E·XFL

AMD Xilinx - XC3S5000-4FG676C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8320
Number of Logic Elements/Cells	74880
Total RAM Bits	1916928
Number of I/O	489
Number of Gates	500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s5000-4fg676c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Arrangement of RAM Blocks on Die

The XC3S50 has one column of block RAM. The Spartan-3 devices ranging from the XC3S200 to XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 have four columns. The position of the columns on the die is shown in Figure 1, page 3. For a given device, the total available RAM blocks are distributed equally among the columns. Table 12 shows the number of RAM blocks, the data storage capacity, and the number of columns for each device.

Device	Total Number of RAM Blocks	Total Addressable Locations (Bits)	Number of Columns
XC3S50	4	73,728	1
XC3S200	12	221,184	2
XC3S400	16	294,912	2
XC3S1000	24	442,368	2
XC3S1500	32	589,824	2
XC3S2000	40	737,280	2
XC3S4000	96	1,769,472	4
XC3S5000	104	1,916,928	4

Table 12: Number of RAM Blocks by Device

Block RAM and multipliers have interconnects between them that permit simultaneous operation; however, since the multiplier shares inputs with the upper data bits of block RAM, the maximum data path width of the block RAM is 18 bits in this case.

The Internal Structure of the Block RAM

The block RAM has a dual port structure. The two identical data ports called A and B permit independent access to the common RAM block, which has a maximum capacity of 18,432 bits—or 16,384 bits when no parity lines are used. Each port has its own dedicated set of data, control and clock lines for synchronous read and write operations. There are four basic data paths, as shown in Figure 13: (1) write to and read from Port A, (2) write to and read from Port B, (3) data transfer from Port A to Port B, and (4) data transfer from Port B to Port A.

Figure 13: Block RAM Data Paths

Block RAM Port Signal Definitions

Representations of the dual-port primitive RAMB16_S[w_A]_S[w_B] and the single-port primitive RAMB16_S[w] with their associated signals are shown in Figure 14. These signals are defined in Table 13.

Notes:

- 1. P represents the integer value ranging from -255 to +255 to which the PHASE_SHIFT attribute is assigned.
- 2. N is an integer value ranging from –255 to +255 that represents the net phase shift effect from a series of increment and/or decrement operations.
 - $N = {Total number of increments} {Total number of decrements}$

A positive value for N indicates a net increment; a negative value indicates a net decrement.

Figure 23: Phase Shifter Waveforms

The Status Logic Component

The Status Logic component not only reports on the state of the DCM but also provides a means of resetting the DCM to an initial known state. The signals associated with the Status Logic component are described in Table 22.

As a rule, the Reset (RST) input is asserted only upon configuring the device or changing the CLKIN frequency. A DCM reset does not affect attribute values (e.g., CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST must be tied to GND.

The eight bits of the STATUS bus are defined in Table 23.

Figure 32: Differential Input Voltages

Table	37:	Recommended O	perating	Conditions f	or User I/O	s Using I	Differential Si	gnal Standards
	-							J · · · · · · · · ·

Signal Standard		V _{CCO} ⁽¹⁾			V _{ID} ⁽³⁾			VICM	
(IOSTANDARD)	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
LDT_25 (ULVDS_25)	2.375	2.50	2.625	200	600	1000	0.44	0.60	0.78
LVDS_25, LVDS_25_DCI	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
BLVDS_25	2.375	2.50	2.625	-	350	-	-	1.25	-
LVDSEXT_25, LVDSEXT_25_DCI	2.375	2.50	2.625	100	540	1000	0.30	1.20	2.20
LVPECL_25	2.375	2.50	2.625	100	-	-	0.30	1.20	2.00
RSDS_25	2.375	2.50	2.625	100	200	-	-	1.20	-
DIFF_HSTL_II_18, DIFF_HSTL_II_18_DCI	1.70	1.80	1.90	200	-	-	0.80	-	1.00
DIFF_SSTL2_II, DIFF_SSTL2_II_DCI	2.375	2.50	2.625	300	-	-	1.05	-	1.45

Notes:

1. V_{CCO} only supplies differential output drivers, not input circuits.

2. V_{REF} inputs are not used for any of the differential I/O standards.

3. V_{ID} is a differential measurement.

I/O Timing

Table 40: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				Speed	Grade	
Symbol	Description	Conditions	Device	-5	-4	Units
				Max ⁽²⁾	Max ⁽²⁾	-
Clock-to-Output	Times					
T _{ICKOFDCM}	When reading from the Output	LVCMOS25 ⁽³⁾ , 12 mA	XC3S50	2.04	2.35	ns
	Flip-Flop (OFF), the time from the active transition on the Global Clock pin	output drive, Fast slew rate, with DCM ⁽⁴⁾	XC3S200	1.45	1.75	ns
	to data appearing at the Output pin.		XC3S400	1.45	1.75	ns
	The DCM is in use.		XC3S1000	2.07	2.39	ns
			XC3S1500	2.05	2.36	ns
			XC3S2000	2.03	2.34	ns
		XC3S4000	1.94	2.24	ns	
			XC3S5000	2.00	2.30	ns
T _{ICKOF}	When reading from OFF, the time from	LVCMOS25 ⁽³⁾ , 12 mA	XC3S50	3.70	4.24	ns
	pin to data appearing at the Output pin.	output drive, Fast slew rate, without DCM	XC3S200	3.89	4.46	ns
	The DCM is not in use.		XC3S400	3.91	4.48	ns
			XC3S1000	4.00	4.59	ns
			XC3S1500	4.07	4.66	ns
			XC3S2000	4.19	4.80	ns
			XC3S4000	4.44	5.09	ns
			XC3S5000	4.38	5.02	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 48 and are based on the operating conditions set forth in Table 32 and Table 35.

2. For minimums, use the values reported by the Xilinx timing analyzer.

3. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 44. If the latter is true, *add* the appropriate Output adjustment from Table 47.

