# E·XFL



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Active                                                        |
| Number of LABs/CLBs            | 5120                                                          |
| Number of Logic Elements/Cells | 46080                                                         |
| Total RAM Bits                 | 737280                                                        |
| Number of I/O                  | 565                                                           |
| Number of Gates                | 2000000                                                       |
| Voltage - Supply               | 1.14V ~ 1.26V                                                 |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                               |
| Package / Case                 | 900-BBGA                                                      |
| Supplier Device Package        | 900-FBGA (31x31)                                              |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xc3s2000-5fgg900c |
|                                |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## Spartan-3 FPGA Family: Introduction and Ordering Information

DS099 (v3.0) October 29, 2012

#### **Product Specification**

### Introduction

The Spartan®-3 family of Field-Programmable Gate Arrays is specifically designed to meet the needs of high volume, cost-sensitive consumer electronic applications. The eight-member family offers densities ranging from 50,000 to 5,000,000 system gates, as shown in Table 1.

The Spartan-3 family builds on the success of the earlier Spartan-IIE family by increasing the amount of logic resources, the capacity of internal RAM, the total number of I/Os, and the overall level of performance as well as by improving clock management functions. Numerous enhancements derive from the Virtex®-II platform technology. These Spartan-3 FPGA enhancements, combined with advanced process technology, deliver more functionality and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3 FPGAs are ideally suited to a wide range of consumer electronics applications, including broadband access, home networking, display/projection and digital television equipment.

The Spartan-3 family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary, an impossibility with ASICs.

Table 1: Summary of Spartan-3 FPGA Attributes

### Features

- Low-cost, high-performance logic solution for high-volume, consumer-oriented applications
  - Densities up to 74,880 logic cells
  - SelectIO<sup>™</sup> interface signaling
  - Up to 633 I/O pins
  - 622+ Mb/s data transfer rate per I/O
  - 18 single-ended signal standards
  - 8 differential I/O standards including LVDS, RSDS
  - Termination by Digitally Controlled Impedance
  - Signal swing ranging from 1.14V to 3.465V
  - Double Data Rate (DDR) support
  - DDR, DDR2 SDRAM support up to 333 Mb/s
- Logic resources
  - Abundant logic cells with shift register capability
  - Wide, fast multiplexers
  - Fast look-ahead carry logic
  - Dedicated 18 x 18 multipliers
  - JTAG logic compatible with IEEE 1149.1/1532
  - SelectRAM<sup>™</sup> hierarchical memory
  - Up to 1,872 Kbits of total block RAM
  - Up to 520 Kbits of total distributed RAM
  - Digital Clock Manager (up to four DCMs)
    - Clock skew elimination
    - Frequency synthesis
    - High resolution phase shifting
- Eight global clock lines and abundant routing
- Fully supported by Xilinx ISE® and WebPACK<sup>™</sup> software development systems
- MicroBlaze<sup>™</sup> and PicoBlaze<sup>™</sup> processor, <u>PCI</u>®, PCI Express® PIPE Endpoint, and other IP cores
- Pb-free packaging options
- Automotive Spartan-3 XA Family variant

| Device                  | System Equivale | Equivalent                 | CLB Array<br>(One CLB = Four Slices) |         |               | Block<br>RAM Bits | Dedicated | DOM         | Max. | Maximum  |                           |  |
|-------------------------|-----------------|----------------------------|--------------------------------------|---------|---------------|-------------------|-----------|-------------|------|----------|---------------------------|--|
| Device                  | Gates           | Logic Cells <sup>(1)</sup> | Rows                                 | Columns | Total<br>CLBs | (K=1024)          | (K=1024)  | Multipliers | DCMs | User I/O | Differential<br>I/O Pairs |  |
| XC3S50 <sup>(2)</sup>   | 50K             | 1,728                      | 16                                   | 12      | 192           | 12K               | 72K       | 4           | 2    | 124      | 56                        |  |
| XC3S200 <sup>(2)</sup>  | 200K            | 4,320                      | 24                                   | 20      | 480           | 30K               | 216K      | 12          | 4    | 173      | 76                        |  |
| XC3S400 <sup>(2)</sup>  | 400K            | 8,064                      | 32                                   | 28      | 896           | 56K               | 288K      | 16          | 4    | 264      | 116                       |  |
| XC3S1000 <sup>(2)</sup> | 1M              | 17,280                     | 48                                   | 40      | 1,920         | 120K              | 432K      | 24          | 4    | 391      | 175                       |  |
| XC3S1500                | 1.5M            | 29,952                     | 64                                   | 52      | 3,328         | 208K              | 576K      | 32          | 4    | 487      | 221                       |  |
| XC3S2000                | 2M              | 46,080                     | 80                                   | 64      | 5,120         | 320K              | 720K      | 40          | 4    | 565      | 270                       |  |
| XC3S4000                | 4M              | 62,208                     | 96                                   | 72      | 6,912         | 432K              | 1,728K    | 96          | 4    | 633      | 300                       |  |
| XC3S5000                | 5M              | 74,880                     | 104                                  | 80      | 8,320         | 520K              | 1,872K    | 104         | 4    | 633      | 300                       |  |

#### Notes:

Logic Cell = 4-input Look-Up Table (LUT) plus a 'D' flip-flop. "Equivalent Logic Cells" equals "Total CLBs" x 8 Logic Cells/CLB x 1.125 effectiveness.

These devices are available in Xilinx Automotive versions as described in DS314: Spartan-3 Automotive XA FPGA Family. 2.

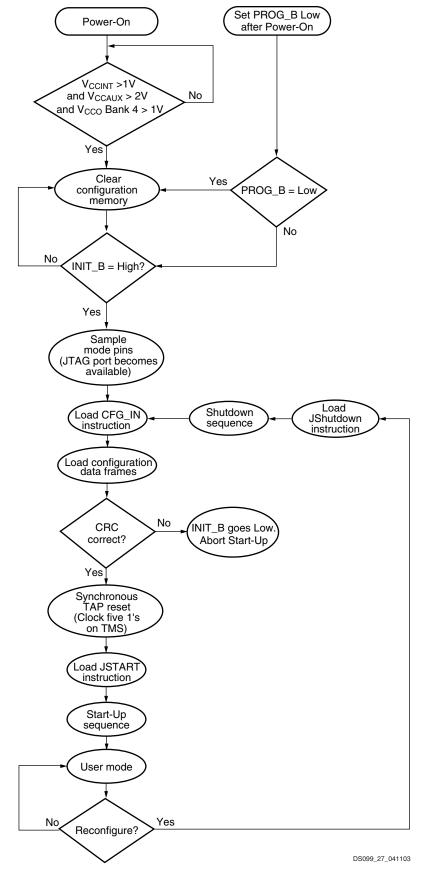
© Copyright 2003–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 16. The clock outputs drive simultaneously; however, the High Frequency mode only supports a subset of the outputs available in the Low Frequency mode. See DLL Frequency Modes, page 35. Signals that initialize and report the state of the DLL are discussed in The Status Logic Component, page 41.

#### Table 16: DLL Signals

| Signal Direction |        |                                                                                                                            |                  | Support           |
|------------------|--------|----------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
|                  |        | Description                                                                                                                | Low<br>Frequency | High<br>Frequency |
| CLKIN            | Input  | Accepts original clock signal.                                                                                             | Yes              | Yes               |
| CLKFB            | Input  | Accepts either CLK0 or CLK2X as feed back signal. (Set CLK_FEEDBACK attribute accordingly).                                | Yes              | Yes               |
| CLK0             | Output | Generates clock signal with same frequency and phase as CLKIN.                                                             | Yes              | Yes               |
| CLK90            | Output | Generates clock signal with same frequency as CLKIN, only phase-shifted 90°.                                               | Yes              | No                |
| CLK180           | Output | Generates clock signal with same frequency as CLKIN, only phase-shifted 180°.                                              | Yes              | Yes               |
| CLK270           | Output | Generates clock signal with same frequency as CLKIN, only phase-shifted 270°.                                              | Yes              | No                |
| CLK2X            | Output | Generates clock signal with same phase as CLKIN, only twice the frequency.                                                 | Yes              | No                |
| CLK2X180         | Output | Generates clock signal with twice the frequency of CLKIN, phase-shifted 180° with respect to CLKIN.                        | Yes              | No                |
| CLKDV            | Output | Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN. | Yes              | Yes               |

The clock signal supplied to the CLKIN input serves as a reference waveform, with which the DLL seeks to align the feedback signal at the CLKFB input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network to all the registers it synchronizes. These registers are either internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay elements to cancel out the clock skew. Once the DLL has brought the CLK0 signal in phase with the CLKIN signal, it asserts the LOCKED output, indicating a "lock" on to the CLKIN signal.


