Minimum Allowed V_{CCO} Ramp Rate on Early Devices

Devices shipped since 2006 essentially have no V_{CCO} ramp rate limits, shown in Table 30, page 60. Similarly, all devices with a mask revision code 'E' or later do not have a V_{CCO} ramp rate limit. See Mask and Fab Revisions, page 58.

Table 30: Power Voltage Ramp Time Requirements

Symbol	Description	Device	Package	Min	Max	Units
T _{CCO}	V _{CCO} ramp time for all eight banks	All	All	No limit ⁽⁴⁾	_	N/A
T _{CCINT}	V_{CCINT} ramp time, only if V_{CCINT} is last in three-rail power-on sequence	All	All	No limit	No limit ⁽⁵⁾	N/A

Notes:

1. If a limit exists, this specification is based on characterization.

2. The ramp time is measured from 10% to 90% of the full nominal voltage swing for all I/O standards.

- 3. For information on power-on current needs, see Power-On Behavior, page 54
- 4. For mask revisions earlier than revision E (see Mask and Fab Revisions, page 58), T_{CCO} min is limited to 2.0 ms for the XC3S200 and XC3S400 devices in QFP packages, and limited to 0.6 ms for the XC3S200, XC3S400, XC3S1500, and XC3S4000 devices in the FT and FG packages.
- 5. For earlier device versions with the FQ fabrication/process code (see Mask and Fab Revisions, page 58), T_{CCINT} max is limited to 500 µs.

Table 31: Power Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
V _{DRINT}	V _{CCINT} level required to retain RAM data	1.0	V
V _{DRAUX}	V _{CCAUX} level required to retain RAM data	2.0	V

Notes:

- 1. RAM contents include data stored in CMOS configuration latches.
- 2. The level of the V_{CCO} supply has no effect on data retention.
- 3. If a brown-out condition occurs where V_{CCAUX} or V_{CCINT} drops below the retention voltage, then V_{CCAUX} or V_{CCINT} must drop below the minimum power-on reset voltage indicated in Table 29 in order to clear out the device configuration content.

Table 32: General Recommended Operating Conditions

Symbol	Description		Min	Nom	Max	Units
Т _Ј	Junction temperature	Commercial	0	25	Max 85 100 1.260 3.465 2.625 10 3.75 3.75 V _{CCO} +0.3 ⁽⁴⁾ V _{CCO} +0.3 ⁽⁴⁾	°C
		Industrial	-40	25	100	°C
V _{CCINT}	Internal supply voltage		1.140	1.200	1.260	V
V _{CCO} ⁽¹⁾	Output driver supply voltage		1.140	-	3.465	V
V _{CCAUX}	Auxiliary supply voltage			2.500	2.625	V
$\Delta V_{CCAUX}^{(2)}$	Voltage variance on VCCAUX when using a DCM			-	10	mV/ms
V _{IN} ⁽³⁾	Voltage applied to all User I/O pins and	V _{CCO} = 3.3V, IO	-0.3	-	3.75	V
	Dual-Purpose pins relative to GND ⁽⁴⁾⁽⁶⁾	$V_{\rm CCO} = 3.3$ V, IO_Lxxy ⁽⁷⁾	-0.3	-	3.75	V
		$V_{CCO} \le 2.5 V$, IO	-0.3	-	V _{CCO} + 0.3 ⁽⁴⁾	V
		-0.3	-	V _{CCO} + 0.3 ⁽⁴⁾	V	
	Voltage applied to all Dedicated pins relativ	e to GND ⁽⁵⁾	-0.3	-	V _{CCAUX} +0.3 ⁽⁵⁾	V

Notes:

- 1. The V_{CCO} range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V_{CCO} range specific to each of the single-ended I/O standards is given in Table 35, and that specific to the differential standards is given in Table 37.
- 2. Only during DCM operation is it recommended that the rate of change of V_{CCAUX} not exceed 10 mV/ms.
- 3. Input voltages outside the recommended range are permissible provided that the I_{IK} input diode clamp diode rating is met. Refer to Table 28.
- 4. Each of the User I/O and Dual-Purpose pins is associated with one of the V_{CCO} rails. Meeting the V_{IN} limit ensures that the internal diode junctions that exist between these pins and their associated V_{CCO} and GND rails do not turn on. The absolute maximum rating is provided in Table 28.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} and GND rails do not turn on.
- 6. See XAPP459, Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Generation FPGAs.
- For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.3V is supported but can cause increased leakage between the two pins. See the *Parasitic Leakage* section in UG331, *Spartan-3 Generation FPGA User Guide*.