4. DCM output jitter is included in all measurements.

Table 47: Output Timing Adjustments for IOB (Cont'd)

			Add the Adju	stment Below		
Convert Output Time from LVC Following S	st Slew Rate to the	Speed Grade		Units		
	··g····· •·····························					
LVCMOS18	Slow	2 mA	5.49	6.31	ns	
		4 mA	3.45	3.97	ns	
		6 mA	2.84	3.26	ns	
		8 mA	2.62	3.01	ns	
		12 mA	2.11	2.43	ns	
		16 mA	2.07	2.38	ns	
	Fast	2 mA	2.50	2.88	ns	
		4 mA	1.15	1.32	ns	
		6 mA	0.96	1.10	ns	
		8 mA	0.87	1.01	ns	
		12 mA	0.79	0.91	ns	
		16 mA	0.76	0.87	ns	
LVDCI_18			0.81	0.94	ns	
LVDCI_DV2_18			0.67	0.77	ns	
LVCMOS25	Slow	2 mA	6.43	7.39	ns	
		4 mA	4.15	4.77	ns	
		6 mA	3.38	3.89	ns	
		8 mA	2.99	3.44	ns	
		12 mA	2.53	2.91	ns	
		16 mA	2.50	2.87	ns	
		24 mA	2.22	2.55	ns	
	Fast	2 mA	3.27	3.76	ns	
		4 mA	1.87	2.15	ns	
		6 mA	0.32	0.37	ns	
		8 mA	0.19	0.22	ns	
		12 mA	0	0	ns	
		16 mA	-0.02	-0.01	ns	
		24 mA	-0.04	-0.02	ns	
LVDCI_25	I		0.27	0.31	ns	
LVDCI_DV2_25			0.16	0.19	ns	

Table 48: Test Methods for Timing Measurement at I/Os (Cont'd)

Signal Standard	Inputs			Outputs		Inputs and Outputs
(IOSTANDAND)	V _{REF} (V)	V _L (V)	V _H (V)	R _T (Ω)	V _T (V)	V _M (V)
DIFF_SSTL2_II	-	V _{ICM} – 0.75	V _{ICM} + 0.75	50	1.25	V _{ICM}
DIFF_SSTL2_II_DCI						

Notes:

1. Descriptions of the relevant symbols are as follows:

VREF – The reference voltage for setting the input switching threshold

VICM – The common mode input voltage

VM - Voltage of measurement point on signal transition

VL - Low-level test voltage at Input pin

VH - High-level test voltage at Input pin

- RT Effective termination resistance, which takes on a value of 1MW when no parallel termination is required
- VT Termination voltage
- 2. The load capacitance (CL) at the Output pin is 0 pF for all signal standards.
- 3. According to the PCI specification.

The capacitive load (C_L) is connected between the output and GND. *The Output timing for all standards, as published in the speed files and the data sheet, is always based on a C_L value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.*

Using IBIS Models to Simulate Load Conditions in Application

IBIS Models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF} R_{REF} and V_{MEAS}) correspond directly with the parameters used in Table 48, V_T , R_T , and V_M . Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table. A fourth parameter, C_{REF} is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link.

http://www.xilinx.com/support/download/index.htm

Simulate delays for a given application according to its specific load conditions as follows:

- 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 35. Use parameter values V_T, R_T, and V_M from Table 48. C_{REF} is zero.
- 2. Record the time to V_M.
- Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF}, R_{REF}, C_{REF}, and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS}.
- 5. Compare the results of steps 2 and 4. The increase (or decrease) in delay should be added to (or subtracted from) the appropriate Output standard adjustment (Table 47) to yield the worst-case delay of the PCB trace.

Figure 39: JTAG Waveforms

Table 68: Timing for the JTAG Test Access Port

Symbol	Description	All Speed Grades		Unite	
Symbol	Symbol Description				Units
Clock-to-Output Ti	mes				
T _{TCKTDO}	The time from the falling transition on the T the TDO pin	CK pin to data appearing at	1.0	11.0	ns
Setup Times					1
T _{TDITCK}	The time from the setup of data at the TDI the TCK pin	7.0	-	ns	
T _{TMSTCK}	The time from the setup of a logic level at the transition at the TCK pin	7.0	-	ns	
Hold Times					
T _{TCKTDI}	The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin		0	-	ns
T _{TCKTMS}	The time from the rising transition at the TCI level is last held at the TMS pin	K pin to the point when a logic	0	-	ns
Clock Timing					
Т _{ТСКН}	TCK pin High pulse width		5	∞	ns
T _{TCKL}	TCK pin Low pulse width		5	∞	ns
F _{TCK}	Frequency of the TCK signal	JTAG Configuration	0	33	MHz
		Boundary-Scan	0	25	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 32.

HSWAP_EN: Disable Pull-up Resistors During Configuration

As shown in Table 76, a Low on this asynchronous pin enables pull-up resistors on all user I/Os not actively involved in the configuration process, although only until device configuration completes. A High disables the pull-up resistors during configuration, which is the desired state for some applications.

The dedicated configuration CONFIG pins (CCLK, DONE, PROG_B, HSWAP_EN, M2, M1, M0), the JTAG pins (TDI, TMS, TCK, TDO) and the INIT_B always have active pull-up resistors during configuration, regardless of the value on HSWAP_EN.

After configuration, HSWAP_EN becomes a "don't care" input and any pull-up resistors previously enabled by HSWAP_EN are disabled. If a user I/O in the application requires a pull-up resistor after configuration, place a PULLUP primitive on the associated I/O pin or, for some pins, set the associated bitstream generator option.

Table 76: HSWAP_EN Encoding

HSWAP_EN	Function					
During Configu	uration					
0	Enable pull-up resistors on all pins not actively involved in the configuration process. Pull-ups are only active until configuration completes. See Table 79.					
1	No pull-up resistors during configuration.					
After Configuration, User Mode						
Х	This pin has no function except during device configuration.					