### **DLL Attributes and Related Functions**

A number of different functional options can be set for the DLL component through the use of the attributes described in Table 17. Each attribute is described in detail in the sections that follow:

| Attribute             | Description                                                                                      | Values                                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| CLK_FEEDBACK          | Chooses either the CLK0 or CLK2X output to drive the CLKFB input                                 | NONE, 1X, 2X                                                                                            |
| DLL_FREQUENCY_MODE    | Chooses between High Frequency and Low Frequency modes                                           | LOW, HIGH                                                                                               |
| CLKIN_DIVIDE_BY_2     | Halves the frequency of the CLKIN signal just as it enters the DCM                               | TRUE, FALSE                                                                                             |
| CLKDV_DIVIDE          | Selects constant used to divide the CLKIN input frequency to generate the CLKDV output frequency | 1.5, 2, 2.5, 3, 3.5, 4, 4.5,<br>5, 5.5, 6.0, 6.5, 7.0, 7.5,<br>8, 9, 10, 11, 12, 13, 14,<br>15, and 16. |
| DUTY_CYCLE_CORRECTION | Enables 50% duty cycle correction for the CLK0, CLK90, CLK180, and CLK270 outputs                | TRUE, FALSE                                                                                             |

#### Table 17: DLL Attributes

### **EXILINX**.





www.xilinx.com

| Symbol                          | Description                                                                      | Test Cond                                    | litions                 | Min   | Тур | Max   | Units |
|---------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|-------------------------|-------|-----|-------|-------|
| I <sub>L</sub> (2)(4)           | Leakage current at User I/O,                                                     | Driver is Hi-Z, V <sub>IN</sub> =            | $V_{CCO} \ge 3.0V$      | —     | -   | ±25   | μA    |
|                                 | Dual-Purpose, and Dedicated pins                                                 | 0V or V <sub>CCO</sub> max,<br>sample-tested | V <sub>CCO</sub> < 3.0V | -     | -   | ±10   | μA    |
| I <sub>RPU</sub> <sup>(3)</sup> | Current through pull-up resistor at User I/O,                                    | V <sub>IN</sub> = 0V, V <sub>CC</sub>        | <sub>CO</sub> = 3.3V    | -0.84 | -   | -2.35 | mA    |
|                                 | Dual-Purpose, and Dedicated pins                                                 | V <sub>IN</sub> = 0V, V <sub>CC</sub>        | <sub>CO</sub> = 3.0V    | -0.69 | -   | -1.99 | mA    |
|                                 |                                                                                  | $V_{IN} = 0V, V_{CC}$                        | <sub>CO</sub> = 2.5V    | -0.47 | -   | -1.41 | mA    |
|                                 |                                                                                  | $V_{IN} = 0V, V_{CC}$                        | <sub>CO</sub> = 1.8V    | -0.21 | -   | -0.69 | mA    |
|                                 |                                                                                  | $V_{IN} = 0V, V_{CC}$                        | <sub>CO</sub> = 1.5V    | -0.13 | -   | -0.43 | mA    |
|                                 |                                                                                  | V <sub>IN</sub> = 0V, V <sub>CC</sub>        | <sub>:O</sub> = 1.2V    | -0.06 | -   | -0.22 | mA    |
| R <sub>PU</sub> <sup>(3)</sup>  | Equivalent resistance of pull-up resistor at                                     | V <sub>CCO</sub> = 3.0V to 3.465V            |                         | 1.27  | -   | 4.11  | kΩ    |
|                                 | User I/O, Dual-Purpose, and Dedicated pins, derived from I <sub>RPU</sub>        | $V_{CCO} = 2.3V$ to 2.7V                     |                         | 1.15  | -   | 3.25  | kΩ    |
|                                 |                                                                                  | V <sub>CCO</sub> = 1.7V to 1.9V              |                         | 2.45  | -   | 9.10  | kΩ    |
|                                 |                                                                                  | $V_{CCO} = 1.4V$ to 1.6V                     |                         | 3.25  | -   | 12.10 | kΩ    |
|                                 |                                                                                  | V <sub>CCO</sub> = 1.14                      | to 1.26V                | 5.15  | -   | 21.00 | kΩ    |
| I <sub>RPD</sub> <sup>(3)</sup> | Current through pull-down resistor at User I/O, Dual-Purpose, and Dedicated pins | $V_{IN} = V_0$                               | 000                     | 0.37  | -   | 1.67  | mA    |
| R <sub>PD</sub> <sup>(3)</sup>  | Equivalent resistance of pull-down resistor                                      | $V_{IN} = V_{CCO} = 3.0$                     | V to 3.465V             | 1.75  | -   | 9.35  | kΩ    |
|                                 | at User I/O, Dual-Purpose, and Dedicated pins, driven from I <sub>BPD</sub>      | $V_{IN} = V_{CCO} = 2$                       | .3V to 2.7V             | 1.35  | -   | 7.30  | kΩ    |
|                                 |                                                                                  | $V_{IN} = V_{CCO} = 1.7V$ to 1.9V            |                         | 1.00  | -   | 5.15  | kΩ    |
|                                 |                                                                                  | $V_{IN} = V_{CCO} = 1.4V$ to 1.6V            |                         | 0.85  | -   | 4.35  | kΩ    |
|                                 |                                                                                  | $V_{IN} = V_{CCO} = 1.$                      | 14 to 1.26V             | 0.68  | -   | 3.465 | kΩ    |
| R <sub>DCI</sub>                | Value of external reference resistor to supp                                     | ort DCI I/O standards                        |                         | 20    | -   | 100   | Ω     |
| I <sub>REF</sub>                | V <sub>REF</sub> current per pin                                                 | $V_{CCO} \ge 3.0V$                           |                         | —     | -   | ±25   | μA    |
|                                 |                                                                                  | V <sub>CCO</sub> < 3                         | 3.0V                    | —     | -   | ±10   | μA    |
| C <sub>IN</sub>                 | Input capacitance                                                                |                                              |                         | 3     | -   | 10    | pF    |

#### Table 33: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Notes:

1. The numbers in this table are based on the conditions set forth in Table 32.

2. The I<sub>L</sub> specification applies to every I/O pin throughout power-on as long as the voltage on that pin stays between the absolute V<sub>IN</sub> minimum and maximum values (Table 28). For hot-swap applications, at the time of card connection, be sure to keep all I/O voltages within this range before applying V<sub>CCO</sub> power. Consider applying V<sub>CCO</sub> power before connecting the signal lines, to avoid turning on the ESD protection diodes, shown in Module 2: Figure 7, page 11. When the FPGA is completely unpowered, the I/O pins are high impedance, but there is a path through the upper and lower ESD protection diodes.

3. This parameter is based on characterization. The pull-up resistance  $R_{PU} = V_{CCO} / I_{RPU}$ . The pull-down resistance  $R_{PD} = V_{IN} / I_{RPD}$ . Spartan-3 family values for both resistances are stronger than they have been for previous FPGA families.

 For single-ended signals that are placed on a differential-capable I/O, V<sub>IN</sub> of –0.2V to –0.3V is supported but can cause increased leakage between the two pins. See the *Parasitic Leakage* section in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.

