
E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	8320
Number of Logic Elements/Cells	74880
Total RAM Bits	1916928
Number of I/O	489
Number of Gates	500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s5000-4fg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4: Example Ordering Information

Device	Speed Grade		Package Type/Number of Pins			emperature Range (T _j)
XC3S50	-4	Standard Performance	VQ(G)100	100-pin Very Thin Quad Flat Pack (VQFP)	С	Commercial (0°C to 85°C)
XC3S200	-5	High Performance ⁽¹⁾	CP(G)132 ⁽²⁾	132-pin Chip-Scale Package (CSP)	Ι	Industrial (-40°C to 100°C)
XC3S400			TQ(G)144	144-pin Thin Quad Flat Pack (TQFP)		·
XC3S1000			PQ(G)208	208-pin Plastic Quad Flat Pack (PQFP)		
XC3S1500			FT(G)256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
XC3S2000			FG(G)320	320-ball Fine-Pitch Ball Grid Array (FBGA)		
XC3S4000			FG(G)456	456-ball Fine-Pitch Ball Grid Array (FBGA)		
XC3S5000			FG(G)676	676-ball Fine-Pitch Ball Grid Array (FBGA)		
			FG(G)900	900-ball Fine-Pitch Ball Grid Array (FBGA)		
			FG(G)1156 ⁽²⁾	1156-ball Fine-Pitch Ball Grid Array (FBGA)		

Notes:

1. The -5 speed grade is exclusively available in the Commercial temperature range.

2. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

Revision History

Date	Version	Description
04/11/03	1.0	Initial Xilinx release.
04/24/03	1.1	Updated block RAM, DCM, and multiplier counts for the XC3S50.
12/24/03	1.2	Added the FG320 package.
07/13/04	1.3	Added information on Pb-free packaging options.
01/17/05	1.4	Referenced Spartan-3 XA Automotive FPGA families in Table 1. Added XC3S50CP132, XC3S2000FG456, XC3S4000FG676 options to Table 3. Updated Package Marking to show mask revision code, fabrication facility code, and process technology code.
08/19/05	1.5	Added package markings for BGA packages (Figure 3) and CP132/CPG132 packages (Figure 4). Added differential (complementary single-ended) HSTL and SSTL I/O standards.
04/03/06	2.0	Increased number of supported single-ended and differential I/O standards.
04/26/06	2.1	Updated document links.
05/25/07	2.2	Updated Package Marking to allow for dual-marking.
11/30/07	2.3	Added XC3S5000 FG(G)676 to Table 3. Noted that FG(G)1156 package is being discontinued and updated max I/O count.
06/25/08	2.4	Updated max I/O counts based on FG1156 discontinuation. Clarified dual mark in Package Marking. Updated formatting and links.
12/04/09	2.5	CP132 and CPG132 packages are being discontinued. Added link to Spartan-3 FPGA customer notices. Updated Table 3 with package footprint dimensions.
10/29/12	3.0	Added Notice of Disclaimer section. Per <u>XCN07022</u> , updated the discontinued FG1156 and FGG1156 package discussion throughout document. Per <u>XCN08011</u> , updated the discontinued CP132 and CPG132 package discussion throughout document. Although the package is discontinued, updated the marking on Figure 4. This product is not recommended for new designs.

Spartan-3 FPGA Family: Functional Description

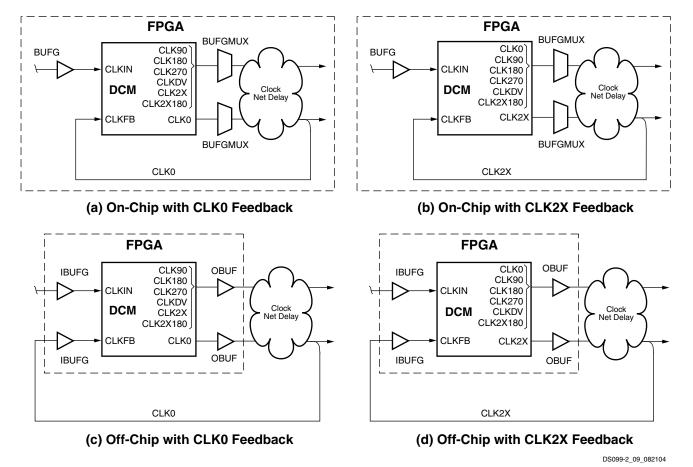
DS099 (v3.0) October 29, 2012

Product Specification

Spartan-3 FPGA Design Documentation

The functionality of the Spartan®-3 FPGA family is described in the following documents. The topics covered in each guide are listed.