Notes:

1. X =don't care, either 0 or 1.

The Bitstream generator option HswapenPin determines whether a pull-up resistor to VCCAUX, a pull-down resistor, or no resistor is present on HSWAP_EN after configuration.

JTAG: Dedicated JTAG Port Pins

Table 77: JTAG Pin Descriptions

Pin Name	Direction	Description	Bitstream Generation Option
ТСК	Input	Test Clock: The TCK clock signal synchronizes all boundary scan operations on its rising edge.	The BitGen option TckPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TDI	Input	Test Data Input: TDI is the serial data input for all JTAG instruction and data registers. This input is sampled on the rising edge of TCK.	The BitGen option TdiPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TMS	Input	Test Mode Select: The TMS input controls the sequence of states through which the JTAG TAP state machine passes. This input is sampled on the rising edge of TCK.	The BitGen option TmsPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.
TDO	Output	Test Data Output: The TDO pin is the data output for all JTAG instruction and data registers. This output is sampled on the rising edge of TCK. The TDO output is an active totem-pole driver and is not like the open-collector TDO output on Virtex [®] -II Pro FPGAs.	The BitGen option TdoPin determines whether a pull-up resistor, pull-down resistor or no resistor is present.

These pins are dedicated connections to the four-wire IEEE 1532/IEEE 1149.1 JTAG port, shown in Figure 43 and described in Table 77. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and possibly an additional serial port for the application. These pins are dedicated and are not available as user-I/O pins. Every package has four dedicated JTAG pins and these pins are powered by the +2.5V VCCAUX supply.

For additional information on JTAG configuration, see Boundary-Scan (JTAG) Mode, page 50.

VREF: User I/O or Input Buffer Reference Voltage for Special Interface Standards

These pins are individual user-I/O pins unless collectively they supply an input reference voltage, VREF_#, for any SSTL, HSTL, GTL, or GTLP I/Os implemented in the associated I/O bank. The '#' character in the pin name represents an integer, 0 through 7, that indicates the associated I/O bank.

The VREF function becomes active for this pin whenever a signal standard requiring a reference voltage is used in the associated bank. If used as a user I/O, then each pin behaves as an independent I/O described in the I/O type section. If used for a reference voltage within a bank, then *all* VREF pins within the bank must be connected to the same reference voltage.

Spartan-3 devices are designed and characterized to support certain I/O standards when VREF is connected to +1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V. During configuration, the VREF pins behave exactly like user-I/O pins.

If designing for footprint compatibility across the range of devices in a specific package, and if the VREF_# pins within a bank connect to an input reference voltage, then also connect any N.C. (not connected) pins on the smaller devices in that package to the input reference voltage. More details are provided later for each package type.

N.C. Type: Unconnected Package Pins

Pins marked as "N.C." are unconnected for the specific device/package combination. For other devices in this same package, this pin may be used as an I/O or VREF connection. In both the pinout tables and the footprint diagrams, unconnected pins are noted with either a black diamond symbol (\blacklozenge) or a black square symbol (\blacksquare).

If designing for footprint compatibility across multiple device densities, check the pin types of the other Spartan-3 devices available in the same footprint. If the N.C. pin matches to VREF pins in other devices, and the VREF pins are used in the associated I/O bank, then connect the N.C. to the VREF voltage source.

VCCO Type: Output Voltage Supply for I/O Bank

Each I/O bank has its own set of voltage supply pins that determines the output voltage for the output buffers in the I/O bank. Furthermore, for some I/O standards such as LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input threshold voltage on the associated input buffers.

Spartan-3 devices are designed and characterized to support various I/O standards for VCCO values of +1.2V, +1.5V, +1.8V, +2.5V, and +3.3V.

Most VCCO pins are labeled as VCCO_# where the '#' symbol represents the associated I/O bank number, an integer ranging from 0 to 7. In the 144-pin TQFP package (TQ144) however, the VCCO pins along an edge of the device are combined into a single VCCO input. For example, the VCCO inputs for Bank 0 and Bank 1 along the top edge of the package are combined and relabeled VCCO_TOP. The bottom, left, and right edges are similarly combined.

In Serial configuration mode, VCCO_4 must be at a level compatible with the attached configuration memory or data source. In Parallel configuration mode, both VCCO_4 and VCCO_5 must be at the same compatible voltage level.

All VCCO inputs to a bank must be connected together and to the voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in <u>XAPP623</u>: *Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors*.

VCCINT Type: Voltage Supply for Internal Core Logic

Internal core logic circuits such as the configurable logic blocks (CLBs) and programmable interconnect operate from the VCCINT voltage supply inputs. VCCINT must be +1.2V.

All VCCINT inputs must be connected together and to the +1.2V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in <u>XAPP623</u>.

VCCAUX Type: Voltage Supply for Auxiliary Logic

The VCCAUX pins supply power to various auxiliary circuits, such as to the Digital Clock Managers (DCMs), the JTAG pins, and to the dedicated configuration pins (CONFIG type). VCCAUX must be +2.5V.

Package Thermal Characteristics

The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3 FPGA is reported using either the <u>XPower</u> Estimator (XPE) or the XPower Analyzer integrated in the Xilinx ISE development software. Table 86 provides the thermal characteristics for the various Spartan-3 device/package offerings.

