

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	5120
Number of Logic Elements/Cells	46080
Total RAM Bits	737280
Number of I/O	489
Number of Gates	2000000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s2000-4fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8: Single-Ended I/O Standards

Signal Standard	V _{cco}	(Volts)	V _{REF} for Inputs	Board Termination Voltage (V _{TT}) in Volts	
(IOSTANDARD)	For Outputs	For Inputs	V _{REF} for Inputs (Volts) ⁽¹⁾		
GTL	Note 2	Note 2	0.8	1.2	
GTLP	Note 2	Note 2	1	1.5	
HSTL_I	1.5	-	0.75	0.75	
HSTL_III	1.5	_	0.9	1.5	
HSTL_I_18	1.8	-	0.9	0.9	
HSTL_II_18	1.8	-	0.9	0.9	
HSTL_III_18	1.8	-	1.1	1.8	
LVCMOS12	1.2	1.2	-	-	
LVCMOS15	1.5	1.5	-	-	
LVCMOS18	1.8	1.8	-	-	
LVCMOS25	2.5	2.5	-	-	
LVCMOS33	3.3	3.3	-	-	
LVTTL	3.3	3.3	-	-	
PCI33_3	3.0	3.0	-	-	
SSTL18_I	1.8	-	0.9	0.9	
SSTL18_II	1.8	-	0.9	0.9	
SSTL2_I	2.5	-	1.25	1.25	
SSTL2_II	2.5	-	1.25	1.25	

Notes:

1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V_{REF}

2. The V_{CCO} level used for the GTL and GTLP standards must be no lower than the termination voltage (V_{TT}), nor can it be lower than the voltage at the I/O pad.

3. See Table 10 for a listing of the single-ended DCI standards.

Differential standards employ a pair of signals, one the opposite polarity of the other. The noise canceling (e.g., Common-Mode Rejection) properties of these standards permit exceptionally high data transfer rates. This section introduces the differential signaling capabilities of Spartan-3 devices.

Each device-package combination designates specific I/O pairs that are specially optimized to support differential standards. A unique "L-number", part of the pin name, identifies the line-pairs associated with each bank (see Figure 40, page 112). For each pair, the letters 'P' and 'N' designate the true and inverted lines, respectively. For example, the pin names IO_L43P_7 and IO_L43N_7 indicate the true and inverted lines comprising the line pair L43 on Bank 7. The V_{CCO} lines provide current to the outputs. The V_{CCAUX} lines supply power to the differential inputs, making them independent of the V_{CCO} voltage for an I/O bank. The V_{REF} lines are not used. Select the V_{CCO} level to suit the desired differential standard according to Table 9.

Supply Voltages for the IOBs

Three different supplies power the IOBs:

- The V_{CCO} supplies, one for each of the FPGA's I/O banks, power the output drivers, except when using the GTL and GTLP signal standards. The voltage on the V_{CCO} pins determines the voltage swing of the output signal.
- V_{CCINT} is the main power supply for the FPGA's internal logic.
- The V_{CCAUX} is an auxiliary source of power, primarily to optimize the performance of various FPGA functions such as I/O switching.

The I/Os During Power-On, Configuration, and User Mode

With no power applied to the FPGA, all I/Os are in a high-impedance state. The V_{CCINT} (1.2V), V_{CCAUX} (2.5V), and V_{CCO} supplies may be applied in any order. Before power-on can finish, V_{CCINT} , V_{CCO} Bank 4, and V_{CCAUX} must have reached their respective minimum recommended operating levels (see Table 29, page 59). At this time, all I/O drivers also will be in a high-impedance state. V_{CCO} Bank 4, V_{CCINT} , and V_{CCAUX} serve as inputs to the internal Power-On Reset circuit (POR).

A Low level applied to the HSWAP_EN input enables pull-up resistors on User I/Os from power-on throughout configuration. A High level on HSWAP_EN disables the pull-up resistors, allowing the I/Os to float. If the HSWAP_EN pin is floating, then an internal pull-up resistor pulls HSWAP_EN High. As soon as power is applied, the FPGA begins initializing its configuration memory. At the same time, the FPGA internally asserts the Global Set-Reset (GSR), which asynchronously resets all IOB storage elements to a Low state.

Upon the completion of initialization, INIT_B goes High, sampling the M0, M1, and M2 inputs to determine the configuration mode. At this point, the configuration data is loaded into the FPGA. The I/O drivers remain in a high-impedance state (with or without pull-up resistors, as determined by the HSWAP_EN input) throughout configuration.

The Global Three State (GTS) net is released during Start-Up, marking the end of configuration and the beginning of design operation in the User mode. At this point, those I/Os to which signals have been assigned go active while all unused I/Os remain in a high-impedance state. The release of the GSR net, also part of Start-up, leaves the IOB registers in a Low state by default, unless the loaded design reverses the polarity of their respective RS inputs.

In User mode, all internal pull-up resistors on the I/Os are disabled and HSWAP_EN becomes a "don't care" input. If it is desirable to have pull-up or pull-down resistors on I/Os carrying signals, the appropriate symbol—e.g., PULLUP, PULLDOWN—must be placed at the appropriate pads in the design. The Bitstream Generator (Bitgen) option UnusedPin available in the Xilinx development software determines whether unused I/Os collectively have pull-up resistors, pull-down resistors, or no resistors in User mode.

CLB Overview

For more details on the CLBs, refer to the chapter entitled "Using Configurable Logic Blocks" in UG331.

The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing synchronous as well as combinatorial circuits. Each CLB comprises four interconnected slices, as shown in Figure 11. These slices are grouped in pairs. Each pair is organized as a column with an independent carry chain.

The nomenclature that the FPGA Editor—part of the Xilinx development software—uses to designate slices is as follows: The letter 'X' followed by a number identifies columns of slices. The 'X' number counts up in sequence from the left side of the die to the right. The letter 'Y' followed by a number identifies the position of each slice in a pair as well as indicating the CLB row. The 'Y' number counts slices starting from the bottom of the die according to the sequence: 0, 1, 0, 1 (the first CLB row); 2, 3, 2, 3 (the second CLB row); etc. Figure 11 shows the CLB located in the lower left-hand corner of the die. Slices X0Y0 and X0Y1 make up the column-pair on the left where as slices X1Y0 and X1Y1 make up the column-pair on the right. For each CLB, the term "left-hand" (or SLICEM) indicates the pair of slices labeled with an even 'X' number, such as X0, and the term "right-hand" (or SLICEL) designates the pair of slices with an odd 'X' number, e.g., X1.