XC3S4000

XC3S5000

-0.61

-0.62

-0.56

-0.57

ns

ns

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Min	Min	
tup Times						
T _{PSDCM}	When writing to the Input	LVCMOS25 ⁽²⁾ ,	XC3S50	2.37	2.71	ns
	Flip-Flop (IFF), the time from the setup of data at the Input pin to	IOBDELAY = NONE, with DCM ⁽⁴⁾	XC3S200	2.13	2.35	ns
	the active transition at a Global	,	XC3S400	2.15	2.36	ns
	Clock pin. The DCM is in use. No Input Delay is programmed.		XC3S1000	2.58	2.95	ns
	input Dolay to programmou.		XC3S1500	2.55	2.91	ns
			XC3S2000	2.59	2.96	ns
			XC3S4000	2.76	3.15	ns
			XC3S5000	2.69	3.08	ns
the setup of data at the	When writing to IFF, the time from	IOBDELAY = IFD, without DCM	XC3S50	3.00	3.46	ns
	the setup of data at the Input pin to an active transition at the Global Clock pin. The DCM is not		XC3S200	2.63	3.02	ns
			XC3S400	2.50	2.87	ns
	in use. The Input Delay is programmed.		XC3S1000	3.50	4.03	ns
	programmou		XC3S1500	3.78	4.35	ns
			XC3S2000	4.98	5.73	ns
	XC3S4000	XC3S4000	5.25	6.05	ns	
			XC3S5000	5.37	6.18	ns
ld Times						
T _{PHDCM}	When writing to IFF, the time from	LVCMOS25 ⁽³⁾ ,	XC3S50	-0.45	-0.40	ns
	the active transition at the Global Clock pin to the point when data	IOBDELAY = NONE, with DCM ⁽⁴⁾	XC3S200	-0.12	-0.05	ns
	must be held at the Input pin. The		XC3S400	-0.12	-0.05	ns
	DCM is in use. No Input Delay is programmed.		XC3S1000	-0.43	-0.38	ns
	F. 9. anni 6 an		XC3S1500	-0.45	-0.40	ns
			XC3S2000	-0.47	-0.42	ns

Table 41: System-Synchronous Pin-to-Pin Setup and Hold Times for the IOB Input Path

Table 46: Timing for the IOB Three-State Path

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Max ⁽³⁾	Max ⁽³⁾	
Synchronous (Output Enable/Disable Times					
Т _{ІОСКНZ}	Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	0.74	0.85	ns
T _{IOCKON} ⁽²⁾	Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data		All	0.72	0.82	ns
Asynchronous	Output Enable/Disable Times					
	Time from asserting the Global Three State (GTS) net to when the Output pin enters the bigh impedance state	LVCMOS25, 12 mA output drive, Fast slew	XC3S200 XC3S400	7.71	8.87	ns
	high-impedance state	rate	XC3S50 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000	8.38	9.63	ns
Set/Reset Time	es			•		
T _{IOSRHZ}	Time from asserting TFF's SR input to when the Output pin enters a high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	1.55	1.78	ns
T _{IOSRON} ⁽²⁾	Time from asserting TFF's SR input at TFF to when the Output pin drives valid data		XC3S200 XC3S400	2.24	2.57	ns
			XC3S50 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000	2.91	3.34	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in Table 32 and Table 35.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 47.

3. For minimums, use the values reported by the Xilinx timing analyzer.

Table 47: Output Timing Adjustments for IOB

	Add the Adju		
ITL ITL_DCI ITLP ITLP_DCI SLVDCI_15	Speed	Units	
	-5	-4	
Single-Ended Standards			
GTL	0	0.02	ns
GTL_DCI	0.13	0.15	ns
GTLP	0.03	0.04	ns
GTLP_DCI	0.23	0.27	ns
HSLVDCI_15	1.51	1.74	ns
HSLVDCI_18	0.81	0.94	ns

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

Spartan-3 FPGA Family: DC and Switching Characteristics

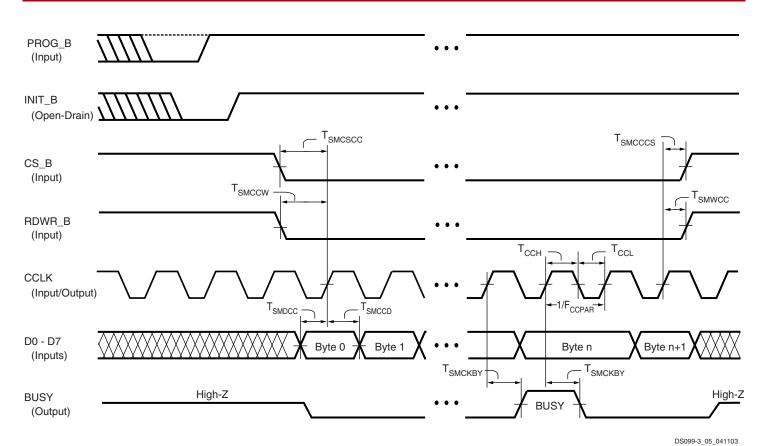


Figure 38: Waveforms for Master and Slave Parallel Configuration

Table 67	7: Timing fo	or the Master a	and Slave Parallel	Configuration Modes
----------	--------------	-----------------	--------------------	----------------------------

Ourseland I	Description	Slave/	All Speed Grades		Unite
Symbol	Description	Master	Min	Max	Units
Clock-to-Out	put Times				
T _{SMCKBY}	The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin	Slave	-	12.0	ns
Setup Times					
T _{SMDCC}	The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin	Both	10.0	-	ns
T _{SMCSCC}	The time from the setup of a logic level at the CS_B pin to the rising transition at the CCLK pin		10.0	-	ns
T _{SMCCW} ⁽³⁾	The time from the setup of a logic level at the RDWR_B pin to the rising transition at the CCLK pin		10.0	-	ns
Hold Times			4	L	
T _{SMCCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins		0	-	ns
T _{SMCCCS}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CS_B pin		0	-	ns
T _{SMWCC} ⁽³⁾	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin		0	-	ns

Differential Pair Labeling

A pin supports differential standards if the pin is labeled in the format "Lxxy_#". The pin name suffix has the following significance. Figure 40 provides a specific example showing a differential input to and a differential output from Bank 2.