#### Table 42: Setup and Hold Times for the IOB Input Path (Cont'd)

|                      | Description                                                                             | Conditions                | Device   | Speed |       |       |
|----------------------|-----------------------------------------------------------------------------------------|---------------------------|----------|-------|-------|-------|
| Symbol               |                                                                                         |                           |          | -5    | -4    | Unite |
|                      |                                                                                         |                           |          | Min   | Min   | -     |
| Hold Times           |                                                                                         |                           |          |       |       | 4     |
| T <sub>IOICKP</sub>  |                                                                                         | LVCMOS25 <sup>(3)</sup> , | XC3S50   | -0.55 | -0.55 | ns    |
|                      |                                                                                         | IOBDELAY = NONE           | XC3S200  | -0.29 | -0.29 | ns    |
|                      |                                                                                         |                           | XC3S400  | -0.29 | -0.29 | ns    |
|                      |                                                                                         |                           | XC3S1000 | -0.55 | -0.55 | ns    |
|                      |                                                                                         |                           | XC3S1500 | -0.55 | -0.55 | ns    |
|                      |                                                                                         |                           | XC3S2000 | -0.55 | -0.55 | ns    |
|                      |                                                                                         |                           | XC3S4000 | -0.61 | -0.61 | ns    |
|                      |                                                                                         |                           | XC3S5000 | -0.68 | -0.68 | ns    |
| T <sub>IOICKPD</sub> | Time from the active transition at the IFF's                                            | LVCMOS25 <sup>(3)</sup> , | XC3S50   | -2.74 | -2.74 | ns    |
|                      | ICLK input to the point where data must be<br>held at the Input pin. The Input Delay is | IOBDELAY = IFD            | XC3S200  | -3.00 | -3.00 | ns    |
|                      | programmed.                                                                             |                           | XC3S400  | -2.90 | -2.90 | ns    |
|                      |                                                                                         |                           | XC3S1000 | -3.24 | -3.24 | ns    |
|                      |                                                                                         |                           | XC3S1500 | -3.55 | -3.55 | ns    |
|                      |                                                                                         |                           | XC3S2000 | -4.57 | -4.57 | ns    |
|                      |                                                                                         |                           | XC3S4000 | -4.96 | -4.96 | ns    |
|                      |                                                                                         |                           | XC3S5000 | -5.09 | -5.09 | ns    |
| Set/Reset Puls       | e Width                                                                                 |                           |          |       |       |       |
| T <sub>RPW_IOB</sub> | Minimum pulse width to SR control input on IOB                                          |                           | All      | 0.66  | 0.76  | ns    |

Notes:

1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in Table 32 and Table 35.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 44.

3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 44. When the hold time is negative, it is possible to change the data before the clock's active edge.

### Table 44: Input Timing Adjustments for IOB (Cont'd)

|                                                                                   | Add the Adju | stment Below |       |  |
|-----------------------------------------------------------------------------------|--------------|--------------|-------|--|
| Convert Input Time from LVCMOS25 to the<br>Following Signal Standard (IOSTANDARD) | Speed        | I Grade      | Units |  |
|                                                                                   | -5           | -4           |       |  |
| LVCMOS15                                                                          | 0.42         | 0.49         | ns    |  |
| LVDCI_15                                                                          | 0.38         | 0.43         | ns    |  |
| LVDCI_DV2_15                                                                      | 0.38         | 0.44         | ns    |  |
| LVCMOS18                                                                          | 0.24         | 0.28         | ns    |  |
| LVDCI_18                                                                          | 0.29         | 0.33         | ns    |  |
| LVDCI_DV2_18                                                                      | 0.28         | 0.33         | ns    |  |
| LVCMOS25                                                                          | 0            | 0            | ns    |  |
| LVDCI_25                                                                          | 0.05         | 0.05         | ns    |  |
| LVDCI_DV2_25                                                                      | 0.04         | 0.04         | ns    |  |
| LVCMOS33, LVDCI_33, LVDCI_DV2_33                                                  | -0.05        | -0.02        | ns    |  |
| LVTTL                                                                             | 0.18         | 0.21         | ns    |  |
| PCI33_3                                                                           | 0.20         | 0.22         | ns    |  |
| SSTL18_I, SSTL18_I_DCI                                                            | 0.39         | 0.45         | ns    |  |
| SSTL18_II                                                                         | 0.39         | 0.45         | ns    |  |
| SSTL2_I, SSTL2_I_DCI                                                              | 0.40         | 0.46         | ns    |  |
| SSTL2_II, SSTL2_II_DCI                                                            | 0.36         | 0.41         | ns    |  |
| Differential Standards                                                            |              | 1            |       |  |
| LDT_25 (ULVDS_25)                                                                 | 0.76         | 0.88         | ns    |  |
| LVDS_25, LVDS_25_DCI                                                              | 0.65         | 0.75         | ns    |  |
| BLVDS_25                                                                          | 0.34         | 0.39         | ns    |  |
| LVDSEXT_25, LVDSEXT_25_DCI                                                        | 0.80         | 0.92         | ns    |  |
| LVPECL_25                                                                         | 0.18         | 0.21         | ns    |  |
| RSDS_25                                                                           | 0.43         | 0.50         | ns    |  |
| DIFF_HSTL_II_18, DIFF_HSTL_II_18_DCI                                              | 0.34         | 0.39         | ns    |  |
| DIFF_SSTL2_II, DIFF_SSTL2_II_DCI                                                  | 0.65         | 0.75         | ns    |  |

#### Notes:

1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in Table 32, Table 35, and Table 37.

2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

### Table 59: Switching Characteristics for the DLL

|                                      |                                                                              | England and Marcha (             |          |       | Speed | Grade | )    |       |
|--------------------------------------|------------------------------------------------------------------------------|----------------------------------|----------|-------|-------|-------|------|-------|
| Symbol                               | Description                                                                  | Frequency Mode /<br>FCLKIN Range | Device   | -     | 5     | -     | 4    | Units |
|                                      |                                                                              |                                  |          | Min   | Max   | Min   | Max  |       |
| Output Frequency Ranges              |                                                                              |                                  |          |       |       |       |      |       |
| CLKOUT_FREQ_1X_LF                    | Frequency for the CLK0,<br>CLK90, CLK180, and CLK270<br>outputs              | Low                              | All      | 18    | 167   | 18    | 167  | MHz   |
| CLKOUT_FREQ_1X_HF                    | Frequency for the CLK0 and CLK180 outputs                                    | High                             |          | 48    | 280   | 48    | 280  | MHz   |
| CLKOUT_FREQ_2X_LF <sup>(3)</sup>     | Frequency for the CLK2X and CLK2X180 outputs                                 | Low                              |          | 36    | 334   | 36    | 334  | MHz   |
| CLKOUT_FREQ_DV_LF                    | Frequency for the CLKDV                                                      | Low                              |          | 1.125 | 110   | 1.125 | 110  | MHz   |
| CLKOUT_FREQ_DV_HF                    | output                                                                       | High                             |          | 3     | 185   | 3     | 185  | MHz   |
| Output Clock Jitter <sup>(4)</sup>   |                                                                              |                                  |          |       |       |       |      |       |
| CLKOUT_PER_JITT_0                    | Period jitter at the CLK0 output                                             | All                              | All      | -     | ±100  | _     | ±100 | ps    |
| CLKOUT_PER_JITT_90                   | Period jitter at the CLK90 output                                            |                                  |          | -     | ±150  | -     | ±150 | ps    |
| CLKOUT_PER_JITT_180                  | Period jitter at the CLK180 output                                           |                                  |          | -     | ±150  | -     | ±150 | ps    |
| CLKOUT_PER_JITT_270                  | Period jitter at the CLK270 output                                           |                                  |          | -     | ±150  | -     | ±150 | ps    |
| CLKOUT_PER_JITT_2X                   | Period jitter at the CLK2X and CLK2X180 outputs                              |                                  |          | -     | ±200  | -     | ±200 | ps    |
| CLKOUT_PER_JITT_DV1                  | Period jitter at the CLKDV<br>output when performing<br>integer division     |                                  |          | -     | ±150  | -     | ±150 | ps    |
| CLKOUT_PER_JITT_DV2                  | Period jitter at the CLKDV<br>output when performing<br>non-integer division |                                  |          | -     | ±300  | -     | ±300 | ps    |
| Duty Cycle                           |                                                                              |                                  |          |       |       |       |      |       |
| CLKOUT_DUTY_CYCLE_DLL <sup>(5)</sup> | Duty cycle variation for the                                                 | All                              | XC3S50   | -     | ±150  | _     | ±150 | ps    |
|                                      | CLK0, CLK90, CLK180,<br>CLK270, CLK2X, CLK2X180,                             |                                  | XC3S200  | -     | ±150  | -     | ±150 | ps    |
|                                      | and CLKDV outputs                                                            |                                  | XC3S400  | -     | ±250  | -     | ±250 | ps    |
|                                      |                                                                              |                                  | XC3S1000 | -     | ±400  | -     | ±400 | ps    |
|                                      |                                                                              |                                  | XC3S1500 | _     | ±400  | _     | ±400 | ps    |
|                                      |                                                                              |                                  | XC3S2000 | _     | ±400  | _     | ±400 | ps    |
|                                      |                                                                              |                                  | XC3S4000 | -     | ±400  | _     | ±400 | ps    |
|                                      |                                                                              |                                  | XC3S5000 | _     | ±400  | _     | ±400 | ps    |
| Phase Alignment                      | 1                                                                            |                                  |          |       |       |       |      |       |
| CLKIN_CLKFB_PHASE                    | Phase offset between the<br>CLKIN and CLKFB inputs                           | All                              | All      | -     | ±150  | _     | ±150 | ps    |
| CLKOUT_PHASE                         | Phase offset between any two<br>DLL outputs (except CLK2X<br>and CLK0)       |                                  |          | -     | ±140  | -     | ±140 | ps    |
|                                      | Phase offset between the CLK2X and CLK0 outputs                              |                                  |          | -     | ±250  | -     | ±250 | ps    |