Function Generator

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). This permits any four-variable Boolean logic operation to be programmed into them. Furthermore, wide function multiplexers can be used to effectively combine LUTs within the same CLB or across different CLBs, making logic functions with still more input variables possible.

The LUTs in both the right-hand and left-hand slice-pairs not only support the logic functions described above, but also can function as ROM that is initialized with data at the time of configuration.

The LUTs in the left-hand slice-pair (even-numbered columns such as X0 in Figure 11) of each CLB support two additional functions that the right-hand slice-pair (odd-numbered columns such as X1) do not.

First, it is possible to program the "left-hand LUTs" as distributed RAM. This type of memory affords moderate amounts of data buffering anywhere along a data path. One left-hand LUT stores 16 bits. Multiple left-hand LUTs can be combined in various ways to store larger amounts of data. A dual port option combines two LUTs so that memory access is possible from two independent data lines. A Distributed ROM option permits pre-loading the memory with data during FPGA configuration.

Second, it is possible to program each left-hand LUT as a 16-bit shift register. Used in this way, each LUT can delay serial data anywhere from one to 16 clock cycles. The four left-hand LUTs of a single CLB can be combined to produce delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to form larger shift registers. It is also possible to combine shift registers across more than one CLB. The resulting programmable delays can be used to balance the timing of data pipelines.

Block RAM Overview

All Spartan-3 devices support block RAM, which is organized as configurable, synchronous 18Kbit blocks. Block RAM stores relatively large amounts of data more efficiently than the distributed RAM feature described earlier. (The latter is better suited for buffering small amounts of data anywhere along signal paths.) This section describes basic Block RAM functions. For more information, refer to the chapter entitled "Using Block RAM" in <u>UG331</u>.

The aspect ratio—i.e., width vs. depth—of each block RAM is configurable. Furthermore, multiple blocks can be cascaded to create still wider and/or deeper memories.

A choice among primitives determines whether the block RAM functions as dual- or single-port memory. A name of the form RAMB16_S[w_A]_S[w_B] calls out the dual-port primitive, where the integers w_A and w_B specify the total data path width at ports w_A and w_B, respectively. Thus, a RAMB16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A and an 18-bit-wide Port B. A name of the form RAMB16_S[w] identifies the single-port primitive, where the integer w specifies the total data path width of the lone port. A RAMB16_S18 is a single-port RAM with an 18-bit-wide port. Other memory functions—e.g., FIFOs, data path width conversion, ROM, etc.—are readily available using the CORE GeneratorTM software, part of the Xilinx development software.

Table 13: Block RAM Port Signals (Cont'd)

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function
Data Output Bus	DOA	DOB	Output	Basic data access occurs whenever WE is inactive. The DO outputs mirror the data stored in the addressed memory location.
				Data access with WE asserted is also possible if one of the following two attributes is chosen: WRITE_FIRST and READ_FIRST. WRITE_FIRST simultaneously presents the new input data on the DO output port and writes the data to the address RAM location. READ_FIRST presents the previously stored RAM data on the DO output port while writing new data to RAM.
				A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE.
				It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths. See the DI signal description.
Parity Data Output(s)	DOPA	DOPB	Output	Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 14.
Write Enable	WEA	WEB	Input	When asserted together with EN, this input enables the writing of data to the RAM. In this case, the data access attributes WRITE_FIRST, READ_FIRST or NO_CHANGE determines if and how data is updated on the DO outputs. See the DO signal description. When WE is inactive with EN asserted, read operations are still possible. In this case, a transparent latch passes data from the addressed memory location to the DO outputs.
Clock Enable	ENA	ENB	Input	When asserted, this input enables the CLK signal to synchronize Block RAM functions as follows: the writing of data to the DI inputs (when WE is also asserted), the updating of data at the DO outputs as well as the setting/resetting of the DO output latches. When de-asserted, the above functions are disabled.
Set/Reset	SSRA	SSRB	Input	When asserted, this pin forces the DO output latch to the value that the SRVAL attribute is set to. A Set/Reset operation on one port has no effect on the other ports functioning, nor does it disturb the memory's data contents. It is synchronized to the CLK signal.
Clock	CLKA	CLKB	Input	This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge.

Port Aspect Ratios

On a given port, it is possible to select a number of different possible widths (w - p) for the DI/DO buses as shown in Table 14. These two buses always have the same width. This data bus width selection is independent for each port. If the data bus width of Port A differs from that of Port B, the Block RAM automatically performs a bus-matching function. When data are written to a port with a narrow bus, then read from a port with a wide bus, the latter port will effectively combine "narrow" words to form "wide" words. Similarly, when data are written into a port with a wide bus, then read from a port with a narrow bus, the latter port will divide "wide" words to form "narrow" words. When the data bus width is eight bits or greater, extra parity bits become available. The width of the total data path (*w*) is the sum of the DI/DO bus width and any parity bits (*p*).

The width selection made for the DI/DO bus determines the number of address lines according to the relationship expressed below:

$$r = 14 - [\log(w - p)/\log(2)]$$

In turn, the number of address lines delimits the total number (n) of addressable locations or depth according to the following equation:

$$n = 2^r$$
 Equation 2

Equation 1

The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 16. The clock outputs drive simultaneously; however, the High Frequency mode only supports a subset of the outputs available in the Low Frequency mode. See DLL Frequency Modes, page 35. Signals that initialize and report the state of the DLL are discussed in The Status Logic Component, page 41.

Table 16: DLL Signals

Signal Direction			Mode Support		
		Description	Low Frequency	High Frequency	
CLKIN	Input	Accepts original clock signal.	Yes	Yes	
CLKFB	Input	Accepts either CLK0 or CLK2X as feed back signal. (Set CLK_FEEDBACK attribute accordingly).		Yes	
CLK0	Output	Generates clock signal with same frequency and phase as CLKIN.	Yes	Yes	
CLK90	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 90°.	Yes	No	
CLK180	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 180°.	Yes	Yes	
CLK270	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 270°.	Yes	No	
CLK2X	Output	Generates clock signal with same phase as CLKIN, only twice the frequency.	Yes	No	
CLK2X180	Output	Generates clock signal with twice the frequency of CLKIN, phase-shifted 180° with respect to CLKIN.	Yes	No	
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.	Yes	Yes	

The clock signal supplied to the CLKIN input serves as a reference waveform, with which the DLL seeks to align the feedback signal at the CLKFB input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network to all the registers it synchronizes. These registers are either internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay elements to cancel out the clock skew. Once the DLL has brought the CLK0 signal in phase with the CLKIN signal, it asserts the LOCKED output, indicating a "lock" on to the CLKIN signal.