- UG331: Spartan-3 Generation FPGA User Guide
 - Clocking Resources
 - Digital Clock Managers (DCMs)
 - Block RAM
 - Configurable Logic Blocks (CLBs)
 - Distributed RAM
 - SRL16 Shift Registers
 - Carry and Arithmetic Logic
 - I/O Resources
 - Embedded Multiplier Blocks
 - Programmable Interconnect
 - ISE® Software Design Tools
 - IP Cores
 - Embedded Processing and Control Solutions
 - Pin Types and Package Overview
 - Package Drawings
 - Powering FPGAs
- UG332: Spartan-3 Generation Configuration User Guide
 - Configuration Overview
 - Configuration Pins and Behavior
 - Bitstream Sizes
 - Detailed Descriptions by Mode
 - Master Serial Mode using Xilinx Platform Flash PROM
 - Slave Parallel (SelectMAP) using a Processor
 - Slave Serial using a Processor
 - JTAG Mode
 - ISE iMPACT Programming Examples


Create a Xilinx user account and sign up to receive automatic e-mail notification whenever this data sheet or the associated user guides are updated.

Sign Up for Alerts on Xilinx.com
 https://secure.xilinx.com/webreg/register.do
 group=myprofile&languageID=1

For specific hardware examples, see the Spartan-3 FPGA Starter Kit board web page, which has links to various design examples and the user guide.

- Spartan-3 FPGA Starter Kit Board page
 <u>http://www.xilinx.com/s3starter</u>
- <u>UG130</u>: Spartan-3 FPGA Starter Kit User Guide

[©] Copyright 2003–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Notes:

1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180, and CLKDV outputs are available.

Figure 21: Input Clock, Output Clock, and Feedback Connections for the DLL

In the on-chip synchronization case (the [a] and [b] sections of Figure 21), it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in the [a] section of Figure 21, the feedback loop is created by routing CLK0 (or CLK2X, in the [b] section) to a global clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case (the [c] and [d] sections of Figure 21), CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in the [c] section of Figure 21, the feedback loop is formed by feeding CLK0 (or CLK2X, in the [d] section) back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input.

DLL Frequency Modes

The DLL supports two distinct operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DLL_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits all seven DLL clock outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows the CLK0, CLK180 and CLKDV outputs to operate at the highest possible frequencies. The remaining DLL clock outputs are not available for use in High Frequency mode.

Accommodating High Input Frequencies

If the frequency of the CLKIN signal is high such that it exceeds the maximum permitted, divide it down to an acceptable value using the CLKIN_DIVIDE_BY_2 attribute. When this attribute is set to TRUE, the CLKIN frequency is divided by a factor of two just as it enters the DCM.

The Standard Configuration Interface

Configuration signals belong to one of two different categories: Dedicated or Dual-Purpose. Which category determines which of the FPGA's power rails supplies the signal's driver and, thus, helps describe the electrical characteristics at the pin.

The Dedicated configuration pins include PROG_B, HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and M0-M2. These pins are powered by the V_{CCAUX} supply.

The Dual-Purpose configuration pins comprise INIT_B, DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of these pins, according to its bank placement, uses the V_{CCO} lines for either Bank 4 (VCCO_4 on most packages, VCCO_BOTTOM on TQ144 and CP132 packages) or Bank 5 (VCCO_5). All the signals used in the serial configuration modes rely on VCCO_4 power. Signals used in the parallel configuration modes and Readback require from VCCO_5 as well as from VCCO_4.