### Table 70: Spartan-3 FPGA Pin Definitions

| Pin Name                                                                                                                                | Direction                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I/O: General-purpose I                                                                                                                  | /O pins                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I/O                                                                                                                                     | User-defined as input, output,<br>bidirectional, three-state output,<br>open-drain output, open-source<br>output                                                 | <b>User I/O:</b><br>Unrestricted single-ended user-I/O pin. Supports all I/O standards except the differential standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I/O_Lxxy_#                                                                                                                              | User-defined as input, output,<br>bidirectional, three-state output,<br>open-drain output, open-source<br>output                                                 | <b>User I/O, Half of Differential Pair:</b><br>Unrestricted single-ended user-I/O pin or half of a differential pair.<br>Supports all I/O standards including the differential standards.                                                                                                                                                                                                                                                                                                                                                                                                         |
| DUAL: Dual-purpose of                                                                                                                   | configuration pins                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IO_Lxxy_#/DIN/D0,<br>IO_Lxxy_#/D1,<br>IO_Lxxy_#/D2,<br>IO_Lxxy_#/D3,<br>IO_Lxxy_#/D4,<br>IO_Lxxy_#/D5,<br>IO_Lxxy_#/D6,<br>IO_Lxxy_#/D7 | Input during configuration<br>Possible bidirectional I/O after<br>configuration if SelectMap port is<br>retained<br>Otherwise, user I/O after<br>configuration   | <b>Configuration Data Port:</b><br>In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration data<br>pins. These pins become user I/Os after configuration unless the<br>SelectMAP port is retained via the Persist bitstream option.<br>In Serial modes, DIN (D0) serves as the single configuration data input.<br>This pin becomes a user I/O after configuration unless retained by the<br>Persist bitstream option.                                                                                                                                                                   |
| IO_Lxxy_#/CS_B                                                                                                                          | Input during Parallel mode<br>configuration<br>Possible input after configuration<br>if SelectMap port is retained<br>Otherwise, user I/O after<br>configuration | Chip Select for Parallel Mode Configuration:<br>In Parallel (SelectMAP) modes, this is the active-Low Chip Select signal.<br>This pin becomes a user I/O after configuration unless the SelectMAP port<br>is retained via the Persist bitstream option.                                                                                                                                                                                                                                                                                                                                           |
| IO_Lxxy_#/RDWR_B                                                                                                                        | Input during Parallel mode<br>configuration<br>Possible input after configuration<br>if SelectMap port is retained<br>Otherwise, user I/O after<br>configuration | <b>Read/Write Control for Parallel Mode Configuration:</b><br>In Parallel (SelectMAP) modes, this is the active-Low Write Enable, active-High Read Enable signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.                                                                                                                                                                                                                                                                                                         |
| IO_Lxxy_#/<br>BUSY/DOUT                                                                                                                 | Output during configuration<br>Possible output after<br>configuration if SelectMap port is<br>retained<br>Otherwise, user I/O after<br>configuration             | Configuration Data Rate Control for Parallel Mode, Serial Data<br>Output for Serial Mode:<br>In Parallel (SelectMAP) modes, BUSY throttles the rate at which<br>configuration data is loaded. This pin becomes a user I/O after<br>configuration unless the SelectMAP port is retained via the Persist<br>bitstream option.<br>In Serial modes, DOUT provides preamble and configuration data to<br>downstream devices in a multi-FPGA daisy-chain. This pin becomes a<br>user I/O after configuration.                                                                                           |
| IO_Lxxy_#/INIT_B                                                                                                                        | Bidirectional (open-drain) during<br>configuration<br>User I/O after configuration                                                                               | <b>Initializing Configuration Memory/Detected Configuration Error:</b><br>When Low, this pin indicates that configuration memory is being cleared.<br>When held Low, this pin delays the start of configuration. After this pin is<br>released or configuration memory is cleared, the pin goes High. During<br>configuration, a Low on this output indicates that a configuration data error<br>occurred. This pin always has an internal pull-up resistor to VCCO_4 or<br>VCCO_BOTTOM during configuration, regardless of the HSWAP_EN pin.<br>This pin becomes a user I/O after configuration. |
| DCI: Digitally Controlle                                                                                                                | ed Impedance reference resistor                                                                                                                                  | input pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IO_Lxxy_#/VRN_# or<br>IO/VRN_#                                                                                                          | Input when using DCI<br>Otherwise, same as I/O                                                                                                                   | <b>DCI Reference Resistor for NMOS I/O Transistor (per bank):</b><br>If using DCI, a 1% precision impedance-matching resistor is connected<br>between this pin and the VCCO supply for this bank. Otherwise, this pin is<br>a user I/O.                                                                                                                                                                                                                                                                                                                                                           |
| IO_Lxxy_#/VRP_# or<br>IO/VRP_#                                                                                                          | Input when using DCI<br>Otherwise, same as I/O                                                                                                                   | <b>DCI Reference Resistor for PMOS I/O Transistor (per bank):</b><br>If using DCI, a 1% precision impedance-matching resistor is connected<br>between this pin and the ground supply. Otherwise, this pin is a user I/O.                                                                                                                                                                                                                                                                                                                                                                          |

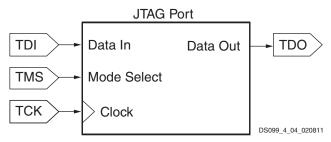



Figure 43: JTAG Port

#### **IDCODE Register**

Spartan-3 FPGAs contain a 32-bit identification register called the IDCODE register, as defined in the IEEE 1149.1 JTAG standard. The fixed value electrically identifies the manufacture (Xilinx) and the type of device being addressed over a JTAG chain. This register allows the JTAG host to identify the device being tested or programmed via JTAG. See Table 78.

### **Using JTAG Port After Configuration**

The JTAG port is always active and available before, during, and after FPGA configuration. Add the BSCAN\_SPARTAN3 primitive to the design to create user-defined JTAG instructions and JTAG chains to communicate with internal logic.

Furthermore, the contents of the User ID register within the JTAG port can be specified as a Bitstream Generation option. By default, the 32-bit User ID register contains 0xFFFFFFF.

| Part Number | IDCODE Register |
|-------------|-----------------|
| XC3S50      | 0x0140C093      |
| XC3S200     | 0x01414093      |
| XC3S400     | 0x0141C093      |
| XC3S1000    | 0x01428093      |
| XC3S1500    | 0x01434093      |
| XC3S2000    | 0x01440093      |
| XC3S4000    | 0x01448093      |
| XC3S5000    | 0x01450093      |

Table 78: Spartan-3 JTAG IDCODE Register Values (hexadecimal)

### Precautions When Using the JTAG Port in 3.3V Environments

The JTAG port is powered by the +2.5V VCCAUX power supply. When connecting to a 3.3V interface, the JTAG input pins must be current-limited using a series resistor. Similarly, the TDO pin is a CMOS output powered from +2.5V. The TDO output can directly drive a 3.3V input but with reduced noise immunity. See 3.3V-Tolerant Configuration Interface, page 47. See also XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional details.

The following interface precautions are recommended when connecting the JTAG port to a 3.3V interface.