DLL Attributes and Related Functions

A number of different functional options can be set for the DLL component through the use of the attributes described in Table 17. Each attribute is described in detail in the sections that follow:

Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, 1X, 2X
DLL_FREQUENCY_MODE	Chooses between High Frequency and Low Frequency modes	LOW, HIGH
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	TRUE, FALSE
CLKDV_DIVIDE	Selects constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16.
DUTY_CYCLE_CORRECTION	Enables 50% duty cycle correction for the CLK0, CLK90, CLK180, and CLK270 outputs	TRUE, FALSE

Table 17: DLL Attributes

Table 22: Status Logic Signals

Signal	Direction	Description				
RST	Input	A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay of zero. Sets the LOCKED output Low. This input is asynchronous.				
STATUS[7:0]	Output	The bit values on the STATUS bus provide information regarding the state of DLL and PS operation				
LOCKED	Output	Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals are out-of-phase when Low.				

Table 23: DCM STATUS Bus

Bit	Name	Description
0	Phase Shift Overflow	A value of 1 indicates a phase shift overflow when one of two conditions occurs: Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle. The DLL is producing its maximum possible phase shift (i.e., all delay taps are active). ⁽¹⁾
1	CLKIN Input Stopped Toggling	A value of 1 indicates that the CLKIN input signal is not toggling. A value of 0 indicates toggling. This bit functions only when the CLKFB input is connected. ⁽²⁾
2	CLKFX/CLKFX180 Output Stopped Toggling	A value of 1 indicates that the CLKFX or CLKFX180 output signals are not toggling. A value of 0 indicates toggling. This bit functions only when using the Digital Frequency Synthesizer (DFS).
3:7	Reserved	-

Notes:

- 1. The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE.
- 2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.

Table 24: Status Attributes

Attribute	Attribute Description	
STARTUP_WAIT	Delays transition from configuration to user mode until lock condition is achieved.	TRUE, FALSE

Stabilizing DCM Clocks Before User Mode

It is possible to delay the completion of device configuration until after the DLL has achieved a lock condition using the STARTUP_WAIT attribute described in Table 24. This option ensures that the FPGA does not enter user mode—i.e., begin functional operation—until all system clocks generated by the DCM are stable. In order to achieve the delay, it is necessary to set the attribute to TRUE as well as set the BitGen option LCK_cycle to one of the six cycles making up the Startup phase of configuration. The selected cycle defines the point at which configuration will halt until the LOCKED output goes High.

Global Clock Network

Spartan-3 devices have eight Global Clock inputs called GCLK0 - GCLK7. These inputs provide access to a low-capacitance, low-skew network that is well-suited to carrying high-frequency signals. The Spartan-3 FPGAs clock network is shown in Figure 23. GCLK0 through GCLK3 are located in the center of the bottom edge. GCLK4 through GCLK7 are located in the center of the top edge.

Eight Global Clock Multiplexers (also called BUFGMUX elements) are provided that accept signals from Global Clock inputs and route them to the internal clock network as well as DCMs. Four BUFGMUX elements are located in the center of the bottom edge, just above the GCLK0 - GCLK3 inputs. The remaining four BUFGMUX elements are located in the center of the top edge, just below the GCLK4 - GCLK7 inputs.

Pairs of BUFGMUX elements share global inputs, as shown in Figure 24. For example, the GCLK4 and GCLK5 inputs both potentially connect to BUFGMUX4 and BUFGMUX5 located in the upper right center. A differential clock input uses a pair of GCLK inputs to connect to a single BUFGMUX element.

Each BUFGMUX element, shown in Figure 24, is a 2-to-1 multiplexer that can receive signals from any of the four following sources:

- One of the four Global Clock inputs on the same side of the die-top or bottom-as the BUFGMUX element in use.
- Any of four nearby horizontal Double lines.
- Any of four outputs from the DCM in the right-hand quadrant that is on the same side of the die as the BUFGMUX element in use.
- Any of four outputs from the DCM in the left-hand quadrant that is on the same side of the die as the BUFGMUX element in use.

The multiplexer select line, S, chooses which of the two inputs, I0 or I1, drives the BUFGMUX's output signal, O, as described in Table 25. The switching from one clock to the other is glitchless, and done in such a way that the output High and Low times are never shorter than the shortest High or Low time of either input clock.

Table 25: BUFGMUX Select Mechanism

S Input	O Output
0	10 Input
1	I1 Input

The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a short setup time prior to the rising edge of the presently selected clock (I0 or I1). Violating this setup time requirement can result in an undefined runt pulse output.

The BUFG clock buffer primitive drives a single clock signal onto the clock network and is essentially the same element as a BUFGMUX, just without the clock select mechanism. Similarly, the BUFGCE primitive creates an enabled clock buffer using the BUFGMUX select mechanism.

Each BUFGMUX buffers incoming clock signals to two possible destinations:

- The vertical spine belonging to the same side of the die—top or bottom—as the BUFGMUX element in use. The two spines—top and bottom—each comprise four vertical clock lines, each running from one of the BUFGMUX elements on the same side towards the center of the die. At the center of the die, clock signals reach the eight-line horizontal spine, which spans the width of the die. In turn, the horizontal spine branches out into a subsidiary clock interconnect that accesses the CLBs.
- The clock input of either DCM on the same side of the die-top or bottom-as the BUFGMUX element in use.

Use either a BUFGMUX element or a BUFG (Global Clock Buffer) element to place a Global input in the design. For the purpose of minimizing the dynamic power dissipation of the clock network, the Xilinx development software automatically disables all clock line segments that a design does not use.

A global clock line ideally drives clock inputs on the various clocked elements within the FPGA, such as CLB or IOB flip-flops or block RAMs. A global clock line also optionally drives combinatorial inputs. However, doing so provides additional loading on the clock line that might also affect clock jitter. Ideally, drive combinatorial inputs using the signal that also drives the input to the BUFGMUX or BUFG element.