The junction-to-case thermal resistance (θ_{JC}) indicates the difference between the temperature measured on the package body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θ_{JB}) value similarly reports the difference between the board and junction temperature. The junction-to-ambient (θ_{JA}) value reports the temperature difference per watt between the ambient environment and the junction temperature. The θ_{JA} value is reported at different air velocities, measured in linear feet per minute (LFM). The "Still Air (0 LFM)" column shows the θ_{JA} value in a system without a fan. The thermal resistance drops with increasing air flow.

		lunction_to_	Junction-to-B oard (θ _{JB})	Junction-to-	Ambient (θ _J) at Differen	t Air Flows	
Package	Device	Case (θ_{JC})		Still Air (0 LFM)	250 LFM	500 LFM	750 LFM	Units
VO(C)100	XC3S50	12.0	_	46.2	38.4	35.8	34.9	°C/Watt
VQ(G)100	XC3S200	10.0	-	40.5	33.7	31.3	30.5	°C/Watt
CP(G)132 ⁽¹⁾	XC3S50	14.5	32.8	53.0	46.4	44.0	42.5	°C/Watt
	XC3S50	7.6	_	41.0	31.9	27.2	25.6	°C/Watt
TQ(G)144	XC3S200	6.6	_	34.5	26.9	23.0	21.6	°C/Watt
	XC3S400	6.1	-	32.8	25.5	21.8	20.4	°C/Watt
	XC3S50	10.6	-	37.4	27.6	24.4	22.6	°C/Watt
PQ(G)208	XC3S200	8.6	-	36.2	26.7	23.6	21.9	°C/Watt
	XC3S400	7.5	-	35.4	26.1	23.1	21.4	°C/Watt
	XC3S200	9.9	22.9	31.7	25.6	24.5	24.2	°C/Watt
FT(G)256	XC3S400	7.9	19.0	28.4	22.8	21.5	21.0	°C/Watt
	XC3S1000	5.6	14.7	24.8	19.2	18.0	17.5	°C/Watt
	XC3S400	8.9	13.9	24.4	19.0	17.8	17.0	°C/Watt
FG(G)320	XC3S1000	7.8	11.8	22.3	17.0	15.8	15.0	°C/Watt
	XC3S1500	6.7	9.8	20.3	15.18	13.8	13.1	°C/Watt
	XC3S400	8.4	13.6	20.8	15.1	13.9	13.4	°C/Watt
EG(G)456	XC3S1000	6.4	10.6	19.3	13.4	12.3	11.7	°C/Watt
10(0)430	XC3S1500	4.9	8.3	18.3	12.4	11.2	10.7	°C/Watt
	XC3S2000	3.7	6.5	17.7	11.7	10.5	10.0	°C/Watt
	XC3S1000	6.0	10.4	17.9	13.7	12.6	12.0	°C/Watt
	XC3S1500	4.9	8.8	16.8	12.4	11.3	10.7	°C/Watt
FG(G)676	XC3S2000	4.1	7.9	15.6	11.1	9.9	9.3	°C/Watt
	XC3S4000	3.6	7.0	15.0	10.5	9.3	8.7	°C/Watt
	XC3S5000	3.4	6.3	14.7	10.3	9.1	8.5	°C/Watt
	XC3S2000	3.7	7.0	14.3	10.3	9.3	8.8	°C/Watt
FG(G)900	XC3S4000	3.3	6.4	13.6	9.7	8.7	8.2	°C/Watt
	XC3S5000	2.9	5.9	13.1	9.2	8.1	7.6	°C/Watt

Table 00. Spartan-S FFGA Fackage merinal characteristic	Table	86: Spartan-3	3 FPGA Package	e Thermal	Characteristic
---	-------	---------------	----------------	-----------	----------------

Table 89: CP132 Package Pinout (Cont'd)

Bank	XC3S50 Pin Name	CP132 Ball	Туре
N/A	GND	M3	GND
N/A	GND	M13	GND
N/A	GND	N6	GND
N/A	GND	N11	GND
N/A	VCCAUX	A5	VCCAUX
N/A	VCCAUX	C10	VCCAUX
N/A	VCCAUX	M5	VCCAUX
N/A	VCCAUX	P10	VCCAUX
N/A	VCCINT	B10	VCCINT
N/A	VCCINT	C6	VCCINT
N/A	VCCINT	M9	VCCINT
N/A	VCCINT	N5	VCCINT
VCCAUX	CCLK	P14	CONFIG
VCCAUX	DONE	P13	CONFIG
VCCAUX	HSWAP_EN	B3	CONFIG
VCCAUX	МО	N1	CONFIG
VCCAUX	M1	M2	CONFIG
VCCAUX	M2	P1	CONFIG
VCCAUX	PROG_B	A2	CONFIG
VCCAUX	ТСК	B14	JTAG
VCCAUX	TDI	A1	JTAG
VCCAUX	TDO	C13	JTAG
VCCAUX	TMS	A14	JTAG

User I/Os by Bank

Table 90 indicates how the 89 available user-I/O pins are distributed between the eight I/O banks on the CP132 package. There are only four output banks, each with its own VCCO voltage input.

Table 90: User I/Os Per Bank for XC3S50 in CP132 Package

Pookogo Edgo	1/O Bonk	Movimum I/O	All Possible I/O Pins by Type				
Fackage Euge			I/O	DUAL	DCI	VREF	GCLK
Top	0	10	5	0	2	1	2
юр	1	10	5	0	2	1	2
Picht	2	12	8	0	2	2	0
Right	3	12	8	0	2	2	0
Bottom	4	11	0	6	2	1	2
Bollom	5	10	1	6	0	1	2
Loft	6	12	8	0	2	2	0
Len	7	12	9	0	2	1	0

Notes:

1. The CP132 and CPG132 packages are discontinued. See <u>www.xilinx.com/support/documentation/spartan-3.htm#19600</u>.

Table 93: PQ208 Package Pinout (Cont'd)