- 'L' indicates differential capability.
- "xx" is a two-digit integer, unique for each bank, that identifies a differential pin-pair.
- 'y' is replaced by 'P' for the true signal or 'N' for the inverted. These two pins form one differential pin-pair.
- '#' is an integer, 0 through 7, indicating the associated I/O bank.

If unused, these pins are in a high impedance state. The Bitstream generator option UnusedPin enables a pull-up or pull-down resistor on all unused I/O pins.

Behavior from Power-On through End of Configuration

During the configuration process, all pins that are not actively involved in the configuration process are in a high-impedance state. The CONFIG- and JTAG-type pins have an internal pull-up resistor to VCCAUX during configuration. For all other I/O pins, the HSWAP_EN input determines whether or not pull-up resistors are activated during configuration. HSWAP_EN = 0 enables the pull-up resistors. HSWAP_EN = 1 disables the pull-up resistors allowing the pins to float, which is the desired state for hot-swap applications.

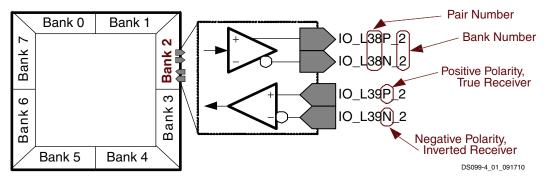


Figure 40: Differential Pair Labelling

DUAL Type: Dual-Purpose Configuration and I/O Pins

These pins serve dual purposes. The user-I/O pins are temporarily borrowed during the configuration process to load configuration data into the FPGA. After configuration, these pins are then usually available as a user I/O in the application. If a pin is not applicable to the specific configuration mode—controlled by the mode select pins M2, M1, and M0—then the pin behaves as an I/O-type pin.

There are 12 dual-purpose configuration pins on every package, six of which are part of I/O Bank 4, the other six part of I/O Bank 5. Only a few of the pins in Bank 4 are used in the Serial configuration modes.

See Pin Behavior During Configuration, page 122.

Serial Configuration Modes

This section describes the dual-purpose pins used during either Master or Slave Serial mode. See Table 75 for Mode Select pin settings required for Serial modes. All such pins are in Bank 4 and powered by VCCO_4.

In both the Master and Slave Serial modes, DIN is the serial configuration data input. The D1-D7 inputs are unused in serial mode and behave like general-purpose I/O pins.

In all the cases, the configuration data is synchronized to the rising edge of the CCLK clock signal.

The DIN, DOUT, and INIT_B pins can be retained in the application to support reconfiguration by setting the Persist bitstream generation option. However, the serial modes do not support device readback.

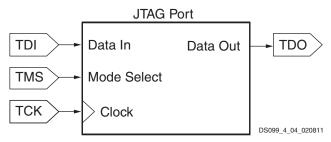


Figure 43: JTAG Port

IDCODE Register

Spartan-3 FPGAs contain a 32-bit identification register called the IDCODE register, as defined in the IEEE 1149.1 JTAG standard. The fixed value electrically identifies the manufacture (Xilinx) and the type of device being addressed over a JTAG chain. This register allows the JTAG host to identify the device being tested or programmed via JTAG. See Table 78.

