

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D	eta	ails	

Details	
Product Status	Obsolete
Number of LABs/CLBs	896
Number of Logic Elements/Cells	8064
Total RAM Bits	294912
Number of I/O	141
Number of Gates	400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s400-5pqg208c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8: Single-Ended I/O Standards

Signal Standard	V _{cco}	(Volts)	V _{REF} for Inputs	Board Termination	
(IOSTANDARD)	For Outputs	For Inputs	V _{REF} for Inputs (Volts) ⁽¹⁾	Voltage (V _{TT}) in Volts	
GTL	Note 2	Note 2	0.8	1.2	
GTLP	Note 2	Note 2	1	1.5	
HSTL_I	1.5	-	0.75	0.75	
HSTL_III	1.5	_	0.9	1.5	
HSTL_I_18	1.8	-	0.9	0.9	
HSTL_II_18	1.8	-	0.9	0.9	
HSTL_III_18	1.8	-	1.1	1.8	
LVCMOS12	1.2	1.2	-	-	
LVCMOS15	1.5	1.5	-	-	
LVCMOS18	1.8	1.8	-	-	
LVCMOS25	2.5	2.5	-	-	
LVCMOS33	3.3	3.3	-	-	
LVTTL	3.3	3.3	-	-	
PCI33_3	3.0	3.0	-	-	
SSTL18_I	1.8	-	0.9	0.9	
SSTL18_II	1.8	-	0.9	0.9	
SSTL2_I	2.5	-	1.25	1.25	
SSTL2_II	2.5	-	1.25	1.25	

Notes:

1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V_{REF}

2. The V_{CCO} level used for the GTL and GTLP standards must be no lower than the termination voltage (V_{TT}), nor can it be lower than the voltage at the I/O pad.

3. See Table 10 for a listing of the single-ended DCI standards.

Differential standards employ a pair of signals, one the opposite polarity of the other. The noise canceling (e.g., Common-Mode Rejection) properties of these standards permit exceptionally high data transfer rates. This section introduces the differential signaling capabilities of Spartan-3 devices.

Each device-package combination designates specific I/O pairs that are specially optimized to support differential standards. A unique "L-number", part of the pin name, identifies the line-pairs associated with each bank (see Figure 40, page 112). For each pair, the letters 'P' and 'N' designate the true and inverted lines, respectively. For example, the pin names IO_L43P_7 and IO_L43N_7 indicate the true and inverted lines comprising the line pair L43 on Bank 7. The V_{CCO} lines provide current to the outputs. The V_{CCAUX} lines supply power to the differential inputs, making them independent of the V_{CCO} voltage for an I/O bank. The V_{REF} lines are not used. Select the V_{CCO} level to suit the desired differential standard according to Table 9.

Table 9: Differential I/O Standards

Signal Standard	V _{cco} (V for Inputs (Volts)	
(IOSTANDARD)	For Outputs	For Inputs	V _{REF} for Inputs (Volts)
LDT_25 (ULVDS_25)	2.5	-	-
LVDS_25	2.5	-	-
BLVDS_25	2.5	-	-
LVDSEXT_25	2.5	-	-
LVPECL_25	2.5	-	-
RSDS_25	2.5	-	-
DIFF_HSTL_II_18	1.8	-	-
DIFF_SSTL2_II	2.5	-	-

Notes:

1. See Table 10 for a listing of the differential DCI standards.

The need to supply V_{REF} and V_{CCO} imposes constraints on which standards can be used in the same bank. See The Organization of IOBs into Banks section for additional guidelines concerning the use of the V_{CCO} and V_{BFF} lines.

Digitally Controlled Impedance (DCI)

When the round-trip delay of an output signal—i.e., from output to input and back again—exceeds rise and fall times, it is common practice to add termination resistors to the line carrying the signal. These resistors effectively match the impedance of a device's I/O to the characteristic impedance of the transmission line, thereby preventing reflections that adversely affect signal integrity. However, with the high I/O counts supported by modern devices, adding resistors requires significantly more components and board area. Furthermore, for some packages—e.g., ball grid arrays—it may not always be possible to place resistors close to pins.

DCI answers these concerns by providing two kinds of on-chip terminations: Parallel terminations make use of an integrated resistor network. Series terminations result from controlling the impedance of output drivers. DCI actively adjusts both parallel and series terminations to accurately match the characteristic impedance of the transmission line. This adjustment process compensates for differences in I/O impedance that can result from normal variation in the ambient temperature, the supply voltage and the manufacturing process. When the output driver turns off, the series termination, by definition, approaches a very high impedance; in contrast, parallel termination resistors remain at the targeted values.

DCI is available only for certain I/O standards, as listed in Table 10. DCI is selected by applying the appropriate I/O standard extensions to symbols or components. There are five basic ways to configure terminations, as shown in Table 11. The DCI I/O standard determines which of these terminations is put into effect.

HSTL_I_DCI-, HSTL_III_DCI-, and SSTL2_I_DCI-type outputs do not require the VRN and VRP reference resistors. Likewise, LVDCI-type inputs do not require the VRN and VRP reference resistors. In a bank without any DCI I/O or a bank containing non-DCI I/O and purely HSTL_I_DCI- or HSTL_III_DCI-type outputs, or SSTL2_I_DCI-type outputs or LVDCI-type inputs, the associated VRN and VRP pins can be used as general-purpose I/O pins.

The HSLVDCI (High-Speed LVDCI) standard is intended for bidirectional use. The driver is identical to LVDCI, while the input is identical to HSTL. By using a V_{REF}-referenced input, HSLVDCI allows greater input sensitivity at the receiver than when using a single-ended LVCMOS-type receiver.

