E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

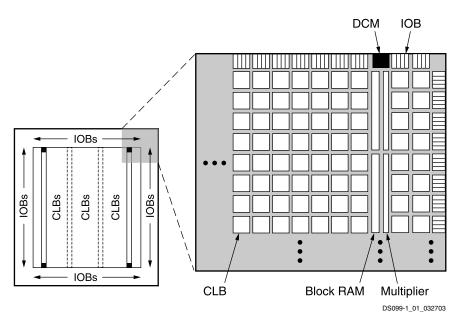
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	6912
Number of Logic Elements/Cells	62208
Total RAM Bits	1769472
Number of I/O	633
Number of Gates	400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	900-BBGA
Supplier Device Package	900-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s4000-4fg900c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Architectural Overview

The Spartan-3 family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to implement logic and storage elements that can be used as flip-flops or latches. CLBs can be programmed to perform a wide variety of logical functions as well as to store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Twenty-six different signal standards, including eight high-performance differential standards, are available as shown in Table 2. Double Data-Rate (DDR) registers are included. The Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board designs.
- Block RAM provides data storage in the form of 18-Kbit dual-port blocks.
- Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product.
- Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. The XC3S50 has a single column of block RAM embedded in the array. Those devices ranging from the XC3S200 to the XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 devices have four RAM columns. Each column is made up of several 18-Kbit RAM blocks; each block is associated with a dedicated multiplier. The DCMs are positioned at the ends of the outer block RAM columns.

The Spartan-3 family features a rich network of traces and switches that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

Notes:

1. The two additional block RAM columns of the XC3S4000 and XC3S5000 devices are shown with dashed lines. The XC3S50 has only the block RAM column on the far left.

Figure 1: Spartan-3 Family Architecture

Configuration

Spartan-3 FPGAs are programmed by loading configuration data into robust reprogrammable static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. Before powering on the FPGA, configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. After applying

ESD Protection

Clamp diodes protect all device pads against damage from Electro-Static Discharge (ESD) as well as excessive voltage transients. Each I/O has two clamp diodes: One diode extends P-to-N from the pad to V_{CCO} and a second diode extends N-to-P from the pad to GND. During operation, these diodes are normally biased in the off state. These clamp diodes are always connected to the pad, regardless of the signal standard selected. The presence of diodes limits the ability of Spartan-3 FPGA I/Os to tolerate high signal voltages. The V_{IN} absolute maximum rating in Table 28, page 58 specifies the voltage range that I/Os can tolerate.

Slew Rate Control and Drive Strength

Two options, FAST and SLOW, control the output slew rate. The FAST option supports output switching at a high rate. The SLOW option reduces bus transients. These options are only available when using one of the LVCMOS or LVTTL standards, which also provide up to seven different levels of current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the appropriate drive strength level is yet another means to minimize bus transients.

Table 7 shows the drive strengths that the LVCMOS and LVTTL standards support.

Signal Standard	Current Drive (mA)							
(IOSTANDARD)	2	4	6	8	12	16	24	
LVTTL	1	1	1	1	1	1	1	
LVCMOS33	1	1	1	1	1	1	~	
LVCMOS25	1	1	1	1	1	1	1	
LVCMOS18	1	1	1	1	1	1	-	
LVCMOS15	1	1	1	1	1	_	-	
LVCMOS12	1	1	1	-	-	-	-	

Table 7: Programmable Output Drive Current

Boundary-Scan Capability

All Spartan-3 FPGA IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. During boundary- scan operations such as EXTEST and HIGHZ the I/O pull-down resistor is active. For more information, see Boundary-Scan (JTAG) Mode, page 50, and refer to the "Using Boundary-Scan and BSDL Files" chapter in <u>UG331</u>.

SelectIO Interface Signal Standards

The IOBs support 18 different single-ended signal standards, as listed in Table 8. Furthermore, the majority of IOBs can be used in specific pairs supporting any of eight differential signal standards, as shown in Table 9.

To define the SelectIO[™] interface signaling standard in a design, set the IOSTANDARD attribute to the appropriate setting. Xilinx provides a variety of different methods for applying the IOSTANDARD for maximum flexibility. For a full description of different methods of applying attributes to control IOSTANDARD, refer to the "Using I/O Resources" chapter in <u>UG331</u>.

Together with placing the appropriate I/O symbol, two externally applied voltage levels, V_{CCO} and V_{REF} , select the desired signal standard. The V_{CCO} lines provide current to the output driver. The voltage on these lines determines the output voltage swing for all standards except GTL and GTLP.

All single-ended standards except the LVCMOS, LVTTL, and PCI varieties require a Reference Voltage (V_{REF}) to bias the input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use such a signal standard, a few specifically reserved I/O pins on the same bank automatically convert to V_{REF} inputs. When using one of the LVCMOS standards, these pins remain I/Os because the V_{CCO} voltage biases the input-switching threshold, so there is no need for V_{REF} . Select the V_{CCO} and V_{REF} levels to suit the desired single-ended standard according to Table 8.

The DCI feature operates independently for each of the device's eight banks. Each bank has an 'N' reference pin (VRN) and a 'P' reference pin, (VRP), to calibrate driver and termination resistance. Only when using a DCI standard on a given bank do these two pins function as VRN and VRP. When not using a DCI standard, the two pins function as user I/Os. As shown in Figure 9, add an external reference resistor to pull the VRN pin up to V_{CCO} and another reference resistor to pull the VRP pin down to GND. Also see Figure 42, page 116. Both resistors have the same value—commonly 50Ω —with one-percent tolerance, which is either the characteristic impedance of the line or twice that, depending on the DCI standard in use. Standards having a symbol name that contains the letters "DV2" use a reference resistor value that is twice the line impedance. DCI adjusts the output driver impedance to match the reference resistors' value or half that, according to the standard. DCI always adjusts the on-chip termination resistors to directly match the reference resistors' value.