Both the Dedicated signals described above and the Dual-Purpose signals constitute the configuration interface. The Dedicated pins, powered by the 2.5V V_{CCAUX} supply, always use the LVCMOS25 I/O standard. The Dual-Purpose signals, however, are powered by the VCCO_4 supply and also by the VCCO_5 supply in the Parallel configuration modes. The simplest configuration interface uses 2.5V for VCCO_4 and VCCO_5, if required. However, VCCO_4 and, if needed, VCCO_5 can be voltages other than 2.5V but then the configuration interface will have two voltage levels: 2.5V for V_{CCAUX} and a separate V_{CCO} supply. The Dual-Purpose signals default to the LVCMOS input and output levels for the associated V_{CCO} voltage supply.

3.3V-Tolerant Configuration Interface

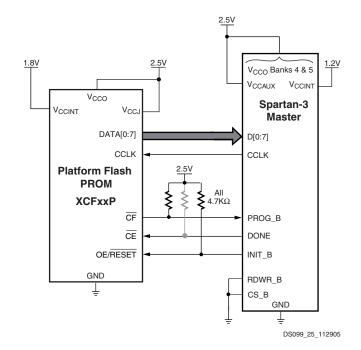
A 3.3V-tolerant configuration interface simply requires adding a few external resistors as described in detail in <u>XAPP453</u>: *The 3.3V Configuration of Spartan-3 FPGAs.*

The 3.3V-tolerance is implemented as follows (a similar approach can be used for other supply voltage levels):

Apply 3.3V to VCCO_4 and, in some configuration modes, to VCCO_5 to power the Dual-Purpose configuration pins. This scales the output voltages and input thresholds associated with these pins so that they become 3.3V-compatible.

Apply 2.5V to V_{CCAUX} to power the Dedicated configuration pins. For 3.3V-tolerance, the Dedicated inputs require series resistors to limit the incoming current to 10 mA or less. The Dedicated outputs have reduced noise margin when the FPGA drives a High logic level into another device's 3.3V receiver. Choose a power regulator or supply that can tolerate reverse current on the V_{CCAUX} lines.

Configuration Modes


Spartan-3 FPGAs support the following five configuration modes:

- Slave Serial mode
- Master Serial mode
- Slave Parallel (SelectMAP) mode
- Master Parallel (SelectMAP) mode
- Boundary-Scan (JTAG) mode (IEEE 1532/IEEE 1149.1)

Slave Serial Mode

In Slave Serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The FPGA on the far right of Figure 26 is set for the Slave Serial mode. The CCLK pin on the FPGA is an input in this mode. The serial bitstream must be set up at the DIN input pin a short time before each rising edge of the externally generated CCLK.

Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the falling edge of CCLK.

Notes:

1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between $3.3K\Omega$ to $4.7K\Omega$ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.

Figure 28: Connection Diagram for Master Parallel Configuration

Master Parallel Mode

In this mode, the FPGA configures from byte-wide data, and the FPGA supplies the CCLK configuration clock. In Master configuration modes, CCLK behaves as a bidirectional I/O pin. Timing is similar to the Slave Parallel mode except that CCLK is supplied by the FPGA. The device connections are shown in Figure 28.

Boundary-Scan (JTAG) Mode

In Boundary-Scan mode, dedicated pins are used for configuring the FPGA. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). FPGA configuration using the Boundary-Scan mode is compatible with the IEEE Std 1149.1-1993 standard and IEEE Std 1532 for In-System Configurable (ISC) devices.

Configuration through the boundary-scan port is always available, regardless of the selected configuration mode. In some cases, however, the mode pin setting may affect proper programming of the device due to various interactions. For example, if the mode pins are set to Master Serial or Master Parallel mode, and the associated PROM is already programmed with a valid configuration image, then there is potential for configuration interference between the JTAG and PROM data. Selecting the Boundary-Scan mode disables the other modes and is the most reliable mode when programming via JTAG.

Configuration Sequence

The configuration of Spartan-3 devices is a three-stage process that occurs after Power-On Reset or the assertion of PROG_B. POR occurs after the V_{CCINT} , V_{CCAUX} , and V_{CCO} Bank 4 supplies have reached their respective maximum input threshold levels (see Table 29, page 59). After POR, the three-stage process begins.

First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. A flow diagram for the configuration sequence of the Serial and Parallel modes is shown in Figure 29. The flow diagram for the Boundary-Scan configuration sequence appears in Figure 30.