Table 10: DCI I/O Standards

Category of Signal	Signal Standard	V _{CCC}	₀ (V)	V _{REF} for	Termination Type		
Standard	(IOSTANDARD)	For Outputs	For Inputs	Inputs (V)	At Output	At Input	
Single-Ended			·	·			
Gunning	GTL_DCI	1.2	1.2	0.8	Cincle	Circele	
Transceiver Logic	GTLP_DCI	1.5	1.5	1.0	Single	Single	
High-Speed	HSTL_I_DCI	1.5	1.5	0.75	None	Split	
Transceiver Logic	HSTL_III_DCI	1.5	1.5	0.9	None	Single	
	HSTL_I_DCI_18	1.8	1.8	0.9	None		
	HSTL_II_DCI_18 DIFF_HSTL_II_18_DCI	1.8	1.8	0.9	Split	Split	
	HSTL_III_DCI_18	1.8	1.8	1.1	None	Single	
Low-Voltage CMOS	LVDCI_15	1.5	1.5	-		None	
	LVDCI_18	1.8	1.8	-	Controlled		
	LVDCI_25	2.5	2.5	_	impedance driver		
	LVDCI_33 ⁽²⁾	3.3	3.3	-	1		
	LVDCI_DV2_15	1.5	1.5	-	Controlled driver		
	LVDCI_DV2_18	1.8	1.8	-			
	LVDCI_DV2_25	2.5	2.5	-	with half-impedance		
	LVDCI_DV2_33	3.3	3.3	_	1		
Hybrid HSTL Input	HSLVDCI_15	1.5	1.5	0.75			
and LVCMOS Output	HSLVDCI_18	1.8	1.8	0.9	Controlled	Nama	
	HSLVDCI_25	2.5	2.5	1.25	impedance driver	None	
	HSLVDCI_33	3.3	3.3	1.65			
Stub Series	SSTL18_I_DCI	1.8	1.8	0.9	25Ω driver		
Terminated Logic ⁽³⁾	SSTL2_I_DCI	2.5	2.5	1.25	25Ω driver	Split	
	SSTL2_II_DCI DIFF_SSTL2_II_DCI	2.5	2.5	1.25	Split with 25Ω driver	op	
Differential							
Low-Voltage	LVDS_25_DCI	N/A	2.5	-	None	Split on each	
Differential Signaling	LVDSEXT_25_DCI	N/A	2.5	-	None	line of pair	

Notes:

1. DCI signal standards are not supported in Bank 5 of any Spartan-3 FPGA packaged in a VQ100, CP132, or TQ144 package.

2. Equivalent to LVTTL DCI.

3. The SSTL18_II signal standard does not have a DCI equivalent.

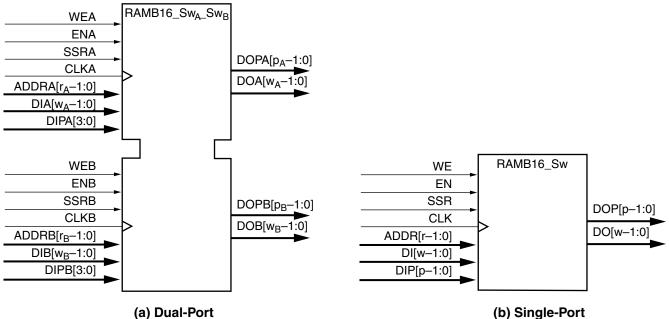
Function Generator

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). This permits any four-variable Boolean logic operation to be programmed into them. Furthermore, wide function multiplexers can be used to effectively combine LUTs within the same CLB or across different CLBs, making logic functions with still more input variables possible.

The LUTs in both the right-hand and left-hand slice-pairs not only support the logic functions described above, but also can function as ROM that is initialized with data at the time of configuration.

The LUTs in the left-hand slice-pair (even-numbered columns such as X0 in Figure 11) of each CLB support two additional functions that the right-hand slice-pair (odd-numbered columns such as X1) do not.

First, it is possible to program the "left-hand LUTs" as distributed RAM. This type of memory affords moderate amounts of data buffering anywhere along a data path. One left-hand LUT stores 16 bits. Multiple left-hand LUTs can be combined in various ways to store larger amounts of data. A dual port option combines two LUTs so that memory access is possible from two independent data lines. A Distributed ROM option permits pre-loading the memory with data during FPGA configuration.


Second, it is possible to program each left-hand LUT as a 16-bit shift register. Used in this way, each LUT can delay serial data anywhere from one to 16 clock cycles. The four left-hand LUTs of a single CLB can be combined to produce delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to form larger shift registers. It is also possible to combine shift registers across more than one CLB. The resulting programmable delays can be used to balance the timing of data pipelines.

Block RAM Overview

All Spartan-3 devices support block RAM, which is organized as configurable, synchronous 18Kbit blocks. Block RAM stores relatively large amounts of data more efficiently than the distributed RAM feature described earlier. (The latter is better suited for buffering small amounts of data anywhere along signal paths.) This section describes basic Block RAM functions. For more information, refer to the chapter entitled "Using Block RAM" in <u>UG331</u>.

The aspect ratio—i.e., width vs. depth—of each block RAM is configurable. Furthermore, multiple blocks can be cascaded to create still wider and/or deeper memories.

A choice among primitives determines whether the block RAM functions as dual- or single-port memory. A name of the form RAMB16_S[w_A]_S[w_B] calls out the dual-port primitive, where the integers w_A and w_B specify the total data path width at ports w_A and w_B, respectively. Thus, a RAMB16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A and an 18-bit-wide Port B. A name of the form RAMB16_S[w] identifies the single-port primitive, where the integer w specifies the total data path width of the lone port. A RAMB16_S18 is a single-port RAM with an 18-bit-wide port. Other memory functions—e.g., FIFOs, data path width conversion, ROM, etc.—are readily available using the CORE GeneratorTM software, part of the Xilinx development software.

(a) Dual-Port

DS099-2_13_112905

Notes:

- 1. w_A and w_B are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
- p_A and p_B are integers that indicate the number of data path lines serving as parity bits. 2.
- r_A and r_B are integers representing the address bus width at ports A and B, respectively. З.
- The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity. 4.

Figure 14: Block RAM Primitives

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function
Address Bus	ADDRA	ADDRB	Input	The Address Bus selects a memory location for read or write operations. The width (w) of the port's associated data path determines the number of available address lines (r).
				Whenever a port is enabled (ENA or ENB = High), address transitions must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB). This requirement must be met, even if the RAM read output is of no interest.
Data Input Bus	DIA	DIB	Input	Data at the DI input bus is written to the addressed memory location addressed on an enabled active CLK edge.
				It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths of a given port. Each port is independent. For a port assigned a width (w), the number of addressable locations is 16,384/(w-p) where "p" is the number of parity bits. Each memory location has a width of "w" (including parity bits). See the DIP signal description for more information of parity.
Parity Data Input(s)	DIPA	DIPB	Input	Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 14.