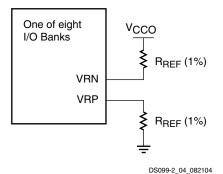
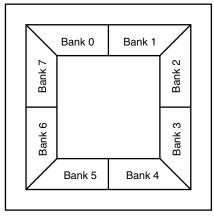


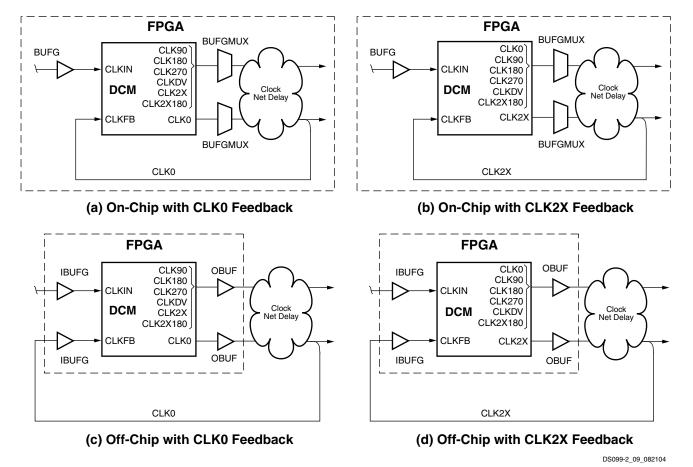
Figure 9: Connection of Reference Resistors (R_{BFF})

The rules guiding the use of DCI standards on banks are as follows:


- No more than one DCI I/O standard with a Single Termination is allowed per bank.
- No more than one DCI I/O standard with a Split Termination is allowed per bank.
- Single Termination, Split Termination, Controlled- Impedance Driver, and Controlled-Impedance Driver with Half Impedance can co-exist in the same bank.

See also The Organization of IOBs into Banks, immediately below, and DCI: User I/O or Digitally Controlled Impedance Resistor Reference Input, page 115.

The Organization of IOBs into Banks


IOBs are allocated among eight banks, so that each side of the device has two banks, as shown in Figure 10. For all packages, each bank has independent V_{REF} lines. For example, V_{REF} Bank 3 lines are separate from the V_{REF} lines going to all other banks.

For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine Pitch Ball Grid Array (FG) packages, each bank has dedicated V_{CCO} lines. For example, the V_{CCO} Bank 7 lines are separate from the V_{CCO} lines going to all other banks. Thus, Spartan-3 devices in these packages support eight independent V_{CCO} supplies.

DS099-2_03_082104

Figure 10: Spartan-3 FPGA I/O Banks (Top View)

Notes:

1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180, and CLKDV outputs are available.

Figure 21: Input Clock, Output Clock, and Feedback Connections for the DLL

In the on-chip synchronization case (the [a] and [b] sections of Figure 21), it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in the [a] section of Figure 21, the feedback loop is created by routing CLK0 (or CLK2X, in the [b] section) to a global clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case (the [c] and [d] sections of Figure 21), CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in the [c] section of Figure 21, the feedback loop is formed by feeding CLK0 (or CLK2X, in the [d] section) back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input.

DLL Frequency Modes

The DLL supports two distinct operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DLL_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits all seven DLL clock outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows the CLK0, CLK180 and CLKDV outputs to operate at the highest possible frequencies. The remaining DLL clock outputs are not available for use in High Frequency mode.

Accommodating High Input Frequencies

If the frequency of the CLKIN signal is high such that it exceeds the maximum permitted, divide it down to an acceptable value using the CLKIN_DIVIDE_BY_2 attribute. When this attribute is set to TRUE, the CLKIN frequency is divided by a factor of two just as it enters the DCM.

The output frequency (f_{CLKEX}) can be expressed as a function of the incoming clock frequency (f_{CLKIN}) as follows:

Regarding the two attributes, it is possible to assign any combination of integer values, provided that two conditions are met:

- The two values fall within their corresponding ranges, as specified in Table 18.
- The f_{CLKFX} frequency calculated from the above expression accords with the DCM's operating frequency specifications.

For example, if $CLKFX_MULTIPLY = 5$ and $CLKFX_DIVIDE = 3$, then the frequency of the output clock signal would be 5/3 that of the input clock signal.

DFS Frequency Modes

The DFS supports two operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DFS_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits the two DFS outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows both these outputs to operate at the highest possible frequencies.

DFS With or Without the DLL

The DFS component can be used with or without the DLL component:

Without the DLL, the DFS component multiplies or divides the CLKIN signal frequency according to the respective CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating a clock with the new target frequency on the CLKFX and CLKFX180 outputs. Though classified as belonging to the DLL component, the CLKIN input is shared with the DFS component. This case does not employ feedback loop; therefore, it cannot correct for clock distribution delay.

With the DLL, the DFS operates as described in the preceding case, only with the additional benefit of eliminating the clock distribution delay. In this case, a feedback loop from the CLK0 output to the CLKFB input must be present.

The DLL and DFS components work together to achieve this phase correction as follows: Given values for the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL selects the delay element for which the output clock edge coincides with the input clock edge whenever mathematically possible. For example, when CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input and output clock edges will coincide every three input periods, which is equivalent in time to five output periods.

Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values achieve faster lock times. With no factors common to the two attributes, alignment will occur once with every number of cycles equal to the CLKFX_DIVIDE value. Therefore, it is recommended that the user reduce these values by factoring wherever possible. For example, given CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both value-pairs will result in the multiplication of clock frequency by 3/2, the latter value-pair will enable the DLL to lock more quickly.

Table 18: DFS Attributes

Attribute Description		Values
DFS_FREQUENCY_MODE	Chooses between High Frequency and Low Frequency modes	Low, High
CLKFX_MULTIPLY	Frequency multiplier constant	Integer from 2 to 32
CLKFX_DIVIDE	Frequency divisor constant	Integer from 1 to 32

Table 19: DFS Signals

Signal	Signal Direction Description		
CLKFX	Output	Multiplies the CLKIN frequency by the attribute-value ratio (CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency.	
CLKFX180	Output	Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.	

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Table 43: Propagation Times for the IOB Input Path

	Description			Speed Grade		
Symbol		Conditions	Device	-5	-4	Units
				Max	Max	
Propagation ⁻	Times					
T _{IOPLI}	The time it takes for data to travel	LVCMOS25 ⁽²⁾ ,	XC3S50	2.01	2.31	ns
	from the Input pin through the IFF latch to the I output with no	IOBDELAY = NONE	XC3S200	1.50	1.72	ns
	input delay programmed		XC3S400	1.50	1.72	ns
			XC3S1000	2.01	2.31	ns
			XC3S1500	2.01	2.31	ns
			XC3S2000	2.01	2.31	ns
			XC3S4000	2.09	2.41	ns
			XC3S5000	2.18	2.51	ns
T _{IOPLID}	The time it takes for data to travel	LVCMOS25 ⁽²⁾ , IOBDELAY = IFD	XC3S50	4.75	5.46	ns
	from the Input pin through the IFF latch to the I output with the		XC3S200	4.89	5.62	ns
	input delay programmed		XC3S400	4.76	5.48	ns
			XC3S1000	5.38	6.18	ns
			XC3S1500	5.76	6.62	ns
			XC3S2000	7.04	8.09	ns
			XC3S4000	7.52	8.65	ns
			XC3S5000	7.69	8.84	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in Table 32 and Table 35.
- 2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 44.

Table 44: Input Timing Adjustments for IOB

	Add the Adju	stment Below	
Convert Input Time from LVCMOS25 to the Following Signal Standard (IOSTANDARD)	Speed	Units	
	-5	-4	
Single-Ended Standards			
GTL, GTL_DCI	0.44	0.50	ns
GTLP, GTLP_DCI	0.36	0.42	ns
HSLVDCI_15	0.51	0.59	ns
HSLVDCI_18	0.29	0.33	ns
HSLVDCI_25	0.51	0.59	ns
HSLVDCI_33	0.51	0.59	ns
HSTL_I, HSTL_I_DCI	0.51	0.59	ns
HSTL_III, HSTL_III_DCI	0.37	0.42	ns
HSTL_I_18, HSTL_I_DCI_18	0.36	0.41	ns
HSTL_II_18, HSTL_II_DCI_18	0.39	0.45	ns
HSTL_III_18, HSTL_III_DCI_18	0.45	0.52	ns
LVCMOS12	0.63	0.72	ns

Table 47: Output Timing Adjustments for IOB (Cont'd)

		Add the Adju	stment Below			
	Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD)			Speed Grade		
. enerni,	,					
LVCMOS18	Slow	2 mA	5.49	6.31	ns	
		4 mA	3.45	3.97	ns	
		6 mA	2.84	3.26	ns	
		8 mA	2.62	3.01	ns	
		12 mA	2.11	2.43	ns	
		16 mA	2.07	2.38	ns	
	Fast	2 mA	2.50	2.88	ns	
		4 mA	1.15	1.32	ns	
		6 mA	0.96	1.10	ns	
		8 mA	0.87	1.01	ns	
		12 mA	0.79	0.91	ns	
		16 mA	0.76	0.87	ns	
LVDCI_18		0.81	0.94	ns		
LVDCI_DV2_18			0.67	0.77	ns	
LVCMOS25	Slow	2 mA	6.43	7.39	ns	
		4 mA	4.15	4.77	ns	
		6 mA	3.38	3.89	ns	
		8 mA	2.99	3.44	ns	
		12 mA	2.53	2.91	ns	
		16 mA	2.50	2.87	ns	
		24 mA	2.22	2.55	ns	
	Fast	2 mA	3.27	3.76	ns	
		4 mA	1.87	2.15	ns	
		6 mA	0.32	0.37	ns	
		8 mA	0.19	0.22	ns	
		12 mA	0	0	ns	
		16 mA	-0.02	-0.01	ns	
		24 mA	-0.04	-0.02	ns	
LVDCI_25			0.27	0.31	ns	
LVDCI_DV2_25			0.16	0.19	ns	

Table 56: Block RAM Timing

Symbol	Description	•	-5	-4		Units
		Min	Max	Min	Мах	_
Clock-to-Output	Times					
Т _{ВСКО}	When reading from the Block RAM, the time from the active transition at the CLK input to data appearing at the DOUT output	-	2.09	-	2.40	ns
Setup Times						
T _{BDCK} Time from the setup of data at the DIN inputs to the active transition at the CLK input of the Block RAM		0.43	-	0.49	_	ns
Hold Times						
T _{BCKD} Time from the active transition at the Block RAM's CLK input to the point where data is last held at the DIN inputs		0	-	0	-	ns
Clock Timing				-	•	
T _{BPWH}	Block RAM CLK signal High pulse width	1.19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.37	∞	ns
T _{BPWL} Block RAM CLK signal Low pulse width		1.19	∞	1.37	∞	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 32.