- Avoid actively driving the JTAG input signals High with 3.3V signal levels. If required in the application, use series current-limiting resistors to keep the current below 10 mA per pin.
- If possible, drive the FPGA JTAG inputs with drivers that can be placed in high-impedance (Hi-Z) after using the JTAG port. Alternatively, drive the FPGA JTAG inputs with open-drain outputs, which only drive Low. In both cases, pull-up resistors are required. The FPGA JTAG pins have pull-up resistors to VCCAUX before configuration and optional pull-up resistors after configuration, controlled by Bitstream Options, page 125.

### CP132: 132-Ball Chip-Scale Package

**Note:** The CP132 and CPG132 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.

The pinout and footprint for the XC3S50 in the 132-ball chip-scale package, CP132, appear in Table 89 and Figure 45.

All the package pins appear in Table 89 and are sorted by bank number, then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The CP132 footprint has eight I/O banks. However, the voltage supplies for the two I/O banks along an edge are connected together internally. Consequently, there are four output voltage supplies, labeled VCCO\_TOP, VCCO\_RIGHT, VCCO\_BOTTOM, and VCCO\_LEFT.

### **Pinout Table**

Table 89: CP132 Package Pinout

| Bank | XC3S50 Pin Name  | CP132<br>Ball | Туре |
|------|------------------|---------------|------|
| 0    | IO_L01N_0/VRP_0  | A3            | DCI  |
| 0    | IO_L01P_0/VRN_0  | C4            | DCI  |
| 0    | IO_L27N_0        | C5            | I/O  |
| 0    | IO_L27P_0        | B5            | I/O  |
| 0    | IO_L30N_0        | B6            | I/O  |
| 0    | IO_L30P_0        | A6            | I/O  |
| 0    | IO_L31N_0        | C7            | I/O  |
| 0    | IO_L31P_0/VREF_0 | B7            | VREF |
| 0    | IO_L32N_0/GCLK7  | A7            | GCLK |
| 0    | IO_L32P_0/GCLK6  | C8            | GCLK |
| 1    | IO_L01N_1/VRP_1  | A13           | DCI  |
| 1    | IO_L01P_1/VRN_1  | B13           | DCI  |
| 1    | IO_L27N_1        | C11           | I/O  |
| 1    | IO_L27P_1        | A12           | I/O  |
| 1    | IO_L28N_1        | A11           | I/O  |
| 1    | IO_L28P_1        | B11           | I/O  |
| 1    | IO_L31N_1/VREF_1 | C9            | VREF |
| 1    | IO_L31P_1        | A10           | I/O  |
| 1    | IO_L32N_1/GCLK5  | A8            | GCLK |
| 1    | IO_L32P_1/GCLK4  | A9            | GCLK |
| 2    | IO_L01N_2/VRP_2  | D12           | DCI  |
| 2    | IO_L01P_2/VRN_2  | C14           | DCI  |
| 2    | IO_L20N_2        | E12           | I/O  |
| 2    | IO_L20P_2        | E13           | I/O  |
| 2    | IO_L21N_2        | E14           | I/O  |
| 2    | IO_L21P_2        | F12           | I/O  |
| 2    | IO_L23N_2/VREF_2 | F13           | VREF |
| 2    | IO_L23P_2        | F14           | I/O  |
| 2    | IO_L24N_2        | G12           | I/O  |

www.xilinx.com

### Table 91: TQ144 Package Pinout (Cont'd)

| Bank | XC3S50, XC3S200,<br>XC3S400 Pin Name | TQ144 Pin<br>Number | Туре |
|------|--------------------------------------|---------------------|------|
| 2    | IO_L23N_2/VREF_2                     | P98                 | VREF |
| 2    | IO_L23P_2                            | P97                 | I/O  |
| 2    | IO_L24N_2                            | P96                 | I/O  |
| 2    | IO_L24P_2                            | P95                 | I/O  |
| 2    | IO_L40N_2                            | P93                 | I/O  |
| 2    | IO_L40P_2/VREF_2                     | P92                 | VREF |
| 3    | IO                                   | P76                 | I/O  |
| 3    | IO_L01N_3/VRP_3                      | P74                 | DCI  |
| 3    | IO_L01P_3/VRN_3                      | P73                 | DCI  |
| 3    | IO_L20N_3                            | P78                 | I/O  |
| 3    | IO_L20P_3                            | P77                 | I/O  |
| 3    | IO_L21N_3                            | P80                 | I/O  |
| 3    | IO_L21P_3                            | P79                 | I/O  |
| 3    | IO_L22N_3                            | P83                 | I/O  |
| 3    | IO_L22P_3                            | P82                 | I/O  |
| 3    | IO_L23N_3                            | P85                 | I/O  |
| 3    | IO_L23P_3/VREF_3                     | P84                 | VREF |
| 3    | IO_L24N_3                            | P87                 | I/O  |
| 3    | IO_L24P_3                            | P86                 | I/O  |
| 3    | IO_L40N_3/VREF_3                     | P90                 | VREF |
| 3    | IO_L40P_3                            | P89                 | I/O  |
| 4    | IO/VREF_4                            | P70                 | VREF |
| 4    | IO_L01N_4/VRP_4                      | P69                 | DCI  |
| 4    | IO_L01P_4/VRN_4                      | P68                 | DCI  |
| 4    | IO_L27N_4/DIN/D0                     | P65                 | DUAL |
| 4    | IO_L27P_4/D1                         | P63                 | DUAL |
| 4    | IO_L30N_4/D2                         | P60                 | DUAL |
| 4    | IO_L30P_4/D3                         | P59                 | DUAL |
| 4    | IO_L31N_4/INIT_B                     | P58                 | DUAL |
| 4    | IO_L31P_4/DOUT/BUSY                  | P57                 | DUAL |
| 4    | IO_L32N_4/GCLK1                      | P56                 | GCLK |
| 4    | IO_L32P_4/GCLK0                      | P55                 | GCLK |
| 5    | IO/VREF_5                            | P44                 | VREF |
| 5    | IO_L01N_5/RDWR_B                     | P41                 | DUAL |
| 5    | IO_L01P_5/CS_B                       | P40                 | DUAL |
| 5    | IO_L28N_5/D6                         | P47                 | DUAL |
| 5    | IO_L28P_5/D7                         | P46                 | DUAL |
| 5    | IO_L31N_5/D4                         | P51                 | DUAL |
| 5    | IO_L31P_5/D5                         | P50                 | DUAL |
| 5    | IO_L32N_5/GCLK3                      | P53                 | GCLK |

www.xilinx.com

### PQ208: 208-lead Plastic Quad Flat Pack

The 208-lead plastic quad flat package, PQ208, supports three different Spartan-3 devices, including the XC3S50, the XC3S200, and the XC3S400. The footprints for the XC3S200 and XC3S400 are identical, as shown in Table 93 and Figure 47. The XC3S50, however, has fewer I/O pins resulting in 17 unconnected pins on the PQ208 package, labeled as "N.C." In Table 93 and Figure 47, these unconnected pins are indicated with a black diamond symbol ( $\blacklozenge$ ).

All the package pins appear in Table 93 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S50 pinout and the pinout for the XC3S200 and XC3S400, then that difference is highlighted in Table 93. If the table entry is shaded grey, then there is an unconnected pin on the XC3S50 that maps to a user-I/O pin on the XC3S200 and XC3S400. If the table entry is shaded tan, then the unconnected pin on the XC3S50 maps to a VREF-type pin on the XC3S200 and XC3S400. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S50 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S50 device to an XC3S200 or XC3S400 FPGA without changing the printed circuit board.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at <a href="http://www.xilinx.com/support/documentation/data\_sheets/s3\_pin.zip">http://www.xilinx.com/support/documentation/data\_sheets/s3\_pin.zip</a>