Table 13: Block RAM Port Signals

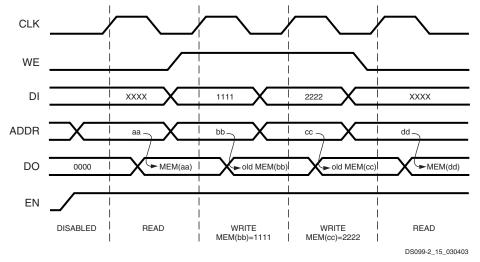
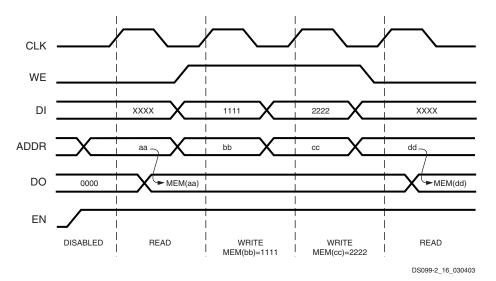
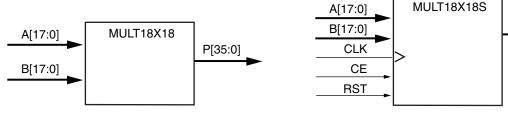


Figure 16: Waveforms of Block RAM Data Operations with READ_FIRST Selected

Choosing a third attribute called NO_CHANGE puts the DO outputs in a latched state when asserting WE. Under this condition, the DO outputs will retain the data driven just before WE was asserted. NO_CHANGE timing is shown in the portion of Figure 17 during which WE is High.




Figure 17: Waveforms of Block RAM Data Operations with NO_CHANGE Selected

Dedicated Multipliers

All Spartan-3 devices provide embedded multipliers that accept two 18-bit words as inputs to produce a 36-bit product. This section provides an introduction to multipliers. For further details, refer to the chapter entitled "Using Embedded Multipliers" in UG331.

The input buses to the multiplier accept data in two's-complement form (either 18-bit signed or 17-bit unsigned). One such multiplier is matched to each block RAM on the die. The close physical proximity of the two ensures efficient data handling. Cascading multipliers permits multiplicands more than three in number as well as wider than 18-bits. The multiplier is placed in a design using one of two primitives: an asynchronous version called MULT18X18 and a version with a register called MULT18X18S, as shown in Figure 18. The signals for these primitives are defined in Table 15.

The CORE Generator system produces multipliers based on these primitives that can be configured to suit a wide range of requirements.

(a) Asynchronous 18-bit Multiplier

(b) 18-bit Multiplier with Register

DS099-2_17_091510

P[35:0]

Figure 18: Embedded Multiplier Primitives

Table 15: Embedded Multiplier Primitives Descriptions

Signal Name	Direction	Function
A[17:0]	Input	Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the enabled rising edge of CLK.
B[17:0]	Input	Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the enabled rising edge of CLK.
P[35:0]	Output	The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the MULT18X18S primitive, an enabled rising CLK edge updates the P bus.
CLK	Input ⁽¹⁾	CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input, when enabled by CE, updates the output register that drives the P bus.
CE	Input ⁽¹⁾	CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input enables the CLK signal to update the P bus.
RST	Input ⁽¹⁾	RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register on an enabled, rising CLK edge, forcing the P bus to all zeroes.

Notes:

1. The control signals CLK, CE and RST have the option of inverted polarity.

Digital Clock Manager (DCM)

Spartan-3 devices provide flexible, complete control over clock frequency, phase shift and skew through the use of the DCM feature. To accomplish this, the DCM employs a Delay-Locked Loop (DLL), a fully digital control system that uses feedback to maintain clock signal characteristics with a high degree of precision despite normal variations in operating temperature and voltage. This section provides a fundamental description of the DCM. For further information, refer to the chapter entitled "Using Digital Clock Managers" in UG331.

Each member of the Spartan-3 family has four DCMs, except the smallest, the XC3S50, which has two DCMs. The DCMs are located at the ends of the outermost Block RAM column(s). See Figure 1, page 3. The Digital Clock Manager is placed in a design as the "DCM" primitive.

The DCM supports three major functions:

- Clock-skew Elimination: Clock skew describes the extent to which clock signals may, under normal circumstances, deviate from zero-phase alignment. It occurs when slight differences in path delays cause the clock signal to arrive at different points on the die at different times. This clock skew can increase set-up and hold time requirements as well as clock-to-out time, which may be undesirable in applications operating at a high frequency, when timing is critical. The DCM eliminates clock skew by aligning the output clock signal it generates with another version of the clock signal that is fed back. As a result, the two clock signals establish a zero-phase relationship. This effectively cancels out clock distribution delays that may lie in the signal path leading from the clock output of the DCM to its feedback input.
- Frequency Synthesis: Provided with an input clock signal, the DCM can generate a wide range of different output clock frequencies. This is accomplished by either multiplying and/or dividing the frequency of the input clock signal by any of several different factors.

Table 36: DC Characteristics of User I/Os Using Single-Ended Standards (Cont'd)

Signal Standard (IOSTANDARD) and Current Drive Attribute (mA)		Test Co	nditions	Logic Level C	haracteristics
		I _{OL} I _{OH} (mA) (mA)		V _{OL} Max (V)	V _{ОН} Min (V)
LVCMOS33 ⁽⁴⁾	2	2	-2	0.4	V _{CCO} – 0.4
	4	4	-4	_	
	6	6	6	_	
	8	8	-8		
	12	12	-12		
	16	16	-16	_	
	24	24	-24	_	
LVDCI_33, LVDCI_DV2_33		Note 3	Note 3	_	
LVTTL ⁽⁴⁾	2	2	-2	0.4	2.4
	4	4	-4		
	6	6	6		
	8	8	8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
PCI33_3		Note 6	Note 6	0.10V _{CCO}	0.90V _{CCO}
SSTL18_I		6.7	-6.7	V _{TT} – 0.475	V _{TT} + 0.475
SSTL18_I_DCI SSTL18_II SSTL2_I SSTL2_I_DCI		Note 3	Note 3		
		13.4	-13.4	V _{TT} – 0.475	V _{TT} + 0.475
		8.1	-8.1	V _{TT} – 0.61	V _{TT} + 0.61
		Note 3	Note 3		
SSTL2_II ⁽⁷⁾		16.2	-16.2	V _{TT} – 0.81	V _{TT} + 0.81
SSTL2_II_DCI ⁽⁷⁾		Note 3	Note 3		

Notes:

2.

The numbers in this table are based on the conditions set forth in Table 32 and Table 35. 1.

The numbers in this table are based on the conditions set for Descriptions of the symbols used in this table are as follows: I_{OL} – the output current condition under which VOL is tested V_{OL} – the output current condition under which VOH is tested V_{OL} – the output voltage that indicates a Low logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the input voltage that indicates a High logic level V_{H} – the supply voltage for output drivers as well as LVCM

 V_{CCO} – the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs V_{REF} – the reference voltage for setting the input switching threshold V_{TT} – the voltage applied to a resistor termination

Tested according to the standard's relevant specifications. When using the DCI version of a standard on a given I/O bank, that bank will consume more power than if the non-DCI version had been used instead. The additional power is drawn for the purpose of impedance-matching at the I/O pins. A portion of this power is dissipated in the two RREF resistors. 3.

For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for both the Fast and Slow slew attributes. 4.