2. For minimums, use the values reported by the Xilinx timing analyzer.

Clock Distribution Switching Characteristics

Table 57: Clock Distribution Switching Characteristics

Description		Maximum Speed Grade		Units	
		-5	-4		
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I-input to O-output delay	T _{GIO}	0.36	0.41	ns	
Global clock multiplexer (BUFGMUX) select S-input setup to I0- and I1-inputs. Same as BUFGCE enable CE-input	T _{GSI}	0.53	0.60	ns	

Notes:

1. For minimums, use the values reported by the Xilinx timing analyzer.

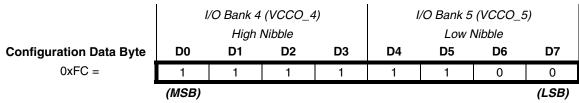
Date	Version	Description
05/25/07	2.2	Improved absolute maximum voltage specifications in Table 28, providing additional overshoot allowance. Improved XC3S50 HBM ESD to 2000V in Table 28. Based on extensive 90 nm production data, improved (reduced) the maximum quiescent current limits for the I _{CCINTQ} and I _{CCOQ} specifications in Table 34. Widened the recommended voltage range for the PCI standard and clarified the hysteresis footnote in Table 35. Noted restriction on combining differential outputs in Table 38. Updated footnote 1 in Table 64.
11/30/07	2.3	Updated 3.3V VCCO max from 3.45V to 3.465V in Table 32 and elsewhere. Reduced t_{ICCK} minimum from 0.50 μ s to 0.25 μ s in Table 65. Updated links to technical documentation.
06/25/08	2.4	Clarified dual marking. Added Mask and Fab Revisions. Added references to <u>XAPP459</u> in Table 28 and Table 32. Removed absolute minimum and added footnote referring to timing analyzer for minimum delay values. Added HSLVDCI to Table 48 and Table 50. Updated t _{DICK} in Table 51 to match largest possible value in speed file. Updated formatting and links.
12/04/09	2.5	Updated notes 2 and 3 in Table 28. Removed silicon process specific information and revised notes in Table 30. Updated note 3 in Table 32. Updated note 3 in Table 34. Updated note 5 in Table 35. Updated V_{OL} max and V_{OH} min for SSTL2_II in Table 36. Updated note 5 in Table 36. Updated JTAG Waveforms in Figure 39. Updated V_{ICM} max for LVPECL_25 in Table 37. Updated RT and VT for LVDS_25_DCI in Table 48. Updated Simultaneously Switching Output Guidelines. Noted that the CP132 package is being discontinued in Table 49. Removed minimum values for T_{MULTCK} clock-to-output times in Table 54. Updated footnote 3 in Table 58. Removed minimum values for T _{MULTCK} propagation times in Table 55. Removed silicon process specific information and revised notes in Table 61. Updated Phase Shifter (PS).
10/29/12	3.0	Added Notice of Disclaimer. Per <u>XCN07022</u> , updated the discontinued FG1156 and FGG1156 package discussion throughout document. Per <u>XCN08011</u> , updated the discontinued CP132 and CPG132 package discussion throughout document. Revised description of V _{IN} in Table 32 and added note 7. Added note 4 to Table 33. This product is not recommended for new designs.

Table 69: Types of Pins on Spartan-3 FPGAs (Cont'd)

Pin Type/ Color Code	Description	Pin Name
VREF	Dual-purpose pin that is either a user-I/O pin or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected.	IO/VREF_# IO_Lxxy_#/VREF_#
GND	Dedicated ground pin. The number of GND pins depends on the package used. All must be connected.	GND
VCCAUX	Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected to +2.5V.	VCCAUX
VCCINT	Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V.	VCCINT
VCCO	Dedicated I/O bank, output buffer power supply pin. Along with other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards.	VCCO_# CP132 and TQ144 Packages Only: VCCO_LEFT, VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM
GCLK	Dual-purpose pin that is either a user-I/O pin or an input to a specific global buffer input. Every package has eight dedicated GCLK pins.	IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1, IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3, IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5, IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7
N.C.	This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package.	N.C.

Notes:

1. # = I/O bank number, an integer between 0 and 7.


I/Os with Lxxy_# are part of a differential output pair. 'L' indicates differential output capability. The "xx" field is a two-digit integer, unique to each bank that identifies a differential pin-pair. The 'y' field is either 'P' for the true signal or 'N' for the inverted signal in the differential pair. The '#' field is the I/O bank number.

Pin Definitions

Table 70 provides a brief description of each pin listed in the Spartan-3 FPGA pinout tables and package footprint diagrams. Pins are categorized by their pin type, as listed in Table 69. See Detailed, Functional Pin Descriptions for more information.