For more details, refer to the chapter entitled "Using Global Clock Resources" in UG331.

Symbol	Description	Test Cond	litions	Min	Тур	Max	Units
I _L (2)(4)	Leakage current at User I/O,	Driver is Hi-Z, V _{IN} =	$V_{CCO} \ge 3.0V$	—	-	±25	μA
	Dual-Purpose, and Dedicated pins	0V or V _{CCO} max, sample-tested	V _{CCO} < 3.0V	-	-	±10	μA
I _{RPU} ⁽³⁾	Current through pull-up resistor at User I/O,	V _{IN} = 0V, V _{CC}	_{CO} = 3.3V	-0.84	-	-2.35	mA
	Dual-Purpose, and Dedicated pins	V _{IN} = 0V, V _{CC}	_{CO} = 3.0V	-0.69	-	-1.99	mA
		$V_{IN} = 0V, V_{CC}$	_{CO} = 2.5V	-0.47	-	-1.41	mA
		$V_{IN} = 0V, V_{CC}$	_{CO} = 1.8V	-0.21	-	-0.69	mA
		$V_{IN} = 0V, V_{CC}$	_{CO} = 1.5V	-0.13	-	-0.43	mA
		V _{IN} = 0V, V _{CC}	_{:O} = 1.2V	-0.06	-	-0.22	mA
Use	Equivalent resistance of pull-up resistor at	V _{CCO} = 3.0V to 3.465V		1.27	-	4.11	kΩ
	User I/O, Dual-Purpose, and Dedicated pins, derived from I _{RPU}	V _{CCO} = 2.3V	1.15	-	3.25	kΩ	
		V _{CCO} = 1.7V	2.45	-	9.10	kΩ	
		V _{CCO} = 1.4V	3.25	-	12.10	kΩ	
		V _{CCO} = 1.14	5.15	-	21.00	kΩ	
I _{RPD} ⁽³⁾	Current through pull-down resistor at User I/O, Dual-Purpose, and Dedicated pins	$V_{IN} = V_{CCO}$		0.37	-	1.67	mA
R _{PD} ⁽³⁾	Equivalent resistance of pull-down resistor	$V_{IN} = V_{CCO} = 3.0$	1.75	-	9.35	kΩ	
	at User I/O, Dual-Purpose, and Dedicated pins, driven from I _{BPD}	$V_{IN} = V_{CCO} = 2$	1.35	-	7.30	kΩ	
		$V_{IN} = V_{CCO} = 1.7V$ to 1.9V		1.00	-	5.15	kΩ
		$V_{IN} = V_{CCO} = 1$	0.85	-	4.35	kΩ	
		$V_{IN} = V_{CCO} = 1.$	0.68	-	3.465	kΩ	
R _{DCI}	Value of external reference resistor to supp	ort DCI I/O standards		20	-	100	Ω
I _{REF}	V _{REF} current per pin	$V_{CCO} \ge 3$	—	-	±25	μA	
		V _{CCO} < 3	—	-	±10	μA	
C _{IN}	Input capacitance			3	-	10	pF

Table 33: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Notes:

1. The numbers in this table are based on the conditions set forth in Table 32.

2. The I_L specification applies to every I/O pin throughout power-on as long as the voltage on that pin stays between the absolute V_{IN} minimum and maximum values (Table 28). For hot-swap applications, at the time of card connection, be sure to keep all I/O voltages within this range before applying V_{CCO} power. Consider applying V_{CCO} power before connecting the signal lines, to avoid turning on the ESD protection diodes, shown in Module 2: Figure 7, page 11. When the FPGA is completely unpowered, the I/O pins are high impedance, but there is a path through the upper and lower ESD protection diodes.

3. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$. Spartan-3 family values for both resistances are stronger than they have been for previous FPGA families.

 For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.3V is supported but can cause increased leakage between the two pins. See the *Parasitic Leakage* section in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.

Table 36: DC Characteristics of User I/Os Using Single-Ended Standards (Cont'd)

Signal Sta	andard	Test Co	nditions	Logic Level C	haracteristics	
(IOSTANDARD) and Current Drive Attribute (mA)		l _{OL} (mA)	I _{ОН} (mA)	V _{OL} Max (V)	V _{OH} Min (V)	
LVCMOS33 ⁽⁴⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4	_		
	6	6	6	_		
	8	8	-8			
	12	12	-12			
	16	16	-16	_		
	24	24	-24	_		
LVDCI_33, LVDCI_DV2_33		Note 3	Note 3	_		
LVTTL ⁽⁴⁾	2	2	-2	0.4	2.4	
	4	4	-4			
	6	6	6			
	8	8	8			
	12	12	-12			
	16	16	-16			
	24	24	-24			
PCI33_3		Note 6	Note 6	0.10V _{CCO}	0.90V _{CCO}	
SSTL18_I		6.7	-6.7	V _{TT} – 0.475	V _{TT} + 0.475	
SSTL18_I_DCI		Note 3	Note 3			
SSTL18_II SSTL2_I SSTL2_I_DCI		13.4	-13.4	V _{TT} – 0.475	V _{TT} + 0.475	
		8.1	-8.1	V _{TT} – 0.61	V _{TT} + 0.61	
		Note 3	Note 3			
SSTL2_II ⁽⁷⁾		16.2	-16.2	V _{TT} – 0.81	V _{TT} + 0.81	
SSTL2_II_DCI ⁽⁷⁾		Note 3	Note 3			

Notes:

2.

The numbers in this table are based on the conditions set forth in Table 32 and Table 35. 1.

The numbers in this table are based on the conditions set for Descriptions of the symbols used in this table are as follows: I_{OL} – the output current condition under which VOL is tested V_{OL} – the output current condition under which VOH is tested V_{OL} – the output voltage that indicates a Low logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the supply voltage for output drivers as well as LVCM

 V_{CCO} – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs V_{REF} – the reference voltage for setting the input switching threshold V_{TT} – the voltage applied to a resistor termination

Tested according to the standard's relevant specifications. When using the DCI version of a standard on a given I/O bank, that bank will consume more power than if the non-DCI version had been used instead. The additional power is drawn for the purpose of impedance-matching at the I/O pins. A portion of this power is dissipated in the two RREF resistors. 3.