All dedicated output pins (CCLK, DONE, and TDO) and dual-purpose totem-pole output pins (D0-D7 and BUSY/DOUT) exhibit the characteristics of 5. LVCMOS25 with 12 mA drive and slow slew rate. For information concerning the use of 3.3V signals, see 3.3V-Tolerant Configuration Interface, page 47.

Tested according to the relevant PCI specifications. For more information, see XAPP457. 6.

7. The minimum usable V_{TT} voltage is 1.25V.

Table 70: Spartan-3 FPGA Pin Definitions (Cont'd)

Pin Name	Direction	Description
TDI	Input	JTAG Test Data Input: TDI is the serial data input for all JTAG instruction and data registers. This pin has an internal pull-up resistor to VCCAUX during configuration.
TMS	Input	JTAG Test Mode Select: The serial TMS input controls the operation of the JTAG port. This pin has an internal pull-up resistor to VCCAUX during configuration.
TDO	Output	JTAG Test Data Output: TDO is the serial data output for all JTAG instruction and data registers. This pin has an internal pull-up resistor to VCCAUX during configuration.
VCCO: I/O bank out	out voltage supply pins	
VCCO_#	Supply	Power Supply for Output Buffer Drivers (per bank): These pins power the output drivers within a specific I/O bank.
VCCAUX: Auxiliary	voltage supply pins	
VCCAUX	Supply	Power Supply for Auxiliary Circuits: +2.5V power pins for auxiliary circuits, including the Digital Clock Managers (DCMs), the dedicated configuration pins (CONFIG), and the dedicated JTAG pins. All VCCAUX pins must be connected.
VCCINT: Internal co	re voltage supply pins	
VCCINT	Supply	Power Supply for Internal Core Logic: +1.2V power pins for the internal logic. All pins must be connected.
GND: Ground supply	y pins	
GND	Supply	Ground: Ground pins, which are connected to the power supply's return path. All pins must be connected.
N.C.: Unconnected	backage pins	
N.C.		Unconnected Package Pin: These package pins are unconnected.

Notes:

1. All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to externally connect the pin to either VCCO or GND.

2. All outputs are of the totem-pole type — i.e., they can drive High as well as Low logic levels — except for the cases where "Open Drain" is indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.

Detailed, Functional Pin Descriptions

I/O Type: Unrestricted, General-purpose I/O Pins

After configuration, I/O-type pins are inputs, outputs, bidirectional I/O, three-state outputs, open-drain outputs, or open-source outputs, as defined in the application

Pins labeled "IO" support all SelectIO[™] interface signal standards except differential standards. A given device at most only has a few of these pins.

A majority of the general-purpose I/O pins are labeled in the format "IO_Lxxy_#". These pins support all SelectIO signal standards, including the differential standards such as LVDS, ULVDS, BLVDS, RSDS, or LDT.

For additional information, see IOBs, page 10

HSWAP_EN: Disable Pull-up Resistors During Configuration

As shown in Table 76, a Low on this asynchronous pin enables pull-up resistors on all user I/Os not actively involved in the configuration process, although only until device configuration completes. A High disables the pull-up resistors during configuration, which is the desired state for some applications.

The dedicated configuration CONFIG pins (CCLK, DONE, PROG_B, HSWAP_EN, M2, M1, M0), the JTAG pins (TDI, TMS, TCK, TDO) and the INIT_B always have active pull-up resistors during configuration, regardless of the value on HSWAP_EN.

After configuration, HSWAP_EN becomes a "don't care" input and any pull-up resistors previously enabled by HSWAP_EN are disabled. If a user I/O in the application requires a pull-up resistor after configuration, place a PULLUP primitive on the associated I/O pin or, for some pins, set the associated bitstream generator option.

Table 76: HSWAP_EN Encoding

HSWAP_EN	Function						
During Config	During Configuration						
0	Enable pull-up resistors on all pins not actively involved in the configuration process. Pull-ups are only active until configuration completes. See Table 79.						
1	No pull-up resistors during configuration.						
After Configuration, User Mode							
Х	This pin has no function except during device configuration.						

Notes:

1. X = don't care, either 0 or 1.

The Bitstream generator option HswapenPin determines whether a pull-up resistor to VCCAUX, a pull-down resistor, or no resistor is present on HSWAP_EN after configuration.

JTAG: Dedicated JTAG Port Pins

Table 77: JTAG Pin Descriptions

Pin Name	Direction	Description	Bitstream Generation Option
ТСК	Input	Test Clock: The TCK clock signal synchronizes all boundary scan operations on its rising edge.	The BitGen option TckPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TDI	Input	Test Data Input: TDI is the serial data input for all JTAG instruction and data registers. This input is sampled on the rising edge of TCK.	The BitGen option TdiPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TMS	Input	Test Mode Select: The TMS input controls the sequence of states through which the JTAG TAP state machine passes. This input is sampled on the rising edge of TCK.	The BitGen option TmsPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TDO	Output	Test Data Output: The TDO pin is the data output for all JTAG instruction and data registers. This output is sampled on the rising edge of TCK. The TDO output is an active totem-pole driver and is not like the open-collector TDO output on Virtex [®] -II Pro FPGAs.	The BitGen option TdoPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.

These pins are dedicated connections to the four-wire IEEE 1532/IEEE 1149.1 JTAG port, shown in Figure 43 and described in Table 77. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and possibly an additional serial port for the application. These pins are dedicated and are not available as user-I/O pins. Every package has four dedicated JTAG pins and these pins are powered by the +2.5V VCCAUX supply.

For additional information on JTAG configuration, see Boundary-Scan (JTAG) Mode, page 50.

All VCCAUX inputs must be connected together and to the +2.5V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623.

Because VCCAUX connects to the DCMs and the DCMs are sensitive to voltage changes, be sure that the VCCAUX supply and the ground return paths are designed for low noise and low voltage drop, especially that caused by a large number of simultaneous switching I/Os.

GND Type: Ground

All GND pins must be connected and have a low resistance path back to the various VCCO, VCCINT, and VCCAUX supplies.

Pin Behavior During Configuration

Table 79 shows how various pins behave during the FPGA configuration process. The actual behavior depends on the values applied to the M2, M1, and M0 mode select pins and the HSWAP_EN pin. The mode select pins determine which of the DUAL type pins are active during configuration. In JTAG configuration mode, none of the DUAL-type pins are used for configuration and all behave as user-I/O pins.

All DUAL-type pins not actively used during configuration and all I/O-type, DCI-type, VREF-type, GCLK-type pins are high impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 79 as shaded table entries or cells. These pins have a pull-up resistor to their associated VCCO if the HSWAP_EN pin is Low. When HSWAP_EN is High, these pull-up resistors are disabled during configuration.