### Pinout Table

| Bank | XC3S50<br>Pin Name | XC3S200, XC3S400<br>Pin Names | PQ208 Pin<br>Number | Туре |
|------|--------------------|-------------------------------|---------------------|------|
| 0    | IO                 | IO                            | P189                | I/O  |
| 0    | IO                 | IO                            | P197                | I/O  |
| 0    | N.C. (�)           | IO/VREF_0                     | P200                | VREF |
| 0    | IO/VREF_0          | IO/VREF_0                     | P205                | VREF |
| 0    | IO_L01N_0/VRP_0    | IO_L01N_0/VRP_0               | P204                | DCI  |
| 0    | IO_L01P_0/VRN_0    | IO_L01P_0/VRN_0               | P203                | DCI  |
| 0    | IO_L25N_0          | IO_L25N_0                     | P199                | I/O  |
| 0    | IO_L25P_0          | IO_L25P_0                     | P198                | I/O  |
| 0    | IO_L27N_0          | IO_L27N_0                     | P196                | I/O  |
| 0    | IO_L27P_0          | IO_L27P_0                     | P194                | I/O  |
| 0    | IO_L30N_0          | IO_L30N_0                     | P191                | I/O  |
| 0    | IO_L30P_0          | IO_L30P_0                     | P190                | I/O  |
| 0    | IO_L31N_0          | IO_L31N_0                     | P187                | I/O  |
| 0    | IO_L31P_0/VREF_0   | IO_L31P_0/VREF_0              | P185                | VREF |
| 0    | IO_L32N_0/GCLK7    | IO_L32N_0/GCLK7               | P184                | GCLK |
| 0    | IO_L32P_0/GCLK6    | IO_L32P_0/GCLK6               | P183                | GCLK |
| 0    | VCCO_0             | VCCO_0                        | P188                | VCCO |
| 0    | VCCO_0             | VCCO_0                        | P201                | VCCO |
| 1    | IO                 | IO                            | P167                | I/O  |
| 1    | IO                 | IO                            | P175                | I/O  |
| 1    | IO                 | IO                            | P182                | I/O  |
| 1    | IO_L01N_1/VRP_1    | IO_L01N_1/VRP_1               | P162                | DCI  |
| 1    | IO_L01P_1/VRN_1    | P161                          | DCI                 |      |

#### Table 93: PQ208 Package Pinout

### Table 100: FG456 Package Pinout (Cont'd)

| Bank | 3S400<br>Pin Name   | 3S1000, 3S1500, 3S2000<br>Pin Name | FG456<br>Pin Number | Туре |
|------|---------------------|------------------------------------|---------------------|------|
| 4    | IO_L30N_4/D2        | IO_L30N_4/D2                       | U12                 | DUAL |
| 4    | IO_L30P_4/D3        | IO_L30P_4/D3                       | V12                 | DUAL |
| 4    | IO_L31N_4/INIT_B    | IO_L31N_4/INIT_B                   | W12                 | DUAL |
| 4    | IO_L31P_4/DOUT/BUSY | IO_L31P_4/DOUT/BUSY                | Y12                 | DUAL |
| 4    | IO_L32N_4/GCLK1     | IO_L32N_4/GCLK1                    | AA12                | GCLK |
| 4    | IO_L32P_4/GCLK0     | IO_L32P_4/GCLK0                    | AB12                | GCLK |
| 4    | VCCO_4              | VCCO_4                             | T12                 | VCCO |
| 4    | VCCO_4              | VCCO_4                             | T13                 | VCCO |
| 4    | VCCO_4              | VCCO_4                             | T14                 | VCCO |
| 4    | VCCO_4              | VCCO_4                             | U15                 | VCCO |
| 4    | VCCO_4              | VCCO_4                             | Y15                 | VCCO |
| 5    | IO                  | IO                                 | U7                  | I/O  |
| 5    | N.C. (♦)            | IO                                 | U9                  | I/O  |
| 5    | 10                  | IO                                 | U10                 | I/O  |
| 5    | 10                  | 10                                 | U11                 | I/O  |
| 5    | 10                  | IO                                 | V7                  | I/O  |
| 5    | IO                  | IO                                 | V10                 | I/O  |
| 5    | IO/VREF_5           | IO/VREF_5                          | AB11                | VREF |
| 5    | IO/VREF_5           | IO/VREF_5                          | U6                  | VREF |
| 5    | IO_L01N_5/RDWR_B    | IO_L01N_5/RDWR_B                   | Y4                  | DUAL |
| 5    | IO_L01P_5/CS_B      | IO_L01P_5/CS_B                     | AA3                 | DUAL |
| 5    | IO_L06N_5           | IO_L06N_5                          | AB4                 | I/O  |
| 5    | IO_L06P_5           | IO_L06P_5                          | AA4                 | I/O  |
| 5    | IO_L09N_5           | IO_L09N_5                          | Y5                  | I/O  |
| 5    | IO_L09P_5           | IO_L09P_5                          | W5                  | I/O  |
| 5    | IO_L10N_5/VRP_5     | IO_L10N_5/VRP_5                    | AB5                 | DCI  |
| 5    | IO_L10P_5/VRN_5     | IO_L10P_5/VRN_5                    | AA5                 | DCI  |
| 5    | IO_L15N_5           | IO_L15N_5                          | W6                  | I/O  |
| 5    | IO_L15P_5           | IO_L15P_5                          | V6                  | I/O  |
| 5    | IO_L16N_5           | IO_L16N_5                          | AA6                 | I/O  |
| 5    | IO_L16P_5           | IO_L16P_5                          | Y6                  | I/O  |
| 5    | N.C. (�)            | IO_L19N_5                          | Y7                  | I/O  |
| 5    | N.C. (♦)            | IO_L19P_5/<br>VREF_5               | W7                  | VREF |
| 5    | N.C. (�)            | IO_L22N_5                          | AB7                 | I/O  |
| 5    | N.C. (�)            | IO_L22P_5                          | AA7                 | I/O  |
| 5    | IO_L24N_5           | IO_L24N_5                          | W8                  | I/O  |
| 5    | IO_L24P_5           | IO_L24P_5                          | V8                  | I/O  |
| 5    | IO_L25N_5           | IO_L25N_5                          | AB8                 | I/O  |
| 5    | IO_L25P_5           | IO_L25P_5                          | AA8                 | I/O  |

| Bank | XC3S2000<br>Pin Name | XC3S4000, XC3S5000<br>Pin Name | FG900 Pin<br>Number | Туре |
|------|----------------------|--------------------------------|---------------------|------|
| 0    | IO_L30N_0            | IO_L30N_0                      | G15                 | I/O  |
| 0    | IO_L30P_0            | IO_L30P_0                      | F15                 | I/O  |
| 0    | IO_L31N_0            | IO_L31N_0                      | D15                 | I/O  |
| 0    | IO_L31P_0/VREF_0     | IO_L31P_0/VREF_0               | C15                 | VREF |
| 0    | IO_L32N_0/GCLK7      | IO_L32N_0/GCLK7                | B15                 | GCLK |
| 0    | IO_L32P_0/GCLK6      | IO_L32P_0/GCLK6                | A15                 | GCLK |
| 0    | N.C. (�)             | IO_L35N_0                      | B7                  | I/O  |
| 0    | N.C. (�)             | IO_L35P_0                      | A7                  | I/O  |
| 0    | N.C. (�)             | IO_L36N_0                      | G7                  | I/O  |
| 0    | N.C. (�)             | IO_L36P_0                      | H8                  | I/O  |
| 0    | N.C. (�)             | IO_L37N_0                      | E9                  | I/O  |
| 0    | N.C. (�)             | IO_L37P_0                      | D9                  | I/O  |
| 0    | N.C. (�)             | IO_L38N_0                      | B9                  | I/O  |
| 0    | N.C. (�)             | IO_L38P_0                      | A9                  | I/O  |
| 0    | VCCO_0               | VCCO_0                         | C5                  | VCCO |
| 0    | VCCO_0               | VCCO_0                         | E7                  | VCCO |
| 0    | VCCO_0               | VCCO_0                         | C9                  | VCCO |
| 0    | VCCO_0               | VCCO_0                         | G9                  | VCCO |
| 0    | VCCO_0               | VCCO_0                         | J11                 | VCCO |
| 0    | VCCO_0               | VCCO_0                         | L12                 | VCCO |
| 0    | VCCO_0               | VCCO_0                         | C13                 | VCCO |
| 0    | VCCO_0               | VCCO_0                         | G13                 | VCCO |
| 0    | VCCO_0               | VCCO_0                         | L13                 | VCCO |
| 0    | VCCO_0               | VCCO_0                         | L14                 | VCCO |
| 1    | IO                   | IO                             | E25                 | I/O  |
| 1    | IO                   | IO                             | J21                 | I/O  |
| 1    | IO                   | IO                             | K20                 | I/O  |
| 1    | IO                   | IO                             | F18                 | I/O  |
| 1    | IO                   | IO                             | F16                 | I/O  |
| 1    | IO                   | IO                             | A16                 | I/O  |
| 1    | IO/VREF_1            | IO/VREF_1                      | J17                 | VREF |
| 1    | IO_L01N_1/VRP_1      | IO_L01N_1/VRP_1                | A27                 | DCI  |
| 1    | IO_L01P_1/VRN_1      | IO_L01P_1/VRN_1                | B27                 | DCI  |
| 1    | IO_L02N_1            | IO_L02N_1                      | D26                 | I/O  |
| 1    | IO_L02P_1            | IO_L02P_1                      | C27                 | I/O  |
| 1    | IO_L03N_1            | IO_L03N_1                      | A26                 | I/O  |
| 1    | IO_L03P_1            | IO_L03P_1                      | B26                 | I/O  |
| 1    | IO_L04N_1            | IO_L04N_1                      | B25                 | I/O  |
| 1    | IO_L04P_1            | IO_L04P_1                      | C25                 | I/O  |
| 1    | IO_L05N_1            | IO_L05N_1                      | F24                 | I/O  |