Table 34: Quiescent Supply Current Characteristics

Symbol	Description	Device	Typical ⁽¹⁾	Commercial Maximum ⁽¹⁾	Industrial Maximum ⁽¹⁾	Units
I _{CCINTQ}	Quiescent V_{CCINT} supply current	XC3S50	5	24	31	mA
		XC3S200	10	54	80	mA
		XC3S400	15	110	157	mA
		XC3S1000	35	160	262	mA
		XC3S1500	45	260	332	mA
		XC3S2000	60	360	470	mA
		XC3S4000	100	450	810	mA
		XC3S5000	120	600	870	mA
Iccoq	Quiescent V _{CCO} supply current	XC3S50	1.5	2.0	2.5	mA
		XC3S200	1.5	3.0	3.5	mA
		XC3S400	1.5	3.0	3.5	mA
		XC3S1000	2.0	4.0	5.0	mA
		XC3S1500	2.5	4.0	5.0	mA
		XC3S2000	3.0	5.0	6.0	mA
		XC3S4000	3.5	5.0	6.0	mA
		XC3S5000	3.5	5.0	6.0	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC3S50	7	20	22	mA
		XC3S200	10	30	33	mA
		XC3S400	15	40	44	mA
		XC3S1000	20	50	55	mA
		XC3S1500	35	75	85	mA
		XC3S2000	45	90	100	mA
		XC3S4000	55	110	125	mA
		XC3S5000	70	130	145	mA

Notes:

- 1. The numbers in this table are based on the conditions set forth in Table 32. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using devices with typical processing at room temperature (T_J of 25°C at V_{CCINT} = 1.2V, V_{CCO} = 3.3V, and V_{CCAUX} = 2.5V). Maximum values are the production test limits measured for each device at the maximum specified junction temperature and at maximum voltage limits with V_{CCINT} = 1.26V, V_{CCO} = 3.465V, and V_{CCAUX} = 2.625V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional elements, the use of DCI standards, etc.), measured quiescent current levels may be different than the values in the table. Use the XPower Estimator or XPower Analyzer for more accurate estimates. See Note 2.
- 2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The <u>Spartan-3</u> <u>XPower Estimator</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer, part of the Xilinx ISE development software, uses the FPGA netlist as input to provide more accurate maximum and typical estimates.
- The maximum numbers in this table also indicate the minimum current each power rail requires in order for the FPGA to power-on successfully, once all three rails are supplied. If V_{CCINT} is applied before V_{CCAUX}, there may be temporary additional I_{CCINT} current until V_{CCAUX} is applied. See Surplus I_{CCINT} if V_{CCINT} Applied before V_{CCAUX}, page 54

Table 47: Output Timing Adjustments for IOB (Cont'd)

			Add the Adju	stment Below	
	/CMOS25 with 12mA Drive and F g Signal Standard (IOSTANDARD)		Speed Grade -5 -4		Units
. enerni,					
	Slow	2 mA	5.49	6.31	ns
		4 mA	3.45	3.97	ns
		6 mA	2.84	3.26	ns
		8 mA	2.62	3.01	ns
		12 mA	2.11	2.43	ns
		16 mA	2.07	2.38	ns
	Fast	2 mA	2.50	2.88	ns
		4 mA	1.15	1.32	ns
		6 mA	0.96	1.10	ns
		8 mA	0.87	1.01	ns
		12 mA	0.79	0.91	ns
		16 mA	0.76	0.87	ns
LVDCI_18			0.81	0.94	ns
LVDCI_DV2_18			0.67	0.77	ns
LVCMOS25	Slow	2 mA	6.43	7.39	ns
		4 mA	4.15	4.77	ns
		6 mA	3.38	3.89	ns
		8 mA	2.99	3.44	ns
		12 mA	2.53	2.91	ns
		16 mA	2.50	2.87	ns
		24 mA	2.22	2.55	ns
	Fast	2 mA	3.27	3.76	ns
		4 mA	1.87	2.15	ns
		6 mA	0.32	0.37	ns
		8 mA	0.19	0.22	ns
		12 mA	0	0	ns
		16 mA	-0.02	-0.01	ns
		24 mA	-0.04	-0.02	ns
LVDCI_25			0.27	0.31	ns
LVDCI_DV2_25			0.16	0.19	ns

www.xilinx.com

Simultaneously Switching Output Guidelines

This section provides guidelines for the maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins, of a given output signal standard, that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