Some pins always have an active pull-up resistor during configuration, regardless of the value applied to the HSWAP_EN pin. After configuration, these pull-up resistors are controlled by Bitstream Options.

- All the dedicated CONFIG-type configuration pins (CCLK, PROG_B, DONE, M2, M1, M0, and HSWAP_EN) have a
 pull-up resistor to VCCAUX.
- All JTAG-type pins (TCK, TDI, TMS, TDO) have a pull-up resistor to VCCAUX.
- The INIT_B DUAL-purpose pin has a pull-up resistor to VCCO_4 or VCCO_BOTTOM, depending on package style.

After configuration completes, some pins have optional behavior controlled by the configuration bitstream loaded into the part. For example, via the bitstream, all unused I/O pins can be collectively configured as input pins with either a pull-up resistor, a pull-down resistor, or be left in a high-impedance state.

		Configuration Mode Settings <m2:m1:m0></m2:m1:m0>								
Pin Name	Serial Modes		SelectMap Parallel Modes		JTAG Mode	Bitstream Configuration				
	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	<1:0:1>	Option				
I/O: General-pur	I/O: General-purpose I/O pins									
IO						UnusedPin				
IO_Lxxy_#						UnusedPin				
DUAL: Dual-pur	pose configuration	pins								
IO_Lxxy_#/ DIN/D0	DIN (I)	DIN (I)	D0 (I/O)	D0 (I/O)		Persist UnusedPin				
IO_Lxxy_#/ D1			D1 (I/O)	D1 (I/O)		Persist UnusedPin				
IO_Lxxy_#/ D2			D2 (I/O)	D2 (I/O)		Persist UnusedPin				
IO_Lxxy_#/ D3			D3 (I/O)	D3 (I/O)		Persist UnusedPin				
IO_Lxxy_#/ D4			D4 (I/O)	D4 (I/O)		Persist UnusedPin				

Table 79: Pin Behavior After Power-Up, During Configuration

CP132: 132-Ball Chip-Scale Package

Note: The CP132 and CPG132 packages are discontinued. See www.xilinx.com/support/documentation/spartan-3.htm#19600.

The pinout and footprint for the XC3S50 in the 132-ball chip-scale package, CP132, appear in Table 89 and Figure 45.

All the package pins appear in Table 89 and are sorted by bank number, then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

The CP132 footprint has eight I/O banks. However, the voltage supplies for the two I/O banks along an edge are connected together internally. Consequently, there are four output voltage supplies, labeled VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM, and VCCO_LEFT.

Pinout Table

Table 89: CP132 Package Pinout

Bank	XC3S50 Pin Name	CP132 Ball	Туре
0	IO_L01N_0/VRP_0	A3	DCI
0	IO_L01P_0/VRN_0	C4	DCI
0	IO_L27N_0	C5	I/O
0	IO_L27P_0	B5	I/O
0	IO_L30N_0	B6	I/O
0	IO_L30P_0	A6	I/O
0	IO_L31N_0	C7	I/O
0	IO_L31P_0/VREF_0	B7	VREF
0	IO_L32N_0/GCLK7	A7	GCLK
0	IO_L32P_0/GCLK6	C8	GCLK
1	IO_L01N_1/VRP_1	A13	DCI
1	IO_L01P_1/VRN_1	B13	DCI
1	IO_L27N_1	C11	I/O
1	IO_L27P_1	A12	I/O
1	IO_L28N_1	A11	I/O
1	IO_L28P_1	B11	I/O
1	IO_L31N_1/VREF_1	C9	VREF
1	IO_L31P_1	A10	I/O
1	IO_L32N_1/GCLK5	A8	GCLK
1	IO_L32P_1/GCLK4	A9	GCLK
2	IO_L01N_2/VRP_2	D12	DCI
2	IO_L01P_2/VRN_2	C14	DCI
2	IO_L20N_2	E12	I/O
2	IO_L20P_2	E13	I/O
2	IO_L21N_2	E14	I/O
2	IO_L21P_2	F12	I/O
2	IO_L23N_2/VREF_2	F13	VREF
2	IO_L23P_2	F14	I/O
2	IO_L24N_2	G12	I/O

www.xilinx.com

Table 98: FG320 Package Pinout (Cont'd)

Bank	XC3S400, XC3S1000, XC3S1500 Pin Name	FG320 Pin Number	Туре
3	IO_L24N_3	M18	I/O
3	IO_L24P_3	N17	I/O
3	IO_L27N_3	L14	I/O
3	IO_L27P_3	L13	I/O
3	IO_L34N_3	L15	I/O
3	IO_L34P_3/VREF_3	L16	VREF
3	IO_L35N_3	L18	I/O
3	IO_L35P_3	L17	I/O
3	IO_L39N_3	K13	I/O
3	IO_L39P_3	K14	I/O
3	IO_L40N_3/VREF_3	K17	VREF
3	IO_L40P_3	K18	I/O
3	VCCO_3	K12	VCCO
3	VCCO_3	L12	VCCO
3	VCCO_3	N16	VCCO
4	IO	P12	I/O
4	IO	V14	I/O
4	IO/VREF_4	R10	VREF
4	IO/VREF_4	U13	VREF
4	IO/VREF_4	V17	VREF
4	IO_L01N_4/VRP_4	U16	DCI
4	IO_L01P_4/VRN_4	V16	DCI
4	IO_L06N_4/VREF_4	P14	VREF
4	IO_L06P_4	R14	I/O
4	IO_L09N_4	U15	I/O
4	IO_L09P_4	V15	I/O
4	IO_L10N_4	T14	I/O
4	IO_L10P_4	U14	I/O
4	IO_L25N_4	R13	I/O
4	IO_L25P_4	P13	I/O
4	IO_L27N_4/DIN/D0	T12	DUAL
4	IO_L27P_4/D1	R12	DUAL
4	IO_L28N_4	V12	I/O
4	IO_L28P_4	V11	I/O
4	IO_L29N_4	R11	I/O
4	IO_L29P_4	T11	I/O
4	IO_L30N_4/D2	N11	DUAL
4	IO_L30P_4/D3	P11	DUAL
4	IO_L31N_4/INIT_B	U10	DUAL

Table 100: FG456 Package Pinout (Cont'd)