Pin Name	Direction	Description
DIN	Input	Serial Data Input: During the Master or Slave Serial configuration modes, DIN is the serial configuration data input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is available as a user I/O. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option <i>Persist</i> permits this pin to retain its configuration function in the User mode.
DOUT	Output	Serial Data Output: In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of one FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in Slave Serial mode—so that configuration data passes from one to the next, in daisy-chain fashion. This "daisy chain" permits sequential configuration of multiple FPGAs. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option <i>Persist</i> permits this pin to retain its configuration function in the User mode.
INIT_B	Bidirectional (open-drain)	Initializing Configuration Memory/Configuration Error: Just after power is applied, the FPGA produces a Low-to-High transition on this pin indicating that initialization (<i>i.e.</i> , clearing) of the configuration memory has finished. Before entering the User mode, this pin functions as an open-drain output, which requires a pull-up resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the INIT_B pins from all FPGAs together so that the common node transitions High only after all of the FPGAs have been successfully initialized. Externally holding this pin Low beyond the initialization phase delays the start of configuration. This action stalls the FPGA at the configuration step just before the mode select pins are sampled. During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by asserting INIT_B Low. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option <i>Persist</i> permits this pin to retain its configuration function in the User mode.

Table 71: Dual-Purpose Pins Used in Master or Slave Serial Mode

Parallel Configuration Modes (SelectMAP)

This section describes the dual-purpose configuration pins used during the Master and Slave Parallel configuration modes, sometimes also called the SelectMAP modes. In both Master and Slave Parallel configuration modes, D0-D7 form the byte-wide configuration data input. See Table 75 for Mode Select pin settings required for Parallel modes.

As shown in Figure 41, D0 is the most-significant bit while D7 is the least-significant bit. Bits D0-D3 form the high nibble of the byte and bits D4-D7 form the low nibble.

In the Parallel configuration modes, both the VCCO_4 and VCCO_5 voltage supplies are required and must both equal the voltage of the attached configuration device, typically either 2.5V or 3.3V.

Assert Low both the chip-select pin, CS_B, and the read/write control pin, RDWR_B, to write the configuration data byte presented on the D0-D7 pins to the FPGA on a rising-edge of the configuration clock, CCLK. The order of CS_B and RDWR_B does not matter, although RDWR_B must be asserted throughout the configuration process. If RDWR_B is de-asserted during configuration, the FPGA aborts the configuration operation.

After configuration, these pins are available as general-purpose user I/O. However, the SelectMAP configuration interface is optionally available for debugging and dynamic reconfiguration. To use these SelectMAP pins after configuration, set the Persist bitstream generation option.

The Readback debugging option, for example, requires the Persist bitstream generation option. During Readback mode, assert CS_B Low, along with RDWR_B High, to read a configuration data byte from the FPGA to the D0-D7 bus on a rising CCLK edge. During Readback mode, D0-D7 are output pins.

In all the cases, the configuration data and control signals are synchronized to the rising edge of the CCLK clock signal.

Once the FPGA enters User mode after completing configuration, the DONE pin no longer drives the DONE pin Low. The bitstream generator option DonePin determines whether or not a pull-up resistor is present on the DONE pin to pull the pin to VCCAUX. If the pull-up resistor is eliminated, then the DONE pin must be pulled High using an external pull-up resistor or one of the FPGAs in the design must actively drive the DONE pin High via the DriveDone bitstream generator option.

The bitstream generator option DriveDone causes the FPGA to actively drive the DONE output High after configuration. This option should only be used in single-FPGA designs or on the last FPGA in a multi-FPGA daisy-chain.

By default, the bitstream generator software retains the pull-up resistor and does not actively drive the DONE pin as highlighted in Table 74, which shows the interaction of these bitstream options in single- and multi-FPGA designs.

DonePin	DriveDone	Single- or Multi- FPGA Design	Comments	
Pullnone	No	Single	External pull-up resistor, with value between 330Ω to $3.3k\Omega$, required on DONE.	
Pullnone	No	Multi	External pull-up resistor, with value between 330Ω to $3.3k\Omega$, required on common node connecting to all DONE pins.	
Pullnone	Yes	Single	OK, no external requirements.	
Pullnone	Yes	Multi	DriveDone on last device in daisy-chain only. No external requirements.	
Pullup	No	Single	OK, but pull-up on DONE pin has slow rise time. May require 330Ω pull-up resistor for high CCLK frequencies.	
Pullup	No	Multi	External pull-up resistor, with value between 330Ω to $3.3k\Omega$, required on commonode connecting to all DONE pins.	
Pullup	Yes	Single	OK, no external requirements.	
Pullup	Yes	Multi	DriveDone on last device in daisy-chain only. No external requirements.	

Table 74: DonePin and DriveDone Bitstream Option Interaction

M2, M1, M0: Configuration Mode Selection

The M2, M1, and M0 inputs select the FPGA configuration mode, as described in Table 75. The logic levels applied to the mode pins are sampled on the rising edge of INIT_B.

Configuration Mode	M2	M1	MO
Master Serial	0	0	0
Slave Serial	1	1	1
Master Parallel	0	1	1
Slave Parallel	1	1	0
JTAG	1	0	1
Reserved	0	0	1
Reserved	0	1	0
Reserved	1	0	0
After Configuration	Х	Х	Х