Using JTAG Port After Configuration

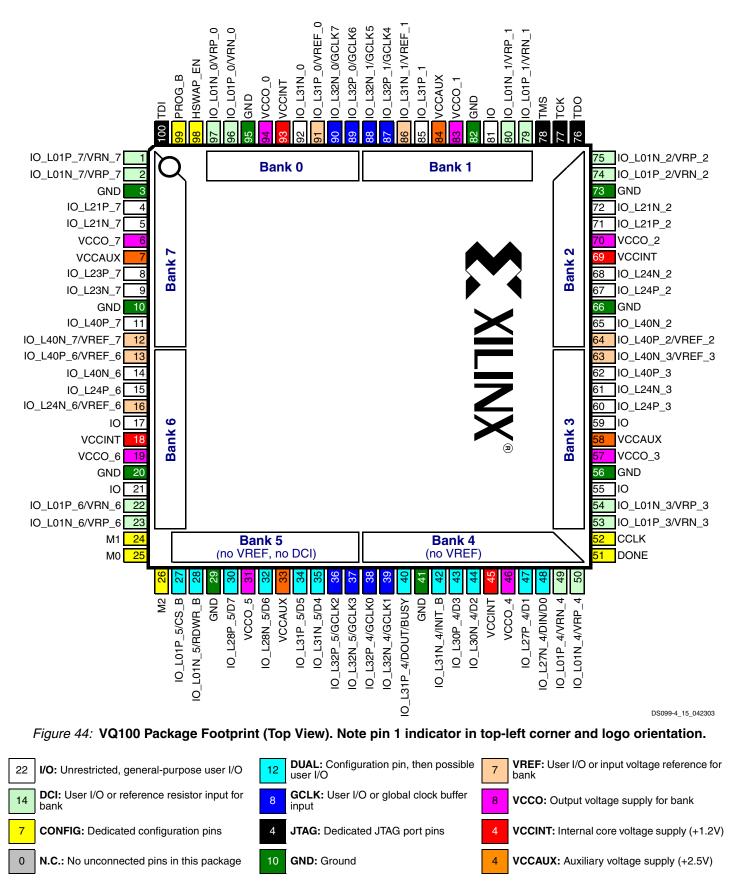
The JTAG port is always active and available before, during, and after FPGA configuration. Add the BSCAN_SPARTAN3 primitive to the design to create user-defined JTAG instructions and JTAG chains to communicate with internal logic.

Furthermore, the contents of the User ID register within the JTAG port can be specified as a Bitstream Generation option. By default, the 32-bit User ID register contains 0xFFFFFFF.

Part Number	IDCODE Register
XC3S50	0x0140C093
XC3S200	0x01414093
XC3S400	0x0141C093
XC3S1000	0x01428093
XC3S1500	0x01434093
XC3S2000	0x01440093
XC3S4000	0x01448093
XC3S5000	0x01450093

Table 78: Spartan-3 JTAG IDCODE Register Values (hexadecimal)

Precautions When Using the JTAG Port in 3.3V Environments

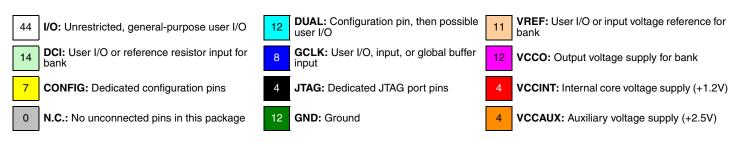

The JTAG port is powered by the +2.5V VCCAUX power supply. When connecting to a 3.3V interface, the JTAG input pins must be current-limited using a series resistor. Similarly, the TDO pin is a CMOS output powered from +2.5V. The TDO output can directly drive a 3.3V input but with reduced noise immunity. See 3.3V-Tolerant Configuration Interface, page 47. See also XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional details.

The following interface precautions are recommended when connecting the JTAG port to a 3.3V interface.

- Avoid actively driving the JTAG input signals High with 3.3V signal levels. If required in the application, use series current-limiting resistors to keep the current below 10 mA per pin.
- If possible, drive the FPGA JTAG inputs with drivers that can be placed in high-impedance (Hi-Z) after using the JTAG port. Alternatively, drive the FPGA JTAG inputs with open-drain outputs, which only drive Low. In both cases, pull-up resistors are required. The FPGA JTAG pins have pull-up resistors to VCCAUX before configuration and optional pull-up resistors after configuration, controlled by Bitstream Options, page 125.