Bank	3S400 3S1000, 3S1500, 3S2000 Pin Name Pin Name		FG456 Pin Number	Туре
4	IO_L30N_4/D2	IO_L30N_4/D2	U12	DUAL
4	IO_L30P_4/D3	IO_L30P_4/D3	V12	DUAL
4	IO_L31N_4/INIT_B	IO_L31N_4/INIT_B	W12	DUAL
4	IO_L31P_4/DOUT/BUSY	IO_L31P_4/DOUT/BUSY	Y12	DUAL
4	IO_L32N_4/GCLK1	IO_L32N_4/GCLK1	AA12	GCLK
4	IO_L32P_4/GCLK0	IO_L32P_4/GCLK0	AB12	GCLK
4	VCCO_4	VCCO_4	T12	VCCO
4	VCCO_4	VCCO_4	T13	VCCO
4	VCCO_4	VCCO_4	T14	VCCO
4	VCCO_4	VCCO_4	U15	VCCO
4	VCCO_4	VCCO_4	Y15	VCCO
5	IO	IO	U7	I/O
5	N.C. (♦)	IO	U9	I/O
5	10	Ю	U10	I/O
5	10	10	U11	I/O
5	10	IO	V7	I/O
5	IO	IO	V10	I/O
5	IO/VREF_5	IO/VREF_5	AB11 VRE	
5	IO/VREF_5	IO/VREF_5	U6	VREF
5	IO_L01N_5/RDWR_B	IO_L01N_5/RDWR_B	Y4	DUAL
5	IO_L01P_5/CS_B	IO_L01P_5/CS_B	AA3 DUA	
5	IO_L06N_5	IO_L06N_5	AB4	I/O
5	IO_L06P_5	IO_L06P_5	AA4 I/O	
5	IO_L09N_5	IO_L09N_5	Y5 I/O	
5	IO_L09P_5	IO_L09P_5	W5 I/O	
5	IO_L10N_5/VRP_5	IO_L10N_5/VRP_5	AB5	DCI
5	IO_L10P_5/VRN_5	IO_L10P_5/VRN_5	AA5	DCI
5	IO_L15N_5	IO_L15N_5	W6	I/O
5	IO_L15P_5	IO_L15P_5	V6	I/O
5	IO_L16N_5	IO_L16N_5	AA6	I/O
5	IO_L16P_5	IO_L16P_5	Y6 I/O	
5	N.C. (�)	IO_L19N_5	Y7	I/O
5	N.C. (♦) IO_L19P_5/ VREF_5 W7		W7	VREF
5	N.C. (�)	IO_L22N_5	AB7	I/O
5	N.C. (�)	IO_L22P_5	AA7 I/O	
5	IO_L24N_5	IO_L24N_5	W8 I/C	
5	IO_L24P_5	IO_L24P_5	V8	I/O
5	IO_L25N_5	IO_L25N_5		
5	IO_L25P_5	IO_L25P_5	AA8 I/C	

Table 107: FG900 Package Pinout (Cont'd)

Bank	BankXC3S2000 Pin NameXC3S4000, XC3S5 Pin Name		FG900 Pin Number	Туре	
2	IO_L04N_2	IO_L04N_2	E29 I/C		
2	IO_L04P_2	IO_L04P_2	E30 I/0		
2	IO_L05N_2	IO_L05N_2	F28	I/O	
2	IO_L05P_2	IO_L05P_2	F29	I/O	
2	IO_L06N_2	IO_L06N_2	G27	I/O	
2	IO_L06P_2	IO_L06P_2	G28	I/O	
2	IO_L07N_2	IO_L07N_2	G29	I/O	
2	IO_L07P_2	IO_L07P_2	G30	I/O	
2	IO_L08N_2	IO_L08N_2	G25	I/O	
2	IO_L08P_2	IO_L08P_2	H24	I/O	
2	IO_L09N_2/VREF_2	IO_L09N_2/VREF_2	H25	VREF	
2	IO_L09P_2	IO_L09P_2	H26	I/O	
2	IO_L10N_2	IO_L10N_2	H27	I/O	
2	IO_L10P_2	IO_L10P_2	H28	I/O	
2	IO_L12N_2	IO_L12N_2	H29	I/O	
2	IO_L12P_2	IO_L12P_2	H30	I/O	
2	IO_L13N_2	IO_L13N_2	J26	I/O	
2	IO_L13P_2/VREF_2	IO_L13P_2/VREF_2	J27 VR		
2	IO_L14N_2	IO_L14N_2	J29	I/O	
2	IO_L14P_2	IO_L14P_2	J30	I/O	
2	IO_L15N_2	IO_L15N_2	J23	I/O	
2	IO_L15P_2	IO_L15P_2	K22 I/0		
2	IO_L16N_2	IO_L16N_2	K24	I/O	
2	IO_L16P_2	IO_L16P_2	K25	I/O	
2	IO_L19N_2	IO_L19N_2	L25	I/O	
2	IO_L19P_2	IO_L19P_2	L26	I/O	
2	IO_L20N_2	IO_L20N_2	L27	I/O	
2	IO_L20P_2	IO_L20P_2	L28	I/O	
2	IO_L21N_2	IO_L21N_2	L29	I/O	
2	IO_L21P_2	IO_L21P_2	L30	I/O	
2	IO_L22N_2	IO_L22N_2	M22	I/O	
2	IO_L22P_2	IO_L22P_2	M23	I/O	
2	IO_L23N_2/VREF_2	IO_L23N_2/VREF_2	M24 VRE		
2	IO_L23P_2	IO_L23P_2	M25	I/O	
2	IO_L24N_2	IO_L24N_2	M27	I/O	
2	IO_L24P_2	IO_L24P_2	M28 I/O		
2	IO_L26N_2	IO_L26N_2	M21 I/O		
2	IO_L26P_2	IO_L26P_2	N21	I/O	
2	IO_L27N_2	IO_L27N_2	N22	I/O	
2	IO_L27P_2	IO_L27P_2	N23	I/O	