Bank	XC3S50 Pin Name	XC3S200, XC3S400 Pin Names	PQ208 Pin Number	Туре
5	IO_L10P_5/VRN_5	IO_L10P_5/VRN_5	P61	DCI
5	IO_L27N_5/VREF_5	IO_L27N_5/VREF_5	P65	VREF
5	IO_L27P_5	IO_L27P_5	P64	I/O
5	IO_L28N_5/D6	IO_L28N_5/D6	P68	DUAL
5	IO_L28P_5/D7	IO_L28P_5/D7	P67	DUAL
5	IO_L31N_5/D4	IO_L31N_5/D4	P74	DUAL
5	IO_L31P_5/D5	IO_L31P_5/D5	P72	DUAL
5	IO_L32N_5/GCLK3	IO_L32N_5/GCLK3	P77	GCLK
5	IO_L32P_5/GCLK2	IO_L32P_5/GCLK2	P76	GCLK
5	VCCO_5	VCCO_5	P60	VCCO
5	VCCO_5	VCCO_5	P73	VCCO
6	N.C. (�)	IO/VREF_6	P50	VREF
6	IO_L01N_6/VRP_6	IO_L01N_6/VRP_6	P52	DCI
6	IO_L01P_6/VRN_6	IO_L01P_6/VRN_6	P51	DCI
6	IO_L19N_6	IO_L19N_6	P48	I/O
6	IO_L19P_6	IO_L19P_6	P46	I/O
6	IO_L20N_6	IO_L20N_6	P45	I/O
6	IO_L20P_6	IO_L20P_6	P44	I/O
6	IO_L21N_6	IO_L21N_6	P43	I/O
6	IO_L21P_6	IO_L21P_6	P42	I/O
6	IO_L22N_6	IO_L22N_6	P40	I/O
6	IO_L22P_6	IO_L22P_6	P39	I/O
6	IO_L23N_6	IO_L23N_6	P37	I/O
6	IO_L23P_6	IO_L23P_6	P36	I/O
6	IO_L24N_6/VREF_6	IO_L24N_6/VREF_6	P35	VREF
6	IO_L24P_6	IO_L24P_6	P34	I/O
6	N.C. (�)	IO_L39N_6	P33	I/O
6	N.C. (�)	IO_L39P_6	P31	I/O
6	IO_L40N_6	IO_L40N_6	P29	I/O
6	IO_L40P_6/VREF_6	IO_L40P_6/VREF_6	P28	VREF
6	VCCO_6	VCCO_6	P32	VCCO
6	VCCO_6	VCCO_6	P49	VCCO
7	IO_L01N_7/VRP_7	IO_L01N_7/VRP_7	P3	DCI
7	IO_L01P_7/VRN_7	IO_L01P_7/VRN_7	P2	DCI
7	N.C. (�)	IO_L16N_7	P5	I/O
7	N.C. (�)	IO_L16P_7/VREF_7	P4	VREF
7	IO_L19N_7/VREF_7	IO_L19N_7/VREF_7	P9	VREF
7	IO_L19P_7	IO_L19P_7	P7	I/O
7	IO_L20N_7	IO_L20N_7	P11	I/O
7	IO_L20P_7	IO_L20P_7	P10	I/O

FT256: 256-lead Fine-pitch Thin Ball Grid Array

The 256-lead fine-pitch thin ball grid array package, FT256, supports three different Spartan-3 devices, including the XC3S200, the XC3S400, and the XC3S1000. The footprints for all three devices are identical, as shown in Table 96 and Figure 49.

All the package pins appear in Table 96 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip.

Pinout Table

Table 96: FT256 Package Pinout

Bank	XC3S200, XC3S400, XC3S1000 Pin Name	FT256 Pin Number	Туре
0	ю	A5	I/O
0	ю	A7	I/O
0	IO/VREF_0	A3	VREF
0	IO/VREF_0	D5	VREF
0	IO_L01N_0/VRP_0	B4	DCI
0	IO_L01P_0/VRN_0	A4	DCI
0	IO_L25N_0	C5	I/O
0	IO_L25P_0	B5	I/O
0	IO_L27N_0	E6	I/O
0	IO_L27P_0	D6	I/O
0	IO_L28N_0	C6	I/O
0	IO_L28P_0	B6	I/O
0	IO_L29N_0	E7	I/O
0	IO_L29P_0	D7	I/O
0	IO_L30N_0	C7	I/O
0	IO_L30P_0	B7	I/O
0	IO_L31N_0	D8	I/O
0	IO_L31P_0/VREF_0	C8	VREF
0	IO_L32N_0/GCLK7	B8	GCLK
0	IO_L32P_0/GCLK6	A8	GCLK
0	VCCO_0	E8	VCCO
0	VCCO_0	F7	VCCO
0	VCCO_0	F8	VCCO
1	ю	A9	I/O
1	10	A12	I/O
1	10	C10	I/O
1	IO/VREF_1	D12	VREF
1	IO_L01N_1/VRP_1	A14	DCI
1	IO_L01P_1/VRN_1	B14	DCI

Table 96: FT256 Package Pinout (Cont'd)

Bank	XC3S200, XC3S400, XC3S1000 Pin Name	FT256 Pin Number	Туре
4	IO_L28N_4	P11	I/O
4	IO_L28P_4	R11	I/O
4	IO_L29N_4	M10	I/O
4	IO_L29P_4	N10	I/O
4	IO_L30N_4/D2	P10	DUAL
4	IO_L30P_4/D3	R10	DUAL
4	IO_L31N_4/INIT_B	N9	DUAL
4	IO_L31P_4/DOUT/BUSY	P9	DUAL
4	IO_L32N_4/GCLK1	R9	GCLK
4	IO_L32P_4/GCLK0	Т9	GCLK
4	VCCO_4	L9	VCCO
4	VCCO_4	L10	VCCO
4	VCCO_4	M9	VCCO
5	IO	N5	I/O
5	IO	P7	I/O
5	IO	T5	I/O
5	IO/VREF_5	Т8	VREF
5	IO_L01N_5/RDWR_B	Т3	DUAL
5	IO_L01P_5/CS_B	R3	DUAL
5	IO_L10N_5/VRP_5	T4	DCI
5	IO_L10P_5/VRN_5	R4	DCI
5	IO_L27N_5/VREF_5	R5	VREF
5	IO_L27P_5	P5	I/O
5	IO_L28N_5/D6	N6	DUAL
5	IO_L28P_5/D7	M6	DUAL
5	IO_L29N_5	R6	I/O
5	IO_L29P_5/VREF_5	P6	VREF
5	IO_L30N_5	N7	I/O
5	IO_L30P_5	M7	I/O
5	IO_L31N_5/D4	T7	DUAL
5	IO_L31P_5/D5	R7	DUAL
5	IO_L32N_5/GCLK3	P8	GCLK
5	IO_L32P_5/GCLK2	N8	GCLK
5	VCCO_5	L7	VCCO
5	VCCO_5	L8	VCCO
5	VCCO_5	M8	VCCO
6	Ю	K1	I/O
6	IO_L01N_6/VRP_6	R1	DCI
6	IO_L01P_6/VRN_6	P1	DCI
6	IO_L16N_6	P2	I/O