EXILINX

VQ100 Footprint



CP132 Footprint

					VCCO_TOP for Top Edge Outputs													
							Bank 0					Bar						
			1	2	3 1/0	4	5	6	7 I/O	8 I/O	9 1/0	10	11	12	13 1/0	14	ľ	
		Α	TDI	PROG_B	L01N_0 VRP_0	VCCO_ TOP	VCCAUX	I/O L30P_0	L32N_0 GCLK7	L32N_1 GCLK5	L32P_1 GCLK4	I/O L31P_1	I/O L28N_1	I/O L27P_1	L01N_1 VRP_1	TMS		
		в	I/O L01P_7 VRN_7	I/O L01N_7 VRP_7	HSWAP_ EN	GND	I/O L27P_0	I/O L30N_0	I/O L31P_0 VREF_0	VCCO_ TOP	GND	VCCINT	I/O L28P_1	VCCO_ TOP	I/O L01P_1 VRN_1	тск		
		С	i/O L21N_7	GND	VCCO_ LEFT	I/O L01P_0 VRN_0	I/O L27N_0	VCCINT	I/O L31N_0	I/O L32P_0 GCLK6	I/O L31N_1 VREF_1	VCCAUX	I/O L27N_1	GND	TDO	I/O L01P_2 VRN_2		
	Bank 7	D	i/O L22N_7	I/O L22P_7	I/O L21P_7									I/O L01N_2 VRP_2	VCCO_ RIGHT	GND		
ts	Bai	Е	i/O L24P_7	I/O L23N_7	I/O L23P_7									I/O L20N_2	I/O L20P_2	I/O L21N_2	Bank 2	
VCCO_LEFT for Left Edge Outputs		F	GND	I/O L40P_7	I/O L24N_7									I/O L21P_2	I/O L23N_2 VREF_2	I/O L23P_2		s
Left Edg		G	I/O L40N_7 VREF_7	VCCO_ LEFT	I/O L40P_6 VREF_6									I/O L24N_2	I/O L24P_2	I/O L40N_2		Output
EFT for		н	I/O L40N_6	I/O L24P_6	I/O L24N_6 VREF_6									I/O L40P_2 VREF_2	VCCO_ RIGHT	I/O L40N_3 VREF_3		ght Edge
VCCO_L		J	I/O L23P_6	I/O L23N_6	I/O L22P_6									I/O L24N_3	I/O L40P_3	GND		VCCO_RIGHT for Right Edge Outputs
	Bank 6	κ	I/O L22N_6	I/O L20P_6	I/O L20N_6									I/O L23P_3 VREF_3	I/O L23N_3	I/O L24P_3	Bank 3	O_RIGH
		L	GND	VCCO_ LEFT	I/O L01N_6 VRP_6									I/O L20N_3	I/O L22P_3	I/O L22N_3	Ba	VCC
		м	I/O L01P_6 VRN_6	М1	GND	I/O L27N_5 VREF_5	VCCAUX	I/O L31N_5 D4	I/O L32P_4 GCLK0	I/O L31N_4 INIT_B	VCCINT	I/O L27N_4 DIN D0	I/O L01P_4 VRN_4	VCCO_ RIGHT	GND	I/O L20P_3		
		Ν	МО	I/O L01P_5 CS_B	VCCO_ BOTTOM	I/O L28P_5 D7	VCCINT	GND	VCCO_ BOTTOM	I/O L31P_4 DOUT BUSY	I/O L30N_4 D2	I/O L27P_4 D1	GND	I/O VREF_4	I/O L01N_3 VRP_3	I/O L01P_3 VRN_3		
		Ρ	M2	I/O L01N_5 RDWR_B	I/O L27P_5	I/O L28N_5 D6	I/O L31P_5 D5	I/O L32P_5 GCLK2	I/O L32N_5 GCLK3	I/O L32N_4 GCLK1	I/O L30P_4 D3	VCCAUX	VCCO_ BOTTOM	I/O L01N_4 VRP_4	DONE	CCLK		
						Bar	ık 5					Bar	nk 4					
	VCCO_BOTTOM for Bottom Edge Outputs										ĺ							

DS099-4_17_011005

Figure 45: CP132 Package Footprint (Top View). Note pin 1 indicator in top-left corner and logo orientation.

Table 93: PQ208 Package Pinout (Cont'd)

Bank	XC3S50 Pin Name	XC3S200, XC3S400 Pin Names	PQ208 Pin Number	Туре
7	IO_L21N_7	IO_L21N_7	P13	I/O
7	IO_L21P_7	IO_L21P_7	P12	I/O
7	IO_L22N_7	IO_L22N_7	P16	I/O
7	IO_L22P_7	IO_L22P_7	P15	I/O
7	IO_L23N_7	IO_L23N_7	P19	I/O
7	IO_L23P_7	IO_L23P_7	P18	I/O
7	IO_L24N_7	IO_L24N_7	P21	I/O
7	IO_L24P_7	IO_L24P_7	P20	I/O
7	N.C. (�)	IO_L39N_7	P24	I/O
7	N.C. (�)	IO_L39P_7	P22	I/O
7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	P27	VREF
7	IO_L40P_7	IO_L40P_7	P26	I/O
7	VCCO_7	VCCO_7	P6	VCCO
7	VCCO_7	VCCO_7	P23	VCCO
N/A	GND	GND	P1	GND
N/A	GND	GND	P186	GND
N/A	GND	GND	P195	GND
N/A	GND	GND	P202	GND
N/A	GND	GND	P163	GND
N/A	GND	GND	P170	GND
N/A	GND	GND	P179	GND
N/A	GND	GND	P134	GND
N/A	GND	GND	P145	GND
N/A	GND	GND	P151	GND
N/A	GND	GND	P157	GND
N/A	GND	GND	P112	GND
N/A	GND	GND	P118	GND
N/A	GND	GND	P129	GND
N/A	GND	GND	P82	GND
N/A	GND	GND	P91	GND
N/A	GND	GND	P99	GND
N/A	GND	GND	P105	GND
N/A	GND	GND	P53	GND
N/A	GND	GND	P59	GND
N/A	GND	GND	P66	GND
N/A	GND	GND	P75	GND
N/A	GND	GND	P30	GND
N/A	GND	GND	P41	GND
N/A	GND	GND	P47	GND
N/A	GND	GND	P8	GND

User I/Os by Bank

Table 97 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FT256 package.