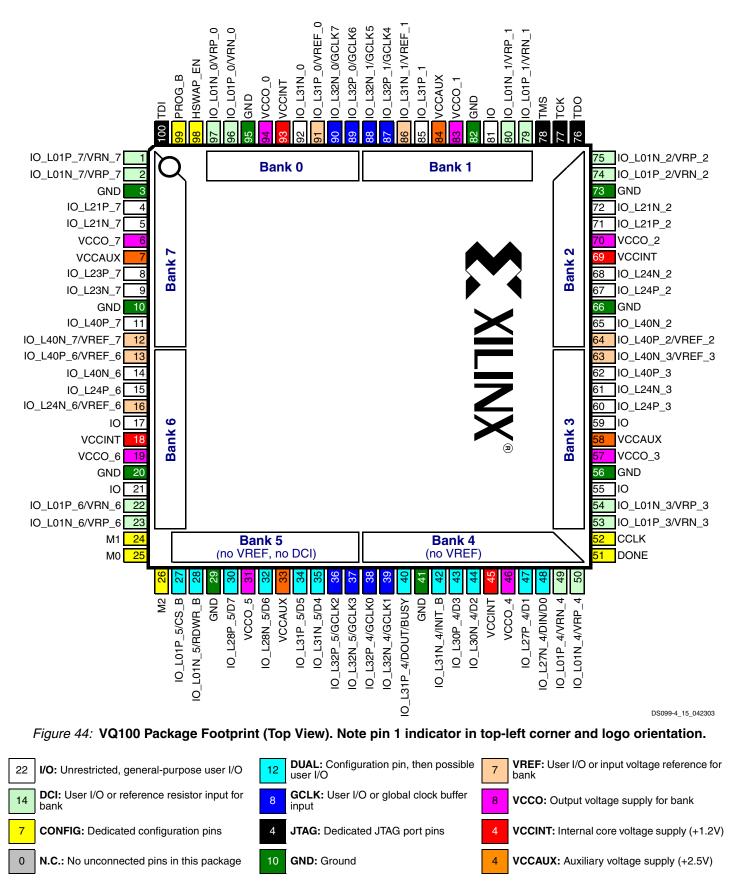
Table 75: Spartan-3 FPGA Mode Select Settings

Notes:

1. X =don't care, either 0 or 1.

Before and during configuration, the mode pins have an internal pull-up resistor to VCCAUX, regardless of the HSWAP_EN pin. If the mode pins are unconnected, then the FPGA defaults to the Slave Serial configuration mode. After configuration successfully completes, any levels applied to these input are ignored. Furthermore, the bitstream generator options M0Pin, M1Pin, and M2Pin determines whether a pull-up resistor, pull-down resistor, or no resistor is present on its respective mode pin, M0, M1, or M2.

Table 80: Bitstream Options Affecting Spartan-3 Device Pins (Cont'd)


Affected Pin Name(s)	Bitstream Generation Function	Option Variable Name	Values (<u>Default</u>)
CCLK	After configuration, this bitstream option either pulls CCLK to VCCAUX via a pull-up resistor, or allows CCLK to float.	CclkPin	<u>Pullup</u>Pullnone
CCLK	For Master configuration modes, this option sets the approximate frequency, in MHz, for the internal silicon oscillator.	ConfigRate	• 3, <u>6</u> , 12, 25, 50
PROG_B	A pull-up resistor to VCCAUX exists on PROG_B during configuration. After configuration, this bitstream option either pulls PROG_B to VCCAUX via a pull-up resistor, or allows PROG_B to float.	ProgPin	<u>Pullup</u>Pullnone
DONE	After configuration, this bitstream option either pulls DONE to VCCAUX via a pull-up resistor, or allows DONE to float. See also DriveDone option.	DonePin	<u>Pullup</u>Pullnone
DONE	If set to Yes, this option allows the FPGA's DONE pin to drive High when configuration completes. By default, the DONE is an open-drain output and can only drive Low. Only single FPGAs and the last FPGA in a multi-FPGA daisy-chain should use this option.	DriveDone	• <u>No</u> • Yes
M2	After configuration, this bitstream option either pulls M2 to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows M2 to float.	M2Pin	<u>Pullup</u>PulldownPullnone
M1	After configuration, this bitstream option either pulls M1 to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows M1 to float.	M1Pin	<u>Pullup</u>PulldownPullnone
MO	After configuration, this bitstream option either pulls M0 to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows M0 to float.	M0Pin	 <u>Pullup</u> Pulldown Pullnone
HSWAP_EN	After configuration, this bitstream option either pulls HSWAP_EN to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows HSWAP_EN to float.	HswapenPin	<u>Pullup</u>PulldownPullnone
TDI	After configuration, this bitstream option either pulls TDI to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows TDI to float.	TdiPin	<u>Pullup</u>PulldownPullnone
TMS	After configuration, this bitstream option either pulls TMS to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows TMS to float.	TmsPin	 <u>Pullup</u> Pulldown Pullnone
ТСК	After configuration, this bitstream option either pulls TCK to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows TCK to float.	TckPin	 <u>Pullup</u> Pulldown Pullnone
TDO	After configuration, this bitstream option either pulls TDO to VCCAUX via a pull-up resistor, to ground via a pull-down resistor, or allows TDO to float.	TdoPin	<u>Pullup</u>PulldownPullnone

Setting Bitstream Generator Options

Refer to the "BitGen" chapter in the Xilinx ISE® software documentation.

EXILINX

VQ100 Footprint

Table 93: PQ208 Package Pinout (Cont'd)