| Bank | XC3S2000<br>Pin Name | XC3S4000, XC3S5000<br>Pin Name | FG900 Pin<br>Number | Туре |
|------|----------------------|--------------------------------|---------------------|------|
| 2    | VCCO_2               | VCCO_2                         | J28                 | VCCO |
| 2    | VCCO_2               | VCCO_2                         | N28                 | VCCO |
| 3    | IO                   | Ю                              | AB25                | I/O  |
| 3    | IO_L01N_3/VRP_3      | AH30                           | DCI                 |      |
| 3    | IO_L01P_3/VRN_3      | IO_L01P_3/VRN_3                | AH29                | DCI  |
| 3    | IO_L02N_3/VREF_3     | IO_L02N_3/VREF_3               | AG28                | VREF |
| 3    | IO_L02P_3            | IO_L02P_3                      | AG27                | I/O  |
| 3    | IO_L03N_3            | IO_L03N_3                      | AG30                | I/O  |
| 3    | IO_L03P_3            | IO_L03P_3                      | AG29                | I/O  |
| 3    | IO_L04N_3            | IO_L04N_3                      | AF30                | I/O  |
| 3    | IO_L04P_3            | IO_L04P_3                      | AF29                | I/O  |
| 3    | IO_L05N_3            | IO_L05N_3                      | AE26                | I/O  |
| 3    | IO_L05P_3            | IO_L05P_3                      | AF27                | I/O  |
| 3    | IO_L06N_3            | IO_L06N_3                      | AE29                | I/O  |
| 3    | IO_L06P_3            | IO_L06P_3                      | AE28                | I/O  |
| 3    | IO_L07N_3            | IO_L07N_3                      | AD28                | I/O  |
| 3    | IO_L07P_3            | IO_L07P_3                      | AD27                | I/O  |
| 3    | IO_L08N_3            | IO_L08N_3                      | AD30                | I/O  |
| 3    | IO_L08P_3            | IO_L08P_3                      | AD29                | I/O  |
| 3    | IO_L09N_3            | IO_L09N_3                      | AC24                | I/O  |
| 3    | IO_L09P_3/VREF_3     | IO_L09P_3/VREF_3               | AD25                | VREF |
| 3    | IO_L10N_3            | IO_L10N_3                      | AC26                | I/O  |
| 3    | IO_L10P_3            | IO_L10P_3                      | AC25                | I/O  |
| 3    | IO_L11N_3            | IO_L11N_3                      | AC28                | I/O  |
| 3    | IO_L11P_3            | IO_L11P_3                      | AC27                | I/O  |
| 3    | IO_L13N_3/VREF_3     | IO_L13N_3/VREF_3               | AC30                | VREF |
| 3    | IO_L13P_3            | _3 IO_L13P_3                   |                     | I/O  |
| 3    | IO_L14N_3            | 4N_3 IO_L14N_3                 |                     | I/O  |
| 3    | IO_L14P_3            | IO_L14P_3                      | AB26                | I/O  |
| 3    | IO_L15N_3            | IO_L15N_3                      | AB30                | I/O  |
| 3    | IO_L15P_3            | IO_L15P_3                      | AB29                | I/O  |
| 3    | IO_L16N_3            | IO_L16N_3                      | AA22                | I/O  |
| 3    | IO_L16P_3            | IO_L16P_3                      | AB23                | I/O  |
| 3    | IO_L17N_3            | IO_L17N_3                      | AA25                | I/O  |
| 3    | IO_L17P_3/VREF_3     | IO_L17P_3/VREF_3               | AA24                | VREF |
| 3    | IO_L19N_3            | IO_L19N_3                      | AA29                | I/O  |
| 3    | IO_L19P_3            |                                |                     | I/O  |
| 3    | IO_L20N_3            | IO_L20N_3                      | Y21                 | I/O  |
| 3    | IO_L20P_3            | IO_L20P_3                      | AA21                | I/O  |
| 3    | IO_L21N_3            | IO_L21N_3                      | Y24                 | I/O  |

| Bank | XC3S2000<br>Pin Name | XC3S4000, XC3S5000<br>Pin Name | FG900 Pin<br>Number | Туре |  |
|------|----------------------|--------------------------------|---------------------|------|--|
| N/A  | GND                  | GND                            | R17                 | GND  |  |
| N/A  | GND                  | GND                            | T17                 | GND  |  |
| N/A  | GND                  | GND                            | U17                 | GND  |  |
| N/A  | GND                  | GND                            | V17                 | GND  |  |
| N/A  | GND                  | GND                            | AC17                | GND  |  |
| N/A  | GND                  | GND                            | AF17                | GND  |  |
| N/A  | GND                  | GND                            | AK17                | GND  |  |
| N/A  | GND                  | GND                            | N18                 | GND  |  |
| N/A  | GND                  | GND                            | P18                 | GND  |  |
| N/A  | GND                  | GND                            | R18                 | GND  |  |
| N/A  | GND                  | GND                            | T18                 | GND  |  |
| N/A  | GND                  | GND                            | U18                 | GND  |  |
| N/A  | GND                  | GND                            | V18                 | GND  |  |
| N/A  | GND                  | GND                            | R19                 | GND  |  |
| N/A  | GND                  | GND                            | T19                 | GND  |  |
| N/A  | GND                  | GND                            | A21                 | GND  |  |
| N/A  | GND                  | GND                            | E21                 | GND  |  |
| N/A  | GND                  | GND                            | H21                 | GND  |  |
| N/A  | GND                  | GND                            | AC21                | GND  |  |
| N/A  | GND                  | GND                            | AF21                | GND  |  |
| N/A  | GND                  | GND                            | AK21                | GND  |  |
| N/A  | GND                  | GND                            | K23                 | GND  |  |
| N/A  | GND                  | GND                            | P23                 | GND  |  |
| N/A  | GND                  | GND                            | U23                 | GND  |  |
| N/A  | GND                  | GND                            | AA23                | GND  |  |
| N/A  | GND                  | GND                            | A25                 | GND  |  |
| N/A  | GND                  | GND                            | AK25                | GND  |  |
| N/A  | GND                  | GND                            | E26                 | GND  |  |
| N/A  | GND                  | GND                            | K26                 | GND  |  |
| N/A  | GND                  | GND                            | P26                 | GND  |  |
| N/A  | GND                  | GND                            | U26                 | GND  |  |
| N/A  | GND                  | GND                            | AA26                | GND  |  |
| N/A  | GND                  | GND                            | AF26                | GND  |  |
| N/A  | GND                  | GND                            | A29                 | GND  |  |
| N/A  | GND                  | GND                            | B29                 | GND  |  |
| N/A  | GND                  | GND                            | AJ29                | GND  |  |
| N/A  | GND                  | GND                            | AK29                | GND  |  |
| N/A  | GND                  | GND                            | A30                 | GND  |  |
| N/A  | GND                  | GND                            | B30                 | GND  |  |
| N/A  | GND                  | GND                            | F30                 | GND  |  |

| Bank | XC3S2000<br>Pin Name | XC3S4000, XC3S5000<br>Pin Name | FG900 Pin<br>Number | Туре  |  |
|------|----------------------|--------------------------------|---------------------|-------|--|
| N/A  | GND                  | GND                            | K30                 | GND   |  |
| N/A  | GND                  | GND                            | P30                 | GND   |  |
| N/A  | GND                  | GND                            | U30                 | GND   |  |
| N/A  | GND                  | GND                            | AA30                | GND   |  |
| N/A  | GND                  | GND                            | AE30                | GND   |  |
| N/A  | GND                  | GND                            | AJ30                | GND   |  |
| N/A  | GND                  | GND                            | AK30                | GND   |  |
| N/A  | GND                  | GND                            | AK2                 | GND   |  |
| N/A  | VCCAUX               | VCCAUX                         | F4                  | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | K4                  | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | P4                  | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | U4                  | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AA4                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AE4                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | D6                  | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AG6                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | D10                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AG10                | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | D14                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AG14                | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | D17                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AG17                | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | D21                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AG21                | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | D25                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AG25                | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | F27                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | K27                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | P27                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | U27                 | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AA27                | VCCAU |  |
| N/A  | VCCAUX               | VCCAUX                         | AE27                | VCCAU |  |
| N/A  | VCCINT               | VCCINT                         | L11                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | R11                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | T11                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | Y11                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | M12                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | N12                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | P12                 | VCCIN |  |
| N/A  | VCCINT               | VCCINT                         | U12                 | VCCIN |  |