For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for both the Fast and Slow slew attributes. 4.

All dedicated output pins (CCLK, DONE, and TDO) and dual-purpose totem-pole output pins (D0-D7 and BUSY/DOUT) exhibit the characteristics of 5. LVCMOS25 with 12 mA drive and slow slew rate. For information concerning the use of 3.3V signals, see 3.3V-Tolerant Configuration Interface, page 47.

Tested according to the relevant PCI specifications. For more information, see XAPP457. 6.

7. The minimum usable V_{TT} voltage is 1.25V.

Spartan-3 FPGA Family: DC and Switching Characteristics

Table 50: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair

Signal Standard (IOSTANDARD)			Package					
			VQ100	TQ144	PQ208	CP132	FT256, FG320, FG456, FG676, FG900, FG1156	
Single-Ended Stand	ards			·				
GTL			0	0	0	1	14	
GTL_DCI			0	0	0	1	14	
GTLP			0	0	0	1	19	
GTLP_DCI			0	0	0	1	19	
HSLVDCI_15			6	6	6	6	14	
HSLVDCI_18			7	7	7	7	10	
HSLVDCI_25			7	7	7	7	11	
HSLVDCI_33			10	10	10	10	10	
HSTL_I			11	11	11	11	17	
HSTL_I_DCI			11	11	11	11	17	
HSTL_III			7	7	7	7	7	
HSTL_III_DCI			7	7	7	7	7	
HSTL_I_18			13	13	13	13	17	
HSTL_I_DCI_18			13	13	13	13	17	
HSTL_II_18			9	9	9	9	9	
HSTL_II_DCI_18			9	9	9	9	9	
HSTL_III_18			8	8	8	8	8	
HSTL_III_DCI_18			8	8	8	8	8	
LVCMOS12	Slow	2	17	17	17	17	55	
		4	13	13	13	13	32	
		6	10	10	10	10	18	
	Fast	2	12	12	12	12	31	
		4	11	11	11	11	13	
		6	9	9	9	9	9	
LVCMOS15	Slow	2	16	12	12	19	55	
		4	8	7	7	9	31	
		6	7	7	7	9	18	
8		8	6	6	6	6	15	
		12	5	5	5	5	10	
	Fast	2	10	10	10	13	25	
		4	6	7	7	7	16	
		6	7	7	7	7	13	
		8	6	6	6	6	11	
		12	6	6	6	6	7	

Table 50: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (Cont'd)

Cime	al Chandard		Package					
Signal Standard (IOSTANDARD)		VQ100	TQ144	PQ208	CP132	FT256, FG320, FG456, FG676, FG900, FG1156		
LVCMOS33	Slow	2	34	24	24	52	76	
		4	17	14	14	26	46	
		6	17	11	11	26	27	
		8	10	10	10	13	20	
		12	9	9	9	13	13	
		16	8	8	8	8	10	
		24	8	8	8	8	9	
	Fast	2	20	20	20	26	44	
		4	15	15	15	15	26	
		6	11	11	11	13	16	
		8	10	10	10	10	12	
		12	8	8	8	8	10	
		16	8	8	8	8	8	
		24	7	7	7	7	7	
LVDCI_33		-+	10	10	10	10	10	
LVDCI_DV2_33			10	10	10	10	10	
HSLVDCI_33			10	10	10	10	10	
LVTTL	Slow	2	34	25	25	52	60	
		4	17	16	16	26	41	
		6	17	15	15	26	29	
		8	12	12	12	13	22	
		12	10	10	10	13	13	
		16	10	10	10	10	11	
		24	8	8	8	8	9	
	Fast	2	20	20	20	26	34	
		4	13	13	13	13	20	
		6	11	11	11	13	15	
		8	10	10	10	10	12	
		12	9	9	9	9	10	
		16	8	8	8	8	9	
		24	7	7	7	7	7	

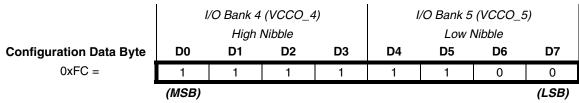
www.xilinx.com

Table 50: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (Cont'd)

Cinnel Chenderd		Package					
Signal Standard (IOSTANDARD)	VQ100	TQ144	PQ208	CP132	FT256, FG320, FG456, FG676, FG900, FG1156		
PCl33_3	9	9	9	9	9		
SSTL18_I	13	13	13	13	17		
SSTL18_I_DCI	13	13	13	13	17		
SSTL18_II	8	8	8	8	9		
SSTL2_I	10	10	10	10	13		
SSTL2_I_DCI	10	10	10	10	13		
SSTL2_II	6	6	6	6	9		
SSTL2_II_DCI	6	6	6	6	9		
Differential Standards (Number of I/O Pair	rs or Channels)	<u>.</u>		!			
LDT_25 (ULVDS_25)	5	5	5	5	5		
LVDS_25	7	5	5	12	20		
BLVDS_25	2	1	1		4		
LVDSEXT_25	5	5	5	5	5		
LVPECL_25	2	1	1		4		
RSDS_25	7	5	5	12	20		
DIFF_HSTL_II_18	4	4	4	4	4		
DIFF_HSTL_II_18_DCI	4	4	4	4	4		
DIFF_SSTL2_II	3	3	3	3	4		
DIFF_SSTL2_II_DCI	3	3	3	3	4		

Notes:

1. The numbers in this table are recommendations that assume the FPGA is soldered on a printed circuit board using sound practices. This table assumes the following parasitic factors: combined PCB trace and land inductance per V_{CCO} and GND pin of 1.0 nH, receiver capacitive load of 15 pF. Test limits are the V_{IL}/V_{IH} voltage limits for the respective I/O standard.


2. Regarding the SSO numbers for all DCI standards, the R_{REF} resistors connected to the VRN and VRP pins of the FPGA are 50W.

3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations.