Table 97: User I/Os Per Bank in FT256 Package

Package Edge	I/O Bank	Maximum I/O	All Possible I/O Pins by Type							
Таскаде соде			I/O	DUAL	DCI	VREF	GCLK			
Тор	0	20	13	0	2	3	2			
юр	1	20	13	0	2	3	2			
Right	2	23	18	0	2	3	0			
night	3	23	18	0	2	3	0			
Bottom	4	21	8	6	2	3	2			
Dottom	5	20	7	6	2	3	2			
Left	6	23	18	0	2	3	0			
Leit	7	23	18	0	2	3	0			

FT256 Footprint

			2		4		nk 0 6	7	0	9	10		nk 1	10	14	15	16	
	A	1 GND	TDI	3 IO VREF_0	4 I/O L01P_0	5 I/O	VCCAUX	I/O	8 I/O L32P_0	I/O	10 I/O L31N_1	11 VCCAUX	12 I/O	13 I/O L10N_1	14 I/O L01N_1	15 TDO	16 GND	
	B	I/O L01P_7	GND	PROG_B	VRN_0 I/O L01N_0	I/O L25P 0	I/O L28P_0	I/O L30P_0	GCLK6 I/O L32N_0	GND	VREF_1 I/O L31P 1	I/O L29N 1	I/O L27N_1	VREF_1 I/O L10P 1	VRP_1 I/O L01P_1	GND	l/O L01N_2	
	С	VRN_7 I/O L01N_7	I/O L16N_7	I/O L16P_7	VRP_0 HSWAP_	I/O L25N_0	I/O	I/O L30N_0	I/O L31P_0	I/O L32N_1	I/O	I/O L29P 1	I/O L27P_1	TMS	VRN_1	I/O L16N_2	VRP_2 I/O L01P_2	
	D	VRP_7	I/O	VREF_7	VCCINT	10	I/O	I/O	I/O	GCLK5 I/O L32P 1	I/O	I/O	IO VREF_1	VCCINT	I/O	I/O	VRN_2 I/O L17P_2	
Bank 7	E	L17N_7 I/O	L17P_7 I/O	L19P_7 I/O L19N_7	I/O	VCCINT	L27P_0	L29P_0 I/O			L30N_1 I/O	L28N_1	VCCINT	I/O	L16P_2 I/O	L17N_2	VREF_2	nk 2
Bai		L20N_7	L20P_7	VREF_7	L21P_7	1/0	L27N_0	L29N_0			L30P_1	L28P_1	1/0	L19N_2	L19P_2	L20N_2	L20P_2	Bank
	F	VCCAUX	L22N_7	L22P_7	L21N_7	L23P_7	GND	VCCO_0	VCCO_0			GND	L21N_2	L21P_2	L22N_2	L22P_2	VCCAUX	
	G	L40P_7	I/O	L24N_7	L24P_7	L23N_7	VCCO_7	GND	GND	GND	GND	VCCO_2	L23N_2 VREF_2	L23P_2	L24N_2	L24P_2	I/O I/O	
	н	L40N_7 VREF_7	GND	I/O L39N_7	I/O L39P_7	VCCO_7	VCCO_7	GND	GND	GND	GND	VCCO_2	VCCO_2	I/O L39N_2	I/O L39P_2	I/O L40N_2	L40P_2 VREF_2	_
	J	I/O L40P_6 VREF_6	I/O L40N_6	I/O L39P_6	I/O L39N_6	VCCO_6	VCCO_6	GND	GND	GND	GND	VCCO_3	VCCO_3	I/O L39P_3	I/O L39N_3	GND	I/O L40N_3 VREF_3	
	κ	I/O	I/O L24P_6	I/O L24N_6 VREF_6	I/O L23P_6	I/O L23N_6	VCCO_6	GND	GND	GND	GND	VCCO_3	I/O L23N_3	I/O L24P_3	I/O L24N_3	I/O	I/O L40P_3	
	L	VCCAUX	I/O L22P_6	I/O L22N_6	I/O L21P_6	I/O L21N_6	GND	VCCO_5	VCCO_5	VCCO_4	VCCO_4	GND	I/O L23P_3 VREF_3	I/O L21N_3	I/O L22P_3	I/O L22N_3	VCCAUX	
Bank 6	М	I/O L20P_6	I/O L20N_6	I/O L19P_6	I/O L19N_6	VCCINT	I/O L28P_5 D7	I/O L30P_5	VCCO_5	VCCO_4	I/O L29N_4	I/O L27N_4 DIN D0	VCCINT	I/O L21P_3	I/O L19N_3	I/O L20P_3	I/O L20N_3	Bank 3
	N	I/O L17P_6 VREF 6	I/O L17N_6	I/O L16P_6	VCCINT	I/O	I/O L28N_5 D6	I/O L30N_5	I/O L32P_5 GCLK2	I/O L31N_4 INIT B	I/O L29P_4	I/O L27P_4 D1	IO VREF_4	VCCINT	I/O L19P_3	I/O L17P_3 VREF 3	I/O L17N_3	_
	Ρ	I/O L01P_6 VRN_6	I/O L16N_6	МО	M2	l/O L27P_5	I/O L29P_5 VREF 5	I/O	I/O L32N_5 GCLK3	DOUT	I/O L30N_4 D2	I/O L28N_4	I/O L25N_4	IO VREF_4	I/O L16P_3	I/O L16N_3	I/O L01N_3 VRP 3	
	R	I/O	GND	I/O L01P_5 CS_B	I/O L10P_5 VRN_5	I/O L27N_5 VREF_5	I/O L29N_5	I/O L31P_5 D5	GND	BUSY I/O L32N_4 GCLK1	I/O L30P_4 D3	I/O L28P_4	I/O L25P_4	I/O L01N_4 VRP_4	DONE	GND	I/O L01P_3 VRN_3	
	т	GND	M1	I/O L01N_5 RDWR_B	I/O L10N_5	I/O	VCCAUX	I/O	IO VREF_5	I/O L32P_4 GCLK0	IO VREF_4	VCCAUX	I/O	I/O L01P_4 VRN_4	I/O	CCLK	GND	
							nk 5		Deelee				nk 4			DS099	-4_10_030503	
<u></u>	п.	-				-	re 49: I			-	en possib			F : User	I/O or inr	out voltac	le referer	nce
113		O: Unres	-			ļ	us	er I/O	-				for b	ank				
16	b	ank								-	ock buffer			:O: Outp	U	,		
7		ONFIG:		-		l			licated JT	IAG port	pins		• (+1.	2V) CAUX: Au		-		
0		Ι. C.: Νο ι	unconneo	cted pins	in this p	ackage	32 GN	ND: Grou	Ind				8 (+2.		annar y V	snaye su	אאי	