Bank	XC3S50 Pin Name	XC3S200, XC3S400 Pin Names	PQ208 Pin Number	Туре
3	IO_L20P_3	IO_L20P_3	P114	I/O
3	IO_L21N_3	IO_L21N_3	P117	I/O
3	IO_L21P_3	IO_L21P_3	P116	I/O
3	IO_L22N_3	IO_L22N_3	P120	I/O
3	IO_L22P_3	IO_L22P_3	P119	I/O
3	IO_L23N_3	IO_L23N_3	P123	I/O
3	IO_L23P_3/VREF_3	IO_L23P_3/VREF_3	P122	VREF
3	IO_L24N_3	IO_L24N_3	P125	I/O
3	IO_L24P_3	IO_L24P_3	P124	I/O
3	N.C. (�)	IO_L39N_3	P128	I/O
3	N.C. (�)	IO_L39P_3	P126	I/O
3	IO_L40N_3/VREF_3	IO_L40N_3/VREF_3	P131	VREF
3	IO_L40P_3	IO_L40P_3	P130	I/O
3	VCCO_3	VCCO_3	P110	VCCO
3	VCCO_3	VCCO_3	P127	VCCO
4	10	10	P93	I/O
4	N.C. (�)	10	P97	I/O
4	IO/VREF_4	IO/VREF_4	P85	VREF
4	N.C. (�)	IO/VREF_4	P96	VREF
4	IO/VREF_4	IO/VREF_4	P102	VREF
4	IO_L01N_4/VRP_4	IO_L01N_4/VRP_4	P101	DCI
4	IO_L01P_4/VRN_4	IO_L01P_4/VRN_4	P100	DCI
4	IO_L25N_4	IO_L25N_4	P95	I/O
4	IO_L25P_4	IO_L25P_4	P94	I/O
4	IO_L27N_4/DIN/D0	IO_L27N_4/DIN/D0	P92	DUAL
4	IO_L27P_4/D1	IO_L27P_4/D1	P90	DUAL
4	IO_L30N_4/D2	IO_L30N_4/D2	P87	DUAL
4	IO_L30P_4/D3	IO_L30P_4/D3	P86	DUAL
4	IO_L31N_4/INIT_B	IO_L31N_4/INIT_B	P83	DUAL
4	IO_L31P_4/DOUT/BUSY	IO_L31P_4/DOUT/BUSY	P81	DUAL
4	IO_L32N_4/GCLK1	IO_L32N_4/GCLK1	P80	GCLK
4	IO_L32P_4/GCLK0	IO_L32P_4/GCLK0	P79	GCLK
4	VCCO_4	VCCO_4	P84	VCCO
4	VCCO_4	VCCO_4	P98	VCCO
5	IO	IO	P63	I/O
5	IO	IO	P71	I/O
5	IO/VREF_5	IO/VREF_5	P78	VREF
5	IO_L01N_5/RDWR_B	IO_L01N_5/RDWR_B	P58	DUAL
5	IO_L01P_5/CS_B	IO_L01P_5/CS_B	P57	DUAL
5	IO_L10N_5/VRP_5	IO_L10N_5/VRP_5	P62	DCI

Table 96: FT256 Package Pinout (Cont'd)

Bank	XC3S200, XC3S400, XC3S1000 Pin Name	FT256 Pin Number	Туре
4	IO_L28N_4	P11	I/O
4	IO_L28P_4	R11	I/O
4	IO_L29N_4	M10	I/O
4	IO_L29P_4	N10	I/O
4	IO_L30N_4/D2	P10	DUAL
4	IO_L30P_4/D3	R10	DUAL
4	IO_L31N_4/INIT_B	N9	DUAL
4	IO_L31P_4/DOUT/BUSY	P9	DUAL
4	IO_L32N_4/GCLK1	R9	GCLK
4	IO_L32P_4/GCLK0	Т9	GCLK
4	VCCO_4	L9	VCCO
4	VCCO_4	L10	VCCO
4	VCCO_4	M9	VCCO
5	ю	N5	I/O
5	IO	P7	I/O
5	IO	T5	I/O
5	IO/VREF_5	Т8	VREF
5	IO_L01N_5/RDWR_B	Т3	DUAL
5	IO_L01P_5/CS_B	R3	DUAL
5	IO_L10N_5/VRP_5	T4	DCI
5	IO_L10P_5/VRN_5	R4	DCI
5	IO_L27N_5/VREF_5	R5	VREF
5	IO_L27P_5	P5	I/O
5	IO_L28N_5/D6	N6	DUAL
5	IO_L28P_5/D7	M6	DUAL
5	IO_L29N_5	R6	I/O
5	IO_L29P_5/VREF_5	P6	VREF
5	IO_L30N_5	N7	I/O
5	IO_L30P_5	M7	I/O
5	IO_L31N_5/D4	T7	DUAL
5	IO_L31P_5/D5	R7	DUAL
5	IO_L32N_5/GCLK3	P8	GCLK
5	IO_L32P_5/GCLK2	N8	GCLK
5	VCCO_5	L7	VCCO
5	VCCO_5	L8	VCCO
5	VCCO_5	M8	VCCO
6	IO	K1	I/O
6	IO_L01N_6/VRP_6	R1	DCI
6	IO_L01P_6/VRN_6	P1	DCI
6	IO_L16N_6	P2	I/O

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
N/A	GND	GND	R17	GND
N/A	GND	GND	T17	GND
N/A	GND	GND	U17	GND
N/A	GND	GND	V17	GND
N/A	GND	GND	AC17	GND
N/A	GND	GND	AF17	GND
N/A	GND	GND	AK17	GND
N/A	GND	GND	N18	GND
N/A	GND	GND	P18	GND
N/A	GND	GND	R18	GND
N/A	GND	GND	T18	GND
N/A	GND	GND	U18	GND
N/A	GND	GND	V18	GND
N/A	GND	GND	R19	GND
N/A	GND	GND	T19	GND
N/A	GND	GND	A21	GND
N/A	GND	GND	E21	GND
N/A	GND	GND	H21	GND
N/A	GND	GND	AC21	GND
N/A	GND	GND	AF21	GND
N/A	GND	GND	AK21	GND
N/A	GND	GND	K23	GND
N/A	GND	GND	P23	GND
N/A	GND	GND	U23	GND
N/A	GND	GND	AA23	GND
N/A	GND	GND	A25	GND
N/A	GND	GND	AK25	GND
N/A	GND	GND	E26	GND
N/A	GND	GND	K26	GND
N/A	GND	GND	P26	GND
N/A	GND	GND	U26	GND
N/A	GND	GND	AA26	GND
N/A	GND	GND	AF26	GND
N/A	GND	GND	A29	GND
N/A	GND	GND	B29	GND
N/A	GND	GND	AJ29	GND
N/A	GND	GND	AK29	GND
N/A	GND	GND	A30	GND
N/A	GND	GND	B30	GND
N/A	GND	GND	F30	GND