4. Results are based on actual silicon testing using an FPGA soldered on a typical printed-circuit board.

Pin Name	Direction	Description
DIN	Input	Serial Data Input: During the Master or Slave Serial configuration modes, DIN is the serial configuration data input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is available as a user I/O. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option <i>Persist</i> permits this pin to retain its configuration function in the User mode.
DOUT	Output	Serial Data Output: In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of one FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in Slave Serial mode—so that configuration data passes from one to the next, in daisy-chain fashion. This "daisy chain" permits sequential configuration of multiple FPGAs. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option <i>Persist</i> permits this pin to retain its configuration function in the User mode.
INIT_B	Bidirectional (open-drain)	Initializing Configuration Memory/Configuration Error: Just after power is applied, the FPGA produces a Low-to-High transition on this pin indicating that initialization (<i>i.e.</i> , clearing) of the configuration memory has finished. Before entering the User mode, this pin functions as an open-drain output, which requires a pull-up resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the INIT_B pins from all FPGAs together so that the common node transitions High only after all of the FPGAs have been successfully initialized. Externally holding this pin Low beyond the initialization phase delays the start of configuration. This action stalls the FPGA at the configuration step just before the mode select pins are sampled. During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by asserting INIT_B Low. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option <i>Persist</i> permits this pin to retain its configuration function in the User mode.

Table 71: Dual-Purpose Pins Used in Master or Slave Serial Mode

Parallel Configuration Modes (SelectMAP)

This section describes the dual-purpose configuration pins used during the Master and Slave Parallel configuration modes, sometimes also called the SelectMAP modes. In both Master and Slave Parallel configuration modes, D0-D7 form the byte-wide configuration data input. See Table 75 for Mode Select pin settings required for Parallel modes.

As shown in Figure 41, D0 is the most-significant bit while D7 is the least-significant bit. Bits D0-D3 form the high nibble of the byte and bits D4-D7 form the low nibble.

In the Parallel configuration modes, both the VCCO_4 and VCCO_5 voltage supplies are required and must both equal the voltage of the attached configuration device, typically either 2.5V or 3.3V.

Assert Low both the chip-select pin, CS_B, and the read/write control pin, RDWR_B, to write the configuration data byte presented on the D0-D7 pins to the FPGA on a rising-edge of the configuration clock, CCLK. The order of CS_B and RDWR_B does not matter, although RDWR_B must be asserted throughout the configuration process. If RDWR_B is de-asserted during configuration, the FPGA aborts the configuration operation.

After configuration, these pins are available as general-purpose user I/O. However, the SelectMAP configuration interface is optionally available for debugging and dynamic reconfiguration. To use these SelectMAP pins after configuration, set the Persist bitstream generation option.

The Readback debugging option, for example, requires the Persist bitstream generation option. During Readback mode, assert CS_B Low, along with RDWR_B High, to read a configuration data byte from the FPGA to the D0-D7 bus on a rising CCLK edge. During Readback mode, D0-D7 are output pins.

In all the cases, the configuration data and control signals are synchronized to the rising edge of the CCLK clock signal.

User I/Os by Bank

Table 92 indicates how the available user-I/O pins are distributed between the eight I/O banks on the TQ144 package.

Table 92: User I/Os Per Bank in TQ144 Package

Dookogo Edgo	I/O Bank	Maximum I/O	All Possible I/O Pins by Type					
Package Edge			I/O	DUAL	DCI	VREF	GCLK	
Тор	0	10	5	0	2	1	2	
юр	1	9	4	0	2	1	2	
Right	2	14	10	0	2	2	0	
right	3	15	11	0	2	2	0	
Bottom	4	11	0	6	2	1	2	
Dottom	5	9	0	6	0	1	2	
Left	6	14	10	0	2	2	0	
Leit	7	15	11	0	2	2	0	

Table 100: FG456 Package Pinout (Cont'd)

Bank	3S400 Pin Name	3S1000, 3S1500, 3S2000 Pin Name	FG456 Pin Number	Туре
2	IO_L21P_2	IO_L21P_2	E22	I/O
2	IO_L22N_2	IO_L22N_2	G17	I/O
2	IO_L22P_2	IO_L22P_2	G18	I/O
2	IO_L23N_2/VREF_2	IO_L23N_2/VREF_2	F19	VREF
2	IO_L23P_2	IO_L23P_2	G19	I/O
2	IO_L24N_2	IO_L24N_2	F20	I/O
2	IO_L24P_2	IO_L24P_2	F21	I/O
2	N.C. (�)	IO_L26N_2	G20	I/O
2	N.C. (�)	IO_L26P_2	H19	I/O
2	IO_L27N_2	IO_L27N_2	G21	I/O
2	IO_L27P_2	IO_L27P_2	G22	I/O
2	N.C. (�)	IO_L28N_2	H18	I/O
2	N.C. (�)	IO_L28P_2	J17	I/O
2	N.C. (�)	IO_L29N_2	H21	I/O
2	N.C. (�)	IO_L29P_2	H22	I/O
2	N.C. (�)	IO_L31N_2	J18	I/O
2	N.C. (�)	IO_L31P_2	J19	I/O
2	N.C. (�)	IO_L32N_2	J21	I/O
2	N.C. (�)	IO_L32P_2	J22	I/O
2	N.C. (�)	IO_L33N_2	K17	I/O
2	N.C. (�)	IO_L33P_2	K18	I/O
2	IO_L34N_2/VREF_2	IO_L34N_2/VREF_2	K19	VREF
2	IO_L34P_2	IO_L34P_2	K20	I/O
2	IO_L35N_2	IO_L35N_2	K21	I/O
2	IO_L35P_2	IO_L35P_2	K22	I/O
2	IO_L38N_2	IO_L38N_2	L17	I/O
2	IO_L38P_2	IO_L38P_2	L18	I/O
2	IO_L39N_2	IO_L39N_2	L19	I/O
2	IO_L39P_2	IO_L39P_2	L20	I/O
2	IO_L40N_2	IO_L40N_2	L21	I/O
2	IO_L40P_2/VREF_2	IO_L40P_2/VREF_2	L22	VREF
2	VCCO_2	VCCO_2	H17	VCCO
2	VCCO_2	VCCO_2	H20	VCCO
2	VCCO_2	VCCO_2	J16	VCCO
2	VCCO_2	VCCO_2	K16	VCCO
2	VCCO_2	VCCO_2	L16	VCCO
3	IO	IO	Y21	I/O
3	IO_L01N_3/VRP_3	IO_L01N_3/VRP_3	Y20	DCI
3	IO_L01P_3/VRN_3	IO_L01P_3/VRN_3	Y19	DCI
3	IO_L16N_3	IO_L16N_3	W22	I/O