Table 49 and Table 50 provide the essential SSO guidelines. For each device/package combination, Table 49 provides the number of equivalent V_{CCO} /GND pairs. The equivalent number of pairs is based on characterization and will possibly not match the physical number of pairs. For each output signal standard and drive strength, Table 50 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The Table 50 guidelines are categorized by package style. Multiply the appropriate numbers from Table 49 and Table 50 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines may result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 49 x Table 50

The recommended maximum SSO values assume that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

The number of SSOs allowed for quad-flat packages (VQ, TQ, PQ) is lower than for ball grid array packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs.

Device	VQ100	CP132 ⁽¹⁾⁽²⁾	TQ144 ⁽¹⁾	PQ208	FT256	FG320	FG456	FG676	FG900	FG1156 ⁽²⁾
XC3S50	1	1.5	1.5	2	-	-	-	-	-	-
XC3S200	1	-	1.5	2	3	-	-	-	-	-
XC3S400	-	-	1.5	2	3	3	5	-	-	-
XC3S1000	-	-	-	-	3	3	5	5	-	-
XC3S1500	-	-	-	-	-	3	5	6	-	-
XC3S2000	-	-	-	-	-	-	5	6	9	-
XC3S4000	-	-	-	-	-	-	-	6	10	12
XC3S5000	-	-	-	-	_	-	-	6	10	12

Table 49: Equivalent V_{CCO}/GND Pairs per Bank

Notes:

1. The V_{CCO} lines for the pair of banks on each side of the CP132 and TQ144 packages are internally tied together. Each pair of interconnected banks shares three V_{CCO}/GND pairs. Consequently, the per bank number is 1.5.

2. The CP132, CPG132, FG1156, and FGG1156 packages are discontinued. See http://www.xilinx.com/support/documentation/spartan-3_customer_notices.htm.

3. The information in this table also applies to Pb-free packages.

Table 59: Switching Characteristics for the DLL

		England and Marcha (Speed Grade				
Symbol	Description	Frequency Mode / FCLKIN Range	Device	-	5	-	4	Units
				Min	Max	Min	Max	
Output Frequency Ranges								
CLKOUT_FREQ_1X_LF	Frequency for the CLK0, CLK90, CLK180, and CLK270 outputs	Low	All	18	167	18	167	MHz
CLKOUT_FREQ_1X_HF	Frequency for the CLK0 and CLK180 outputs	High		48	280	48	280	MHz
CLKOUT_FREQ_2X_LF ⁽³⁾	Frequency for the CLK2X and CLK2X180 outputs	Low		36	334	36	334	MHz
CLKOUT_FREQ_DV_LF	Frequency for the CLKDV	Low		1.125	110	1.125	110	MHz
CLKOUT_FREQ_DV_HF	output	High		3	185	3	185	MHz
Output Clock Jitter ⁽⁴⁾								
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	All	All	-	±100	_	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output			-	±150	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output			-	±150	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output			-	±150	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs			-	±200	-	±200	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division			-	±150	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division			-	±300	-	±300	ps
Duty Cycle								
CLKOUT_DUTY_CYCLE_DLL ⁽⁵⁾	Duty cycle variation for the	All	XC3S50	-	±150	_	±150	ps
	CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180,		XC3S200	-	±150	-	±150	ps
	and CLKDV outputs		XC3S400	-	±250	-	±250	ps
			XC3S1000	-	±400	-	±400	ps
			XC3S1500	_	±400	_	±400	ps
			XC3S2000	_	±400	_	±400	ps
			XC3S4000	-	±400	_	±400	ps
			XC3S5000	_	±400	_	±400	ps
Phase Alignment	1							
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and CLKFB inputs	All	All	-	±150	_	±150	ps
CLKOUT_PHASE	Phase offset between any two DLL outputs (except CLK2X and CLK0)			-	±140	-	±140	ps
	Phase offset between the CLK2X and CLK0 outputs			-	±250	-	±250	ps

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Table 70: Spartan-3 FPGA Pin Definitions