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре	
7	IO_L23N_7	IO_L23N_7	L3	I/O	
7	IO_L23P_7	IO_L23P_7	L4	I/O	
7	IO_L24N_7	IO_L24N_7	L1	I/O	
7	IO_L24P_7	IO_L24P_7	L2	I/O	
7	N.C. (�)	IO_L25N_7	M6	I/O	
7	N.C. (�)	IO_L25P_7	M7	I/O	
7	IO_L26N_7	IO_L26N_7	M3	I/O	
7	IO_L26P_7	IO_L26P_7	M4	I/O	
7	IO_L27N_7	IO_L27N_7	M1	I/O	
7	IO_L27P_7/VREF_7	IO_L27P_7/VREF_7	M2	VREF	
7	IO_L28N_7	IO_L28N_7	N10	I/O	
7	IO_L28P_7	IO_L28P_7	M10	I/O	
7	IO_L29N_7	IO_L29N_7	N8	I/O	
7	IO_L29P_7	IO_L29P_7	N9	I/O	
7	IO_L31N_7	IO_L31N_7	N1	I/O	
7	IO_L31P_7	IO_L31P_7	N2	I/O	
7	IO_L32N_7	IO_L32N_7	P9	I/O	
7	IO_L32P_7	IO_L32P_7	P10	I/O	
7	IO_L33N_7	IO_L33N_7	P6	I/O	
7	IO_L33P_7	IO_L33P_7	P7	I/O	
7	IO_L34N_7	IO_L34N_7	P2	I/O	
7	IO_L34P_7	IO_L34P_7	P3	I/O	
7	IO_L35N_7	IO_L35N_7	R9	I/O	
7	IO_L35P_7	IO_L35P_7	R10	I/O	
7	IO_L37N_7	IO_L37N_7	R7	I/O	
7	IO_L37P_7/VREF_7	IO_L37P_7/VREF_7	R8	VREF	
7	IO_L38N_7	IO_L38N_7	R5	I/O	
7	IO_L38P_7	IO_L38P_7	R6	I/O	
7	IO_L39N_7	IO_L39N_7	R3	I/O	
7	IO_L39P_7	IO_L39P_7	R4	I/O	
7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	R1	VREF	
7	IO_L40P_7	IO_L40P_7	R2	I/O	
7	N.C. (�)	IO_L46N_7	M8 I/0		
7	N.C. (�)	IO_L46P_7	M9	I/O	
7	N.C. (�)	IO_L49N_7	N6	I/O	
7	N.C. (�)	IO_L49P_7	M5 I/0		
7	N.C. (�)	IO_L50N_7	N4	I/O	
7	N.C. (�)	IO_L50P_7	N5	I/O	
7	VCCO_7	VCCO_7	E3	VCCO	
7	VCCO_7	VCCO_7	J3	VCCO	

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре	
N/A	VCCINT	VCCINT	V12	VCCINT	
N/A	VCCINT	VCCINT	W12	VCCINT	
N/A	VCCINT	VCCINT	M13	VCCINT	
N/A	VCCINT	VCCINT	W13	VCCINT	
N/A	VCCINT	VCCINT	M14	VCCINT	
N/A	VCCINT	VCCINT	W14	VCCINT	
N/A	VCCINT	VCCINT	L15	VCCINT	
N/A	VCCINT	VCCINT	Y15	VCCINT	
N/A	VCCINT	VCCINT	L16	VCCINT	
N/A	VCCINT	VCCINT	Y16	VCCINT	
N/A	VCCINT	VCCINT	M17	VCCINT	
N/A	VCCINT	VCCINT	W17	VCCINT	
N/A	VCCINT	VCCINT	M18	VCCINT	
N/A	VCCINT	VCCINT	W18	VCCINT	
N/A	VCCINT	VCCINT	M19	VCCINT	
N/A	VCCINT	VCCINT	N19	VCCINT	
N/A	VCCINT	VCCINT	P19	VCCINT	
N/A	VCCINT	VCCINT	U19	VCCINT	
N/A	VCCINT	VCCINT	V19	VCCINT	
N/A	VCCINT	VCCINT	W19	VCCINT	
N/A	VCCINT	VCCINT	L20	VCCINT	
N/A	VCCINT	VCCINT	R20	VCCINT	
N/A	VCCINT	VCCINT	T20	VCCINT	
N/A	VCCINT	VCCINT	Y20	VCCINT	
VCCAUX	CCLK	CCLK	AH28	CONFIG	
VCCAUX	DONE	DONE	AJ28	CONFIG	
VCCAUX	HSWAP_EN	HSWAP_EN	A3	CONFIG	
VCCAUX	M0	MO	AJ3	CONFIG	
VCCAUX	M1	M1	AH3	CONFIG	
VCCAUX	M2	M2	AK3	CONFIG	
VCCAUX	PROG_B	PROG_B	B3	CONFIG	
VCCAUX	ТСК	ТСК	B28 JTA		
VCCAUX	TDI	TDI	C3 JTA		
VCCAUX	TDO	TDO	C28	JTAG	
VCCAUX	TMS	TMS	A28	JTAG	

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
3	IO_L48P_3	IO_L48P_3	AB24	I/O
3	N.C. (�)	IO_L49N_3	AA26	I/O
3	N.C. (♦)	IO_L49P_3	AA25	I/O
3	IO_L50N_3	IO_L50N_3	Y25	I/O
3	IO_L50P_3	IO_L50P_3	Y24	I/O
3	N.C. (�)	IO_L51N_3	V24	I/O
3	N.C. (♦)	IO_L51P_3	W24	I/O
3	VCCO_3	VCCO_3	AA23	VCCO
3	VCCO_3	VCCO_3	AB23	VCCO
3	VCCO_3	VCCO_3	AB29	VCCO
3	VCCO_3	VCCO_3	AB33	VCCO
3	VCCO_3	VCCO_3	AD27	VCCO
3	VCCO_3	VCCO_3	AD31	VCCO
3	VCCO_3	VCCO_3	AG28	VCCO
3	VCCO_3	VCCO_3	AG32	VCCO
3	VCCO_3	VCCO_3	AL32	VCCO
3	VCCO_3	VCCO_3	W23	VCCO
3	VCCO_3	VCCO_3	W31	VCCO
3	VCCO_3	VCCO_3	Y23	VCCO
3	VCCO_3	VCCO_3	Y27	VCCO
4	IO	IO	AD18	I/O
4	IO	IO	AD19	I/O
4	IO	IO	AD20	I/O
4	IO	IO	AD22	I/O
4	IO	IO	AE18	I/O
4	IO	IO	AE19	I/O
4	IO	IO	AE22	I/O
4	N.C. (♦)	IO	AE24	I/O
4	IO	IO	AF24	I/O
4	N.C. (♦)	IO	AF26	I/O
4	IO	IO	AG26	I/O
4	IO	IO	AG27	I/O
4	IO	IO	AJ27	I/O
4	IO	IO	AJ29	I/O
4	IO	IO	AK25	I/O
4	IO	IO	AN26	I/O
4	IO/VREF_4	IO/VREF_4	AF21	VREF
4	IO/VREF_4	IO/VREF_4	AH23	VREF
4	IO/VREF_4	IO/VREF_4	AK18	VREF
4	IO/VREF_4	IO/VREF_4	AL30	VREF