FG456: 456-lead Fine-pitch Ball Grid Array

The 456-lead fine-pitch ball grid array package, FG456, supports four different Spartan-3 devices, including the XC3S400, the XC3S1000, the XC3S1500, and the XC3S2000. The footprints for the XC3S1000, the XC3S1500, and the XC3S2000 are identical, as shown in Table 100 and Figure 51. The XC3S400, however, has fewer I/O pins which consequently results in 69 unconnected pins on the FG456 package, labeled as "N.C." In Table 100 and Figure 51, these unconnected pins are indicated with a black diamond symbol (\blacklozenge).

All the package pins appear in Table 100 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S400 pinout and the pinout for the XC3S1000, the XC3S1500, or the XC3S2000, then that difference is highlighted in Table 100. If the table entry is shaded grey, then there is an unconnected pin on the XC3S400 that maps to a user-I/O pin on the XC3S1000, XC3S1500, and XC3S2000. If the table entry is shaded tan, then the unconnected pin on the XC3S400 maps to a VREF-type pin on the XC3S1000, the XC3S1500, or the XC3S2000. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S400 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S400 device to an XC3S1000, an XC3S1500, or an XC3S2000 FPGA without changing the printed circuit board.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/support/documentation/data_sheets/s3_pin.zip.

Pinout Table

Table 100: FG456 Package Pinout

Bank	3S400 Pin Name	3S1000, 3S1500, 3S2000 Pin Name	FG456 Pin Number	Туре
0	Ю	10	A10	I/O
0	10	10	D9	I/O
0	10	10	D10	I/O
0	IO	Ю	F6	I/O
0	IO/VREF_0	IO/VREF_0	A3	VREF
0	IO/VREF_0	IO/VREF_0	C7	VREF
0	N.C. (�)	IO/VREF_0	E5	VREF
0	IO/VREF_0	IO/VREF_0	F7	VREF
0	IO_L01N_0/VRP_0	IO_L01N_0/VRP_0	B4	DCI
0	IO_L01P_0/VRN_0	IO_L01P_0/VRN_0	A4	DCI
0	IO_L06N_0	IO_L06N_0	D5	I/O
0	IO_L06P_0	IO_L06P_0	C5	I/O
0	IO_L09N_0	IO_L09N_0	B5	I/O
0	IO_L09P_0	IO_L09P_0	A5	I/O
0	IO_L10N_0	IO_L10N_0	E6	I/O
0	IO_L10P_0	IO_L10P_0	D6	I/O
0	IO_L15N_0	IO_L15N_0	C6	I/O
0	IO_L15P_0	IO_L15P_0	B6	I/O
0	IO_L16N_0	IO_L16N_0	E7	I/O
0	IO_L16P_0	IO_L16P_0	D7	I/O
0	N.C. (�)	IO_L19N_0	B7	I/O
0	N.C. (�)	IO_L19P_0	A7	I/O

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	H9	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	H10	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	J11	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	J12	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	J13	VCCO
0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCO_0	K13	VCCO
1	IO	Ю	IO	IO	IO	A14	I/O
1	IO	Ю	IO	IO	IO	A22	I/O
1	Ю	Ю	Ю	IO	Ю	A23	I/O
1	IO	Ю	IO	IO	IO	D16	I/O
1	IO	Ю	IO	IO	IO_L17P_1 ⁽³⁾	E18	I/O
1	Ю	Ю	Ю	IO	Ю	F14	I/O
1	IO	Ю	IO	IO	IO	F20	I/O
1	Ю	Ю	Ю	IO	Ю	G19	I/O
1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	C15	VREF
1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO/VREF_1	C17	VREF
1	N.C. (�)	IO/VREF_1	IO/VREF_1	IO/VREF_1	IO_L17N_1/VREF_1 ⁽³⁾	D18	VREF
1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	D22	DCI
1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	E22	DCI
1	IO_L04N_1	IO_L04N_1	IO_L04N_1	IO_L04N_1	IO_L04N_1	B23	I/O
1	IO_L04P_1	IO_L04P_1	IO_L04P_1	IO_L04P_1	IO_L04P_1	C23	I/O
1	IO_L05N_1	IO_L05N_1	IO_L05N_1	IO_L05N_1	IO_L05N_1	E21	I/O
1	IO_L05P_1	IO_L05P_1	IO_L05P_1	IO_L05P_1	IO_L05P_1	F21	I/O
1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	IO_L06N_1/VREF_1	B22	VREF
1	IO_L06P_1	IO_L06P_1	IO_L06P_1	IO_L06P_1	IO_L06P_1	C22	I/O
1	IO_L07N_1	IO_L07N_1	IO_L07N_1	IO_L07N_1	IO_L07N_1	C21	I/O
1	IO_L07P_1	IO_L07P_1	IO_L07P_1	IO_L07P_1	IO_L07P_1	D21	I/O
1	IO_L08N_1	IO_L08N_1	IO_L08N_1	IO_L08N_1	IO_L08N_1	A21	I/O
1	IO_L08P_1	IO_L08P_1	IO_L08P_1	IO_L08P_1	IO_L08P_1	B21	I/O
1	IO_L09N_1	IO_L09N_1	IO_L09N_1	IO_L09N_1	IO_L09N_1	D20	I/O
1	IO_L09P_1	IO_L09P_1	IO_L09P_1	IO_L09P_1	IO_L09P_1	E20	I/O
1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	A20	VREF
1	IO_L10P_1	IO_L10P_1	IO_L10P_1	IO_L10P_1	IO_L10P_1	B20	I/O
1	N.C. (�)	IO_L11N_1	IO_L11N_1	IO_L11N_1	IO_L11N_1	E19	I/O
1	N.C. (�)	IO_L11P_1	IO_L11P_1	IO_L11P_1	IO_L11P_1	F19	I/O
1	N.C. (�)	IO_L12N_1	IO_L12N_1	IO_L12N_1	IO_L12N_1	C19	I/O
1	N.C. (�)	IO_L12P_1	IO_L12P_1	IO_L12P_1	IO_L12P_1	D19	I/O
1	IO_L15N_1	IO_L15N_1	IO_L15N_1	IO_L15N_1	IO_L15N_1	A19	I/O
1	IO_L15P_1	IO_L15P_1	IO_L15P_1	IO_L15P_1	IO_L15P_1	B19	I/O
1	IO_L16N_1	IO_L16N_1	IO_L16N_1	IO_L16N_1	IO_L16N_1	F18	I/O
1	IO_L16P_1	IO_L16P_1	IO_L16P_1	IO_L16P_1	IO_L16P_1	G18	I/O
1	N.C. (�)	IO_L18N_1	IO_L18N_1	IO_L18N_1	IO ⁽³⁾	B18	I/O