### Table 110: FG1156 Package Pinout (Cont'd)

| Bank | XC3S4000<br>Pin Name | XC3S5000<br>Pin Name | FG1156<br>Pin Number | Type<br>VCCO |  |
|------|----------------------|----------------------|----------------------|--------------|--|
| 4    | VCCO_4               | VCCO_4               | AC19                 |              |  |
| 4    | VCCO_4               | VCCO_4               | AC20                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AC21                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               |                      | VCCO         |  |
| 4    | VCCO_4               | VCCO_4 VCCO_4        |                      | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AG24                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AH27                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AJ22                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AL19                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AL24                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AM27                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AM31                 | VCCO         |  |
| 4    | VCCO_4               | VCCO_4               | AN22                 | VCCO         |  |
| 5    | IO                   | 10                   | AD11                 | I/O          |  |
| 5    | N.C. (♦)             | 10                   | AD12                 | I/O          |  |
| 5    | IO                   | 10                   | AD14                 | I/O          |  |
| 5    | IO                   | IO                   | AD15                 | I/O          |  |
| 5    | IO                   | IO                   | AD16                 | I/O          |  |
| 5    | IO                   | IO                   | AD17                 | I/O          |  |
| 5    | IO                   | IO                   | AE14                 | I/O          |  |
| 5    | IO                   | IO                   | AE16                 | I/O          |  |
| 5    | N.C. (♠)             | IO                   | AF9                  | I/O          |  |
| 5    | IO                   | 10                   | AG9                  | I/O          |  |
| 5    | IO                   | 10                   | AG12                 | I/O          |  |
| 5    | IO                   | 10                   | AJ6                  | I/O          |  |
| 5    | IO                   | 10                   | AJ17                 | I/O          |  |
| 5    | IO                   | 10                   | AK10                 | I/O          |  |
| 5    | IO                   | IO                   | AK14                 | I/O          |  |
| 5    | IO                   | IO                   | AM12                 | I/O          |  |
| 5    | IO                   | IO                   | AN9                  | I/O          |  |
| 5    | IO/VREF_5            | IO/VREF_5            | AJ8                  | VREF         |  |
| 5    | IO/VREF_5            | IO/VREF_5            | AL5                  | VREF         |  |
| 5    | IO/VREF_5            | IO/VREF_5            | AP17                 | VREF         |  |
| 5    | IO_L01N_5/RDWR_B     | IO_L01N_5/RDWR_B     | AP3                  | DUAL         |  |
| 5    | IO_L01P_5/CS_B       | IO_L01P_5/CS_B       | AN3                  | DUAL         |  |
| 5    | IO_L02N_5            | IO_L02N_5            | AP4                  | I/O          |  |
| 5    | IO_L02P_5            | _5 IO_L02P_5         |                      | I/O          |  |
| 5    | IO_L03N_5            | IO_L03N_5            | AN5                  | I/O          |  |
| 5    | IO_L03P_5            | IO_L03P_5            | AM5                  | I/O          |  |
| 5    | IO_L04N_5            | IO_L04N_5            | AM6                  | I/O          |  |

### User I/Os by Bank

**Note:** The FG(G)1156 package is discontinued. See <a href="http://www.xilinx.com/support/documentation/spartan-3\_customer\_notices.htm">http://www.xilinx.com/support/documentation/spartan-3\_customer\_notices.htm</a>.

Table 111 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 in the FG1156 package. Similarly, Table 112 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S5000 in the FG1156 package.

| Pookogo Edgo | I/O  | Maximum I/O | All Possible I/O Pins by Type |      |     |      |      |
|--------------|------|-------------|-------------------------------|------|-----|------|------|
| Package Edge | Bank |             | I/O                           | DUAL | DCI | VREF | GCLK |
| Тор          | 0    | 90          | 79                            | 0    | 2   | 7    | 2    |
| юр           | 1    | 90          | 79                            | 0    | 2   | 7    | 2    |
| Right        | 2    | 88          | 80                            | 0    | 2   | 6    | 0    |
| night        | 3    | 88          | 79                            | 0    | 2   | 7    | 0    |
| Bottom       | 4    | 90          | 73                            | 6    | 2   | 7    | 2    |
| Bottom       | 5    | 90          | 73                            | 6    | 2   | 7    | 2    |
| Left         | 6    | 88          | 79                            | 0    | 2   | 7    | 0    |
| Len          | 7    | 88          | 79                            | 0    | 2   | 7    | 0    |

Table 111: User I/Os Per Bank for XC3S4000 in FG1156 Package

#### Notes:

1. The FG1156 and FGG1156 packages are discontinued. See <u>www.xilinx.com/support/documentation/spartan-3.htm#19600</u>.

| Package Edge | I/O  | Maximum I/O | All Possible I/O Pins by Type |      |     |      |      |
|--------------|------|-------------|-------------------------------|------|-----|------|------|
| Fackage Luge | Bank | Maximum #O  | I/O                           | DUAL | DCI | VREF | GCLK |
| Тор          | 0    | 100         | 89                            | 0    | 2   | 7    | 2    |
| юр           | 1    | 100         | 89                            | 0    | 2   | 7    | 2    |
| Right        | 2    | 96          | 87                            | 0    | 2   | 7    | 0    |
| riigin       | 3    | 96          | 87                            | 0    | 2   | 7    | 0    |
| Bottom       | 4    | 100         | 83                            | 6    | 2   | 7    | 2    |
| Bottom       | 5    | 100         | 83                            | 6    | 2   | 7    | 2    |
| Left         | 6    | 96          | 87                            | 0    | 2   | 7    | 0    |
| Leit         | 7    | 96          | 87                            | 0    | 2   | 7    | 0    |

#### Table 112: User I/Os Per Bank for XC3S5000 in FG1156 Package

#### Notes:

1. The FG1156 and FGG1156 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.

| Date     | Version | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11/30/07 | 2.3     | Added XC3S5000 FG(G)676 package. Noted that the FG(G)1156 package is being discontinued. Updated Table 86 with latest thermal characteristics data.                                                                                                                                                                                                                                                  |
| 06/25/08 | 2.4     | Updated formatting and links.                                                                                                                                                                                                                                                                                                                                                                        |
| 12/04/09 | 2.5     | Added link to UG332 in CCLK: Configuration Clock. Noted that the CP132, CPG132, FG1156, and FGG1156 packages are being discontinued in Table 81, Table 83, Table 84, Table 85, and Table 86. Updated CP132: 132-Ball Chip-Scale Package to indicate that the CP132 and CPG132 packages are being discontinued.                                                                                       |
| 10/29/12 | 3.0     | Added Notice of Disclaimer. Per <u>XCN07022</u> , updated the FG1156 and FGG1156 package discussion throughout document including in Table 81, Table 83, Table 84, Table 85, and Table 86. Per <u>XCN08011</u> , updated CP132 and CPG132 package discussion throughout document including in Table 81, Table 83, Table 84, Table 85, and Table 86. This product is not recommended for new designs. |

### **Notice of Disclaimer**

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT <a href="http://www.xilinx.com/warranty.htm">http://www.xilinx.com/warranty.htm</a>. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

#### CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

#### AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.