FG1156: 1156-lead Fine-pitch Ball Grid Array

Note: The FG(G)1156 package is discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

The 1,156-lead fine-pitch ball grid array package, FG1156, supports two different Spartan-3 devices, namely the XC3S4000 and the XC3S5000. The XC3S4000, however, has fewer I/O pins, which consequently results in 73 unconnected pins on the FG1156 package, labeled as "N.C." In Table 110 and Figure 53, these unconnected pins are indicated with a black diamond symbol (\blacklozenge).

The XC3S5000 has a single unconnected package pin, ball AK31, which is also unconnected for the XC3S4000.

All the package pins appear in Table 110 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

On ball L29 in I/O Bank 2, the unconnected pin on the XC3S4000 maps to a VREF-type pin on the XC3S5000. If the other VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S4000 to the same VREF_2 voltage.

Pinout Table

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	IO	IO	B9	I/O
0	IO	IO	E17	I/O
0	IO	IO	F6	I/O
0	IO	IO	F8	I/O
0	IO	IO	G12	I/O
0	IO	IO	H8	I/O
0	IO	IO	H9	I/O
0	IO	IO	J11	I/O
0	N.C. (�)	IO	J9	I/O
0	N.C. (�)	IO	K11	I/O
0	IO	IO	K13	I/O
0	IO	IO	K16	I/O
0	IO	IO	K17	I/O
0	IO	IO	L13	I/O
0	IO	IO	L16	I/O
0	IO	IO	L17	I/O
0	IO/VREF_0	IO/VREF_0	D5	VREF
0	IO/VREF_0	IO/VREF_0	E10	VREF
0	IO/VREF_0	IO/VREF_0	J14	VREF
0	IO/VREF_0	IO/VREF_0	L15	VREF
0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	B3	DCI
0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	A3	DCI
0	IO_L02N_0	IO_L02N_0	B4	I/O
0	IO_L02P_0	IO_L02P_0	A4	I/O
0	IO_L03N_0	IO_L03N_0	C5	I/O

Table 110: FG1156 Package Pinout

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	IO_L23P_0	IO_L23P_0	J15	I/O
0	IO_L24N_0	IO_L24N_0	G15	I/O
0	IO_L24P_0	IO_L24P_0	F15	I/O
0	IO_L25N_0	IO_L25N_0	D15	I/O
0	IO_L25P_0	IO_L25P_0	C15	I/O
0	IO_L26N_0	IO_L26N_0	B15	I/O
0	IO_L26P_0/VREF_0	IO_L26P_0/VREF_0	A15	VREF
0	IO_L27N_0	IO_L27N_0	G16	I/O
0	IO_L27P_0	IO_L27P_0	F16	I/O
0	IO_L28N_0	IO_L28N_0	C16	I/O
0	IO_L28P_0	IO_L28P_0	B16	I/O
0	IO_L29N_0	IO_L29N_0	J17	I/O
0	IO_L29P_0	IO_L29P_0	H17	I/O
0	IO_L30N_0	IO_L30N_0	G17	I/O
0	IO_L30P_0	IO_L30P_0	F17	I/O
0	IO_L31N_0	IO_L31N_0	D17	I/O
0	IO_L31P_0/VREF_0	IO_L31P_0/VREF_0	C17	VREF
0	IO_L32N_0/GCLK7	IO_L32N_0/GCLK7	B17	GCLK
0	IO_L32P_0/GCLK6	IO_L32P_0/GCLK6	A17	GCLK
0	N.C. (�)	IO_L33N_0	D7	I/O
0	N.C. (�)	IO_L33P_0	C7	I/O
0	N.C. (�)	IO_L34N_0	B7	I/O
0	N.C. (♦)	IO_L34P_0	A7	I/O
0	IO_L35N_0	IO_L35N_0	E8	I/O
0	IO_L35P_0	IO_L35P_0	D8	I/O
0	IO_L36N_0	IO_L36N_0	B8	I/O
0	IO_L36P_0	IO_L36P_0	A8	I/O
0	IO_L37N_0	IO_L37N_0	D10	I/O
0	IO_L37P_0	IO_L37P_0	C10	I/O
0	IO_L38N_0	IO_L38N_0	B10	I/O
0	IO_L38P_0	IO_L38P_0	A10	I/O
0	N.C. (�)	IO_L39N_0	G11	I/O
0	N.C. (�)	IO_L39P_0	F11	I/O
0	N.C. (�)	IO_L40N_0	B11	I/O
0	N.C. (�)	IO_L40P_0	A11	I/O
0	VCCO_0	VCCO_0	B13	VCCO
0	VCCO_0	VCCO_0	C4	VCCO
0	VCCO_0	VCCO_0	C8	VCCO
0	VCCO_0	VCCO_0	D11	VCCO
0	VCCO_0	VCCO_0	D16	VCCO