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
7	IO_L29P_7	IO_L29P_7	IO_L29P_7	IO_L29P_7	IO_L29P_7	L2	I/O
7	IO_L31N_7	IO_L31N_7	IO_L31N_7	IO_L31N_7	IO_L31N_7	M7	I/O
7	IO_L31P_7	IO_L31P_7	IO_L31P_7	IO_L31P_7	IO_L31P_7	M8	I/O
7	IO_L32N_7	IO_L32N_7	IO_L32N_7	IO_L32N_7	IO_L32N_7	M6	I/O
7	IO_L32P_7	IO_L32P_7	IO_L32P_7	IO_L32P_7	IO_L32P_7	M5	I/O
7	IO_L33N_7	IO_L33N_7	IO_L33N_7	IO_L33N_7	IO_L33N_7	M3	I/O
7	IO_L33P_7	IO_L33P_7	IO_L33P_7	IO_L33P_7	IO_L33P_7	L4	I/O
7	IO_L34N_7	IO_L34N_7	IO_L34N_7	IO_L34N_7	IO_L34N_7	M1	I/O
7	IO_L34P_7	IO_L34P_7	IO_L34P_7	IO_L34P_7	IO_L34P_7	M2	I/O
7	IO_L35N_7	IO_L35N_7	IO_L35N_7	IO_L35N_7	IO_L35N_7	N7	I/O
7	IO_L35P_7	IO_L35P_7	IO_L35P_7	IO_L35P_7	IO_L35P_7	N8	I/O
7	IO_L38N_7	IO_L38N_7	IO_L38N_7	IO_L38N_7	IO_L38N_7	N5	I/O
7	IO_L38P_7	IO_L38P_7	IO_L38P_7	IO_L38P_7	IO_L38P_7	N6	I/O
7	IO_L39N_7	IO_L39N_7	IO_L39N_7	IO_L39N_7	IO_L39N_7	N3	I/O
7	IO_L39P_7	IO_L39P_7	IO_L39P_7	IO_L39P_7	IO_L39P_7	N4	I/O
7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	N1	VREF
7	IO_L40P_7	IO_L40P_7	IO_L40P_7	IO_L40P_7	IO_L40P_7	N2	I/O
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	G3	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	J8	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	K8	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	L3	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	L9	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	M9	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	N9	VCCO
7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	VCCO_7	N10	VCCO
N/A	GND	GND	GND	GND	GND	A1	GND
N/A	GND	GND	GND	GND	GND	A26	GND
N/A	GND	GND	GND	GND	GND	AC4	GND
N/A	GND	GND	GND	GND	GND	AC12	GND
N/A	GND	GND	GND	GND	GND	AC15	GND
N/A	GND	GND	GND	GND	GND	AC23	GND
N/A	GND	GND	GND	GND	GND	AD3	GND
N/A	GND	GND	GND	GND	GND	AD24	GND
N/A	GND	GND	GND	GND	GND	AE2	GND
N/A	GND	GND	GND	GND	GND	AE25	GND
N/A	GND	GND	GND	GND	GND	AF1	GND
N/A	GND	GND	GND	GND	GND	AF26	GND
N/A	GND	GND	GND	GND	GND	B2	GND
N/A	GND	GND	GND	GND	GND	B25	GND
N/A	GND	GND	GND	GND	GND	C3	GND
N/A	GND	GND	GND	GND	GND	C24	GND
N/A	GND	GND	GND	GND	GND	D4	GND
N/A	GND	GND	GND	GND	GND	D12	GND