Table 100: FG456 Package Pinout (Cont'd)

Bank	3S400 Pin Name	3S1000, 3S1500, 3S2000 Pin Name	FG456 Pin Number	Туре
3	IO_L16P_3	IO_L16P_3	Y22	I/O
3	IO_L17N_3	IO_L17N_3	V19	I/O
3	IO_L17P_3/VREF_3	IO_L17P_3/VREF_3	W19	VREF
3	IO_L19N_3	IO_L19N_3	W21	I/O
3	IO_L19P_3	IO_L19P_3	W20	I/O
3	IO_L20N_3	IO_L20N_3	U19	I/O
3	IO_L20P_3	IO_L20P_3	V20	I/O
3	IO_L21N_3	IO_L21N_3	V22	I/O
3	IO_L21P_3	IO_L21P_3	V21	I/O
3	IO_L22N_3	IO_L22N_3	T17	I/O
3	IO_L22P_3	IO_L22P_3	U18	I/O
3	IO_L23N_3	IO_L23N_3	U21	I/O
3	IO_L23P_3/VREF_3	IO_L23P_3/VREF_3	U20	VREF
3	IO_L24N_3	IO_L24N_3	R18	I/O
3	IO_L24P_3	IO_L24P_3	T18	I/O
3	N.C. (�)	IO_L26N_3	T20	I/O
3	N.C. (�)	IO_L26P_3	T19	I/O
3	IO_L27N_3	IO_L27N_3	T22	I/O
3	IO_L27P_3	IO_L27P_3	T21	I/O
3	N.C. (�)	IO_L28N_3	R22	I/O
3	N.C. (�)	IO_L28P_3	R21	I/O
3	N.C. (�)	IO_L29N_3	P19	I/O
3	N.C. (�)	IO_L29P_3	R19	I/O
3	N.C. (�)	IO_L31N_3	P18	I/O
3	N.C. (�)	IO_L31P_3	P17	I/O
3	N.C. (�)	IO_L32N_3	P22	I/O
3	N.C. (�)	IO_L32P_3	P21	I/O
3	N.C. (�)	IO_L33N_3	N18	I/O
3	N.C. (�)	IO_L33P_3	N17	I/O
3	IO_L34N_3	IO_L34N_3	N20	I/O
3	IO_L34P_3/VREF_3	IO_L34P_3/VREF_3	N19	VREF
3	IO_L35N_3	IO_L35N_3	N22	I/O
3	IO_L35P_3	IO_L35P_3	N21	I/O
3	IO_L38N_3	IO_L38N_3	M18	I/O
3	IO_L38P_3	IO_L38P_3	M17	I/O
3	IO_L39N_3	IO_L39N_3	M20	I/O
3	IO_L39P_3	IO_L39P_3	M19	I/O
3	IO_L40N_3/VREF_3	IO_L40N_3/VREF_3	M22	VREF
3	IO_L40P_3	IO_L40P_3	M21	I/O
3	VCCO_3	VCCO_3	M16	VCCO

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
N/A	GND	GND	GND	GND	GND	D15	GND
N/A	GND	GND	GND	GND	GND	D23	GND
N/A	GND	GND	GND	GND	GND	K11	GND
N/A	GND	GND	GND	GND	GND	K12	GND
N/A	GND	GND	GND	GND	GND	K15	GND
N/A	GND	GND	GND	GND	GND	K16	GND
N/A	GND	GND	GND	GND	GND	L10	GND
N/A	GND	GND	GND	GND	GND	L11	GND
N/A	GND	GND	GND	GND	GND	L12	GND
N/A	GND	GND	GND	GND	GND	L13	GND
N/A	GND	GND	GND	GND	GND	L14	GND
N/A	GND	GND	GND	GND	GND	L15	GND
N/A	GND	GND	GND	GND	GND	L16	GND
N/A	GND	GND	GND	GND	GND	L17	GND
N/A	GND	GND	GND	GND	GND	M4	GND
N/A	GND	GND	GND	GND	GND	M10	GND
N/A	GND	GND	GND	GND	GND	M11	GND
N/A	GND	GND	GND	GND	GND	M12	GND
N/A	GND	GND	GND	GND	GND	M13	GND
N/A	GND	GND	GND	GND	GND	M14	GND
N/A	GND	GND	GND	GND	GND	M15	GND
N/A	GND	GND	GND	GND	GND	M16	GND
N/A	GND	GND	GND	GND	GND	M17	GND
N/A	GND	GND	GND	GND	GND	M23	GND
N/A	GND	GND	GND	GND	GND	N11	GND
N/A	GND	GND	GND	GND	GND	N12	GND
N/A	GND	GND	GND	GND	GND	N13	GND
N/A	GND	GND	GND	GND	GND	N14	GND
N/A	GND	GND	GND	GND	GND	N15	GND
N/A	GND	GND	GND	GND	GND	N16	GND
N/A	GND	GND	GND	GND	GND	P11	GND
N/A	GND	GND	GND	GND	GND	P12	GND
N/A	GND	GND	GND	GND	GND	P13	GND
N/A	GND	GND	GND	GND	GND	P14	GND
N/A	GND	GND	GND	GND	GND	P15	GND
N/A	GND	GND	GND	GND	GND	P16	GND
N/A	GND	GND	GND	GND	GND	R4	GND
N/A	GND	GND	GND	GND	GND	R10	GND
N/A	GND	GND	GND	GND	GND	R11	GND
N/A	GND	GND	GND	GND	GND	R12	GND
N/A	GND	GND	GND	GND	GND	R13	GND
N/A	GND	GND	GND	GND	GND	R14	GND
N/A	GND	GND	GND	GND	GND	R15	GND