Pin Name	Direction	Description
I/O: General-purpose I	/O pins	·
I/O	User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output	User I/O: Unrestricted single-ended user-I/O pin. Supports all I/O standards except the differential standards.
I/O_Lxxy_#	User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output	User I/O, Half of Differential Pair: Unrestricted single-ended user-I/O pin or half of a differential pair. Supports all I/O standards including the differential standards.
DUAL: Dual-purpose of	configuration pins	
IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1, IO_Lxxy_#/D2, IO_Lxxy_#/D3, IO_Lxxy_#/D4, IO_Lxxy_#/D5, IO_Lxxy_#/D6, IO_Lxxy_#/D7	Input during configuration Possible bidirectional I/O after configuration if SelectMap port is retained Otherwise, user I/O after configuration	Configuration Data Port: In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained via the Persist bitstream option. In Serial modes, DIN (D0) serves as the single configuration data input. This pin becomes a user I/O after configuration unless retained by the Persist bitstream option.
IO_Lxxy_#/CS_B	Input during Parallel mode configuration Possible input after configuration if SelectMap port is retained Otherwise, user I/O after configuration	Chip Select for Parallel Mode Configuration: In Parallel (SelectMAP) modes, this is the active-Low Chip Select signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.
IO_Lxxy_#/RDWR_B	Input during Parallel mode configuration Possible input after configuration if SelectMap port is retained Otherwise, user I/O after configuration	Read/Write Control for Parallel Mode Configuration: In Parallel (SelectMAP) modes, this is the active-Low Write Enable, active-High Read Enable signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.
IO_Lxxy_#/ BUSY/DOUT	Output during configuration Possible output after configuration if SelectMap port is retained Otherwise, user I/O after configuration	Configuration Data Rate Control for Parallel Mode, Serial Data Output for Serial Mode: In Parallel (SelectMAP) modes, BUSY throttles the rate at which configuration data is loaded. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option. In Serial modes, DOUT provides preamble and configuration data to downstream devices in a multi-FPGA daisy-chain. This pin becomes a user I/O after configuration.
IO_Lxxy_#/INIT_B	Bidirectional (open-drain) during configuration User I/O after configuration	Initializing Configuration Memory/Detected Configuration Error: When Low, this pin indicates that configuration memory is being cleared. When held Low, this pin delays the start of configuration. After this pin is released or configuration memory is cleared, the pin goes High. During configuration, a Low on this output indicates that a configuration data error occurred. This pin always has an internal pull-up resistor to VCCO_4 or VCCO_BOTTOM during configuration, regardless of the HSWAP_EN pin. This pin becomes a user I/O after configuration.
DCI: Digitally Controlle	ed Impedance reference resistor	input pins
IO_Lxxy_#/VRN_# or IO/VRN_#	Input when using DCI Otherwise, same as I/O	DCI Reference Resistor for NMOS I/O Transistor (per bank): If using DCI, a 1% precision impedance-matching resistor is connected between this pin and the VCCO supply for this bank. Otherwise, this pin is a user I/O.
IO_Lxxy_#/VRP_# or IO/VRP_#	Input when using DCI Otherwise, same as I/O	DCI Reference Resistor for PMOS I/O Transistor (per bank): If using DCI, a 1% precision impedance-matching resistor is connected between this pin and the ground supply. Otherwise, this pin is a user I/O.

All VCCAUX inputs must be connected together and to the +2.5V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623.

Because VCCAUX connects to the DCMs and the DCMs are sensitive to voltage changes, be sure that the VCCAUX supply and the ground return paths are designed for low noise and low voltage drop, especially that caused by a large number of simultaneous switching I/Os.

GND Type: Ground

All GND pins must be connected and have a low resistance path back to the various VCCO, VCCINT, and VCCAUX supplies.

Pin Behavior During Configuration

Table 79 shows how various pins behave during the FPGA configuration process. The actual behavior depends on the values applied to the M2, M1, and M0 mode select pins and the HSWAP_EN pin. The mode select pins determine which of the DUAL type pins are active during configuration. In JTAG configuration mode, none of the DUAL-type pins are used for configuration and all behave as user-I/O pins.

All DUAL-type pins not