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
2	IO_L04N_2	IO_L04N_2	E29	I/O
2	IO_L04P_2	IO_L04P_2	E30	I/O
2	IO_L05N_2	IO_L05N_2	F28	I/O
2	IO_L05P_2	IO_L05P_2	F29	I/O
2	IO_L06N_2	IO_L06N_2	G27	I/O
2	IO_L06P_2	IO_L06P_2	G28	I/O
2	IO_L07N_2	IO_L07N_2	G29	I/O
2	IO_L07P_2	IO_L07P_2	G30	I/O
2	IO_L08N_2	IO_L08N_2	G25	I/O
2	IO_L08P_2	IO_L08P_2	H24	I/O
2	IO_L09N_2/VREF_2	IO_L09N_2/VREF_2	H25	VREF
2	IO_L09P_2	IO_L09P_2	H26	I/O
2	IO_L10N_2	IO_L10N_2	H27	I/O
2	IO_L10P_2	IO_L10P_2	H28	I/O
2	IO_L12N_2	IO_L12N_2	H29	I/O
2	IO_L12P_2	IO_L12P_2	H30	I/O
2	IO_L13N_2	IO_L13N_2	J26	I/O
2	IO_L13P_2/VREF_2	IO_L13P_2/VREF_2	J27	VREF
2	IO_L14N_2	IO_L14N_2	J29	I/O
2	IO_L14P_2	IO_L14P_2	J30	I/O
2	IO_L15N_2	IO_L15N_2	J23	I/O
2	IO_L15P_2	IO_L15P_2	K22	I/O
2	IO_L16N_2	IO_L16N_2	K24	I/O
2	IO_L16P_2	IO_L16P_2	K25	I/O
2	IO_L19N_2	IO_L19N_2	L25	I/O
2	IO_L19P_2	IO_L19P_2	L26	I/O
2	IO_L20N_2	IO_L20N_2	L27	I/O
2	IO_L20P_2	IO_L20P_2	L28	I/O
2	IO_L21N_2	IO_L21N_2	L29	I/O
2	IO_L21P_2	IO_L21P_2	L30	I/O
2	IO_L22N_2	IO_L22N_2	M22	I/O
2	IO_L22P_2	IO_L22P_2	M23	I/O
2	IO_L23N_2/VREF_2	IO_L23N_2/VREF_2	M24	VREF
2	IO_L23P_2	IO_L23P_2	M25	I/O
2	IO_L24N_2	IO_L24N_2	M27	I/O
2	IO_L24P_2	IO_L24P_2	M28	I/O
2	IO_L26N_2	IO_L26N_2	M21	I/O
2	IO_L26P_2	IO_L26P_2	N21	I/O
2	IO_L27N_2	IO_L27N_2	N22	I/O
2	IO_L27P_2	IO_L27P_2	N23	I/O

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
6	IO_L16N_6	IO_L16N_6	AE2	I/O
6	IO_L16P_6	IO_L16P_6	AE1	I/O
6	IO_L17N_6	IO_L17N_6	AD10	I/O
6	IO_L17P_6/VREF_6	IO_L17P_6/VREF_6	AD9	VREF
6	IO_L19N_6	IO_L19N_6	AD2	I/O
6	IO_L19P_6	IO_L19P_6	AD1	I/O
6	IO_L20N_6	IO_L20N_6	AC11	I/O
6	IO_L20P_6	IO_L20P_6	AC10	I/O
6	IO_L21N_6	IO_L21N_6	AC8	I/O
6	IO_L21P_6	IO_L21P_6	AC7	I/O
6	IO_L22N_6	IO_L22N_6	AC6	I/O
6	IO_L22P_6	IO_L22P_6	AC5	I/O
6	IO_L23N_6	IO_L23N_6	AC2	I/O
6	IO_L23P_6	IO_L23P_6	AC1	I/O
6	IO_L24N_6/VREF_6	IO_L24N_6/VREF_6	AC9	VREF
6	IO_L24P_6	IO_L24P_6	AB10	I/O
6	IO_L25N_6	IO_L25N_6	AB8	I/O
6	IO_L25P_6	IO_L25P_6	AB7	I/O
6	IO_L26N_6	IO_L26N_6	AB4	I/O
6	IO_L26P_6	IO_L26P_6	AB3	I/O
6	IO_L27N_6	IO_L27N_6	AB11	I/O
6	IO_L27P_6	IO_L27P_6	AA11	I/O
6	IO_L28N_6	IO_L28N_6	AA8	I/O
6	IO_L28P_6	IO_L28P_6	AA7	I/O
6	IO_L29N_6	IO_L29N_6	AA6	I/O
6	IO_L29P_6	IO_L29P_6	AA5	I/O
6	IO_L30N_6	IO_L30N_6	AA4	I/O
6	IO_L30P_6	IO_L30P_6	AA3	I/O
6	IO_L31N_6	IO_L31N_6	AA2	I/O
6	IO_L31P_6	IO_L31P_6	AA1	I/O
6	IO_L32N_6	IO_L32N_6	Y11	I/O
6	IO_L32P_6	IO_L32P_6	Y10	I/O
6	IO_L33N_6	IO_L33N_6	Y4	I/O
6	IO_L33P_6	IO_L33P_6	Y3	I/O
6	IO_L34N_6/VREF_6	IO_L34N_6/VREF_6	Y2	VREF
6	IO_L34P_6	IO_L34P_6	Y1	I/O
6	IO_L35N_6	IO_L35N_6	Y9	I/O
6	IO_L35P_6	IO_L35P_6	W10	I/O
6	IO_L36N_6	IO_L36N_6	W7	I/O
6	IO_L36P_6	IO_L36P_6	W6	I/O

Date	Version	Description
11/30/07	2.3	Added XC3S5000 FG(G)676 package. Noted that the FG(G)1156 package is being discontinued. Updated Table 86 with latest thermal characteristics data.
06/25/08	2.4	Updated formatting and links.
12/04/09	2.5	Added link to UG332 in CCLK: Configuration Clock. Noted that the CP132, CPG132, FG1156, and FGG1156 packages are being discontinued in Table 81, Table 83, Table 84, Table 85, and Table 86. Updated CP132: 132-Ball Chip-Scale Package to indicate that the CP132 and CPG132 packages are being discontinued.
10/29/12	3.0	Added Notice of Disclaimer. Per <u>XCN07022</u> , updated the FG1156 and FGG1156 package discussion throughout document including in Table 81, Table 83, Table 84, Table 85, and Table 86. Per <u>XCN08011</u> , updated CP132 and CPG132 package discussion throughout document including in Table 81, Table 83, Table 84, Table 85, and Table 86. This product is not recommended for new designs.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.