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000XC3S5000Pin NamePin Name		FG1156 Pin Number	Туре	
5	VCCO_5	VCCO_5	AJ13	VCCO	
5	VCCO_5	VCCO_5	AL11 VC		
5	VCCO_5	VCCO_5	AL16	VCCO	
5	VCCO_5	VCCO_5	AM4	VCCO	
5	VCCO_5	VCCO_5	AM8	VCCO	
5	VCCO_5	VCCO_5	AN13	VCCO	
6	IO	Ю	AH1	I/O	
6	IO	IO	AH2	I/O	
6	IO	Ю	V9	I/O	
6	IO	Ю	V10	I/O	
6	IO_L01N_6/VRP_6	IO_L01N_6/VRP_6	AM2	DCI	
6	IO_L01P_6/VRN_6	IO_L01P_6/VRN_6	AM1	DCI	
6	IO_L02N_6	IO_L02N_6	AL2	I/O	
6	IO_L02P_6	IO_L02P_6	AL1	I/O	
6	IO_L03N_6/VREF_6	IO_L03N_6/VREF_6	AK3	VREF	
6	IO_L03P_6	IO_L03P_6	AK2	I/O	
6	IO_L04N_6	IO_L04N_6	AJ4	I/O	
6	IO_L04P_6	IO_L04P_6	AJ3	I/O	
6	IO_L05N_6	IO_L05N_6	AJ2	I/O	
6	IO_L05P_6	IO_L05P_6	AJ1	I/O	
6	IO_L06N_6	IO_L06N_6	AH6	I/O	
6	IO_L06P_6	IO_L06P_6	AH5	I/O	
6	IO_L07N_6	IO_L07N_6	AG6	I/O	
6	IO_L07P_6	IO_L07P_6	AG5	I/O	
6	IO_L08N_6	IO_L08N_6	AG2	I/O	
6	IO_L08P_6	IO_L08P_6	AG1	I/O	
6	IO_L09N_6/VREF_6	IO_L09N_6/VREF_6	AF7	VREF	
6	IO_L09P_6	IO_L09P_6	AF6	I/O	
6	IO_L10N_6	IO_L10N_6	AG4	I/O	
6	IO_L10P_6	IO_L10P_6	AF4	I/O	
6	IO_L11N_6	IO_L11N_6	AF3	I/O	
6	IO_L11P_6	IO_L11P_6	AF2	I/O	
6	IO_L12N_6	IO_L12N_6	AF8	I/O	
6	IO_L12P_6	IO_L12P_6	AE9	I/O	
6	IO_L13N_6	IO_L13N_6	AE8	I/O	
6	IO_L13P_6/VREF_6	IO_L13P_6/VREF_6	AE7	VREF	
6	IO_L14N_6	IO_L14N_6	AE6	I/O	
6	IO_L14P_6	IO_L14P_6	AE5	I/O	
6	IO_L15N_6	IO_L15N_6	AE4	I/O	
6	IO_L15P_6	IO_L15P_6	AE3	I/O	

Revision History

Date	Version	Description
04/03/03	1.0	Initial Xilinx release.
04/21/03	1.1	Added information on the VQ100 package footprint, including a complete pinout table (Table 87) and footprint diagram (Figure 44). Updated Table 85 with final I/O counts for the VQ100 package. Also added final differential I/O pair counts for the TQ144 package. Added clarifying comments to HSWAP_EN pin description on page 119. Updated the footprint diagram for the FG900 package shown in Figure 55a and Figure 55b. Some thick lines separating I/O banks were incorrect. Made cosmetic changes to Figure 40, Figure 42, and Figure 43. Updated Xilinx hypertext links. Added XC3S200 and XC3S400 to Pin Name column in Table 91.
05/12/03	1.1.1	AM32 pin was missing GND label in FG1156 package diagram (Figure 53).
07/11/03	1.1.2	Corrected misspellings of GCLK in Table 69 and Table 70. Changed CMOS25 to LVCMOS25 in Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in Table 110, key, and package drawing.
07/29/03	1.2	Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair names. The affected balls on the FG1156 package include G1, G2, G33, G34, U9, U10, U25, U26, V9, V10, V25 V26, AH1, AH2, AH33, AH34. The number of LVDS pairs is unaffected. Modified affected balls and re-sorted rows in Table 110. Updated affected balls in Figure 53. Also updated ASCII and Excel electronic versions of FG1156 pinout.
08/19/03	1.2.1	Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 80. Added note that TDO is a totem-pole output in Table 77.
10/09/03	1.2.2	Some pins had incorrect bank designations and were improperly sorted in Table 93. No pin names or functions changed. Renamed DCI_IN to DCI and added black diamond to N.C. pins in Table 93. In Figure 47, removed some extraneous text from pin 106 and corrected spelling of pins 45, 48, and 81.
12/17/03	1.3	Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array). Made cosmetic changes to the TQ144 footprint (Figure 46), the PQ208 footprint (Figure 47), the FG676 footprint (Figure 53), and the FG900 footprint (Figure 55). Clarified wording in Precautions When Using the JTAG Port in 3.3V Environments section.
02/27/04	1.4	Clarified wording in Using JTAG Port After Configuration section. In Table 81, reduced package height for FG320 and increased maximum I/O values for the FG676, FG900, and FG1156 packages.
07/13/04	1.5	Added information on lead-free (Pb-free) package options to the Package Overview section plus Table 81 and Table 83. Clarified the VRN_# reference resistor requirements for I/O standards that use single termination as described in the DCI Termination Types section and in Figure 42b. Graduated from Advance Product Specification to Product Specification.
08/24/04	1.5.1	Removed XC3S2000 references from FG1156: 1156-lead Fine-pitch Ball Grid Array.
01/17/05	1.6	Added XC3S50 in CP132 package option. Added XC3S2000 in FG456 package option. Added XC3S4000 in FG676 package option. Added Selecting the Right Package Option section. Modified or added Table 81, Table 83, Table 84, Table 85, Table 89, Table 90, Table 100, Table 102, Table 103, Table 106, Figure 45, and Figure 53.
08/19/05	1.7	Removed term "weak" from the description of pull-up and pull-down resistors. Added IDCODE Register values. Added signal integrity precautions to CCLK: Configuration Clock and indicated that CCLK should be treated as an I/O during Master mode in Table 79.
04/03/06	2.0	Added Package Thermal Characteristics. Updated Figure 41 to make it a more obvious example. Added detail about which pins have dedicated pull-up resistors during configuration, regardless of the HSWAP_EN value to Table 70 and to Pin Behavior During Configuration. Updated Precautions When Using the JTAG Port in 3.3V Environments.
04/26/06	2.1	Corrected swapped data row in Table 86. The Theta-JA with zero airflow column was swapped with the Theta-JC column. Made additional notations on CONFIG and JTAG pins that have pull-up resistors during configuration, regardless of the HSWAP_EN input.
05/25/07	2.2	Added link on page 128 to Material Declaration Data Sheets. Corrected units typo in Table 74. Added Note 1 to Table 103 about VREF for XC3S1500 in FG676.

www.xilinx.com