Table 98: FG320 Package Pinout (Cont'd)

Bank	XC3S400, XC3S1000, XC3S1500 Pin Name	FG320 Pin Number	Туре
N/A	VCCINT	N6	VCCINT
N/A	VCCINT	N7	VCCINT
VCCAUX	CCLK	T15	CONFIG
VCCAUX	DONE	R15	CONFIG
VCCAUX	HSWAP_EN	E6	CONFIG
VCCAUX	МО	P5	CONFIG
VCCAUX	M1	U3	CONFIG
VCCAUX	M2	R4	CONFIG
VCCAUX	PROG_B	E5	CONFIG
VCCAUX	тск	E14	JTAG
VCCAUX	TDI	D4	JTAG
VCCAUX	TDO	D15	JTAG
VCCAUX	TMS	B16	JTAG

User I/Os by Bank

Table 99 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FG320 package.

Package Edge	I/O Bank	Maximum	Maximum							
Fackage Euge		I/O	LVDS Pairs	I/O	DUAL	DCI	VREF	GCLK		
Тор	0	26	11	19	0	2	3	2		
юр	1	26	11	19	0	2	3	2		
Right	2	29	14	23	0	2	4	0		
night	3	29	14	23	0	2	4	0		
Bottom	4	27	11	13	6	2	4	2		
Dottom	5	26	11	13	6	2	3	2		
Loft	6	29	14	23	0	2	4	0		
Left	7	29	14	23	0	2	4	0		

Table 99: User I/Os Per Bank in FG320 Package

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
2	VCCO_2	VCCO_2	J28	VCCO
2	VCCO_2	VCCO_2	N28	VCCO
3	IO	Ю	AB25	I/O
3	IO_L01N_3/VRP_3	IO_L01N_3/VRP_3	AH30	DCI
3	IO_L01P_3/VRN_3	IO_L01P_3/VRN_3	AH29	DCI
3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	AG28	VREF
3	IO_L02P_3	IO_L02P_3	AG27	I/O
3	IO_L03N_3	IO_L03N_3	AG30	I/O
3	IO_L03P_3	IO_L03P_3	AG29	I/O
3	IO_L04N_3	IO_L04N_3	AF30	I/O
3	IO_L04P_3	IO_L04P_3	AF29	I/O
3	IO_L05N_3	IO_L05N_3	AE26	I/O
3	IO_L05P_3	IO_L05P_3	AF27	I/O
3	IO_L06N_3	IO_L06N_3	AE29	I/O
3	IO_L06P_3	IO_L06P_3	AE28	I/O
3	IO_L07N_3	IO_L07N_3	AD28	I/O
3	IO_L07P_3	IO_L07P_3	AD27	I/O
3	IO_L08N_3	IO_L08N_3	AD30	I/O
3	IO_L08P_3	IO_L08P_3	AD29	I/O
3	IO_L09N_3	IO_L09N_3	AC24	I/O
3	IO_L09P_3/VREF_3	IO_L09P_3/VREF_3	AD25	VREF
3	IO_L10N_3	IO_L10N_3	AC26	I/O
3	IO_L10P_3	IO_L10P_3	AC25	I/O
3	IO_L11N_3	IO_L11N_3	AC28	I/O
3	IO_L11P_3	IO_L11P_3	AC27	I/O
3	IO_L13N_3/VREF_3	IO_L13N_3/VREF_3	AC30	VREF
3	IO_L13P_3	IO_L13P_3	AC29	I/O
3	IO_L14N_3	IO_L14N_3	AB27	I/O
3	IO_L14P_3	IO_L14P_3	AB26	I/O
3	IO_L15N_3	IO_L15N_3	AB30	I/O
3	IO_L15P_3	IO_L15P_3	AB29	I/O
3	IO_L16N_3	IO_L16N_3	AA22	I/O
3	IO_L16P_3	IO_L16P_3	AB23	I/O
3	IO_L17N_3	IO_L17N_3	AA25	I/O
3	IO_L17P_3/VREF_3	IO_L17P_3/VREF_3	AA24	VREF
3	IO_L19N_3	IO_L19N_3	AA29	I/O
3	IO_L19P_3	IO_L19P_3	AA28	I/O
3	IO_L20N_3	IO_L20N_3	Y21	I/O
3	IO_L20P_3	IO_L20P_3	AA21	I/O
3	IO_L21N_3	IO_L21N_3	Y24	I/O