www.xilinx.com

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
1	IO_L25P_1	IO_L25P_1	D19	I/O
1	IO_L26N_1	IO_L26N_1	A19	I/O
1	IO_L26P_1	IO_L26P_1	B19	I/O
1	IO_L27N_1	IO_L27N_1	F17	I/O
1	IO_L27P_1	IO_L27P_1	G17	I/O
1	IO_L28N_1	IO_L28N_1	B17	I/O
1	IO_L28P_1	IO_L28P_1	C17	I/O
1	IO_L29N_1	IO_L29N_1	J16	I/O
1	IO_L29P_1	IO_L29P_1	K16	I/O
1	IO_L30N_1	IO_L30N_1	G16	I/O
1	IO_L30P_1	IO_L30P_1	H16	I/O
1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	D16	VREF
1	IO_L31P_1	IO_L31P_1	E16	I/O
1	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	B16	GCLK
1	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	C16	GCLK
1	N.C. (♦)	IO_L37N_1	H18	I/O
1	N.C. (♦)	IO_L37P_1	J18	I/O
1	N.C. (♦)	IO_L38N_1	D18	I/O
1	N.C. (♦)	IO_L38P_1	E18	I/O
1	N.C. (♦)	IO_L39N_1	A18	I/O
1	N.C. (♦)	IO_L39P_1	B18	I/O
1	N.C. (♦)	IO_L40N_1	K17	I/O
1	N.C. (♦)	IO_L40P_1	K18	I/O
1	VCCO_1	VCCO_1	L17	VCCO
1	VCCO_1	VCCO_1	C18	VCCO
1	VCCO_1	VCCO_1	G18	VCCO
1	VCCO_1	VCCO_1	L18	VCCO
1	VCCO_1	VCCO_1	L19	VCCO
1	VCCO_1	VCCO_1	J20	VCCO
1	VCCO_1	VCCO_1	C22	VCCO
1	VCCO_1	VCCO_1	G22	VCCO
1	VCCO_1	VCCO_1	E24	VCCO
1	VCCO_1	VCCO_1	C26	VCCO
2	IO	IO	J25	I/O
2	IO_L01N_2/VRP_2	IO_L01N_2/VRP_2	C29	DCI
2	IO_L01P_2/VRN_2	IO_L01P_2/VRN_2	C30	DCI
2	IO_L02N_2	IO_L02N_2	D27	I/O
2	IO_L02P_2	IO_L02P_2	D28	I/O
2	IO_L03N_2/VREF_2	IO_L03N_2/VREF_2	D29	VREF
2	IO_L03P_2	IO_L03P_2	D30	I/O

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	AN32	DCI
4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	AP32	DCI
4	IO_L02N_4	IO_L02N_4	AN31	I/O
4	IO_L02P_4	IO_L02P_4	AP31	I/O
4	IO_L03N_4	IO_L03N_4	AM30	I/O
4	IO_L03P_4	IO_L03P_4	AN30	I/O
4	IO_L04N_4	IO_L04N_4	AN27	I/O
4	IO_L04P_4	IO_L04P_4	AP27	I/O
4	IO_L05N_4	IO_L05N_4	AH26	I/O
4	IO_L05P_4	IO_L05P_4	AJ26	I/O
4	IO_L06N_4/VREF_4	IO_L06N_4/VREF_4	AL26	VREF
4	IO_L06P_4	IO_L06P_4	AM26	I/O
4	IO_L07N_4	IO_L07N_4	AF25	I/O
4	IO_L07P_4	IO_L07P_4	AG25	I/O
4	IO_L08N_4	IO_L08N_4	AH25	I/O
4	IO_L08P_4	IO_L08P_4	AJ25	I/O
4	IO_L09N_4	IO_L09N_4	AL25	I/O
4	IO_L09P_4	IO_L09P_4	AM25	I/O
4	IO_L10N_4	IO_L10N_4	AN25	I/O
4	IO_L10P_4	IO_L10P_4	AP25	I/O
4	IO_L11N_4	IO_L11N_4	AD23	I/O
4	IO_L11P_4	IO_L11P_4	AE23	I/O
4	IO_L12N_4	IO_L12N_4	AF23	I/O
4	IO_L12P_4	IO_L12P_4	AG23	I/O
4	IO_L13N_4	IO_L13N_4	AJ23	I/O
4	IO_L13P_4	IO_L13P_4	AK23	I/O
4	IO_L14N_4	IO_L14N_4	AL23	I/O
4	IO_L14P_4	IO_L14P_4	AM23	I/O
4	IO_L15N_4	IO_L15N_4	AN23	I/O
4	IO_L15P_4	IO_L15P_4	AP23	I/O
4	IO_L16N_4	IO_L16N_4	AG22	I/O
4	IO_L16P_4	IO_L16P_4	AH22	I/O
4	IO_L17N_4	IO_L17N_4	AL22	I/O
4	IO_L17P_4	IO_L17P_4	AM22	I/O
4	IO_L18N_4	IO_L18N_4	AD21	I/O
4	IO_L18P_4	IO_L18P_4	AE21	I/O
4	IO_L19N_4	IO_L19N_4	AG21	I/O
4	IO_L19P_4	IO_L19P_4	AH21	I/O
4	IO_L20N_4	IO_L20N_4	AJ21	I/O
4	IO_L20P_4	IO_L20P_4	AK21	I/O

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
N/A	GND	GND	AN1	GND
N/A	GND	GND	AN2	GND
N/A	GND	GND	AN33	GND
N/A	GND	GND	AN34	GND
N/A	GND	GND	AP1	GND
N/A	GND	GND	AP13	GND
N/A	GND	GND	AP16	GND
N/A	GND	GND	AP19	GND
N/A	GND	GND	AP2	GND
N/A	GND	GND	AP22	GND
N/A	GND	GND	AP26	GND
N/A	GND	GND	AP30	GND
N/A	GND	GND	AP33	GND
N/A	GND	GND	AP34	GND
N/A	GND	GND	AP5	GND
N/A	GND	GND	AP9	GND
N/A	GND	GND	B1	GND
N/A	GND	GND	B2	GND
N/A	GND	GND	B33	GND
N/A	GND	GND	B34	GND
N/A	GND	GND	C11	GND
N/A	GND	GND	C24	GND
N/A	GND	GND	C3	GND
N/A	GND	GND	C32	GND
N/A	GND	GND	E1	GND
N/A	GND	GND	E13	GND
N/A	GND	GND	E16	GND
N/A	GND	GND	E19	GND
N/A	GND	GND	E22	GND
N/A	GND	GND	E26	GND
N/A	GND	GND	E30	GND
N/A	GND	GND	E34	GND
N/A	GND	GND	E5	GND
N/A	GND	GND	E9	GND
N/A	GND	GND	G28	GND
N/A	GND	GND	G7	GND
N/A	GND	GND	J1	GND
N/A	GND	GND	J13	GND
N/A	GND	GND	J16	GND
N/A	GND	GND	J19	GND