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
N/A	GND	GND	K30	GND
N/A	GND	GND	P30	GND
N/A	GND	GND	U30	GND
N/A	GND	GND	AA30	GND
N/A	GND	GND	AE30	GND
N/A	GND	GND	AJ30	GND
N/A	GND	GND	AK30	GND
N/A	GND	GND	AK2	GND
N/A	VCCAUX	VCCAUX	F4	VCCAU
N/A	VCCAUX	VCCAUX	K4	VCCAU
N/A	VCCAUX	VCCAUX	P4	VCCAU
N/A	VCCAUX	VCCAUX	U4	VCCAU
N/A	VCCAUX	VCCAUX	AA4	VCCAU
N/A	VCCAUX	VCCAUX	AE4	VCCAU
N/A	VCCAUX	VCCAUX	D6	VCCAU
N/A	VCCAUX	VCCAUX	AG6	VCCAU
N/A	VCCAUX	VCCAUX	D10	VCCAU
N/A	VCCAUX	VCCAUX	AG10	VCCAU
N/A	VCCAUX	VCCAUX	D14	VCCAU
N/A	VCCAUX	VCCAUX	AG14	VCCAU
N/A	VCCAUX	VCCAUX	D17	VCCAU
N/A	VCCAUX	VCCAUX	AG17	VCCAU
N/A	VCCAUX	VCCAUX	D21	VCCAU
N/A	VCCAUX	VCCAUX	AG21	VCCAU
N/A	VCCAUX	VCCAUX	D25	VCCAU
N/A	VCCAUX	VCCAUX	AG25	VCCAU
N/A	VCCAUX	VCCAUX	F27	VCCAU
N/A	VCCAUX	VCCAUX	K27	VCCAU
N/A	VCCAUX	VCCAUX	P27	VCCAU
N/A	VCCAUX	VCCAUX	U27	VCCAU
N/A	VCCAUX	VCCAUX	AA27	VCCAU
N/A	VCCAUX	VCCAUX	AE27	VCCAU
N/A	VCCINT	VCCINT	L11	VCCIN
N/A	VCCINT	VCCINT	R11	VCCIN
N/A	VCCINT	VCCINT	T11	VCCIN
N/A	VCCINT	VCCINT	Y11	VCCIN
N/A	VCCINT	VCCINT	M12	VCCIN
N/A	VCCINT	VCCINT	N12	VCCIN
N/A	VCCINT	VCCINT	P12	VCCIN
N/A	VCCINT	VCCINT	U12	VCCIN

FG1156: 1156-lead Fine-pitch Ball Grid Array

Note: The FG(G)1156 package is discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

The 1,156-lead fine-pitch ball grid array package, FG1156, supports two different Spartan-3 devices, namely the XC3S4000 and the XC3S5000. The XC3S4000, however, has fewer I/O pins, which consequently results in 73 unconnected pins on the FG1156 package, labeled as "N.C." In Table 110 and Figure 53, these unconnected pins are indicated with a black diamond symbol (\blacklozenge).

The XC3S5000 has a single unconnected package pin, ball AK31, which is also unconnected for the XC3S4000.

All the package pins appear in Table 110 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

On ball L29 in I/O Bank 2, the unconnected pin on the XC3S4000 maps to a VREF-type pin on the XC3S5000. If the other VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S4000 to the same VREF_2 voltage.

Pinout Table

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	IO	IO	B9	I/O
0	IO	IO	E17	I/O
0	IO	IO	F6	I/O
0	IO	IO	F8	I/O
0	IO	IO	G12	I/O
0	IO	IO	H8	I/O
0	IO	IO	H9	I/O
0	IO	IO	J11	I/O
0	N.C. (�)	IO	J9	I/O
0	N.C. (�)	IO	K11	I/O
0	IO	IO	K13	I/O
0	IO	IO	K16	I/O
0	IO	IO	K17	I/O
0	IO	IO	L13	I/O
0	IO	IO	L16	I/O
0	IO	IO	L17	I/O
0	IO/VREF_0	IO/VREF_0	D5	VREF
0	IO/VREF_0	IO/VREF_0	E10	VREF
0	IO/VREF_0	IO/VREF_0	J14	VREF
0	IO/VREF_0	IO/VREF_0	L15	VREF
0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	B3	DCI
0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	A3	DCI
0	IO_L02N_0	IO_L02N_0	B4	I/O
0	IO_L02P_0	IO_L02P_0	A4	I/O
0	IO_L03N_0	IO_L03N_0	C5	I/O

Table 110: FG1156 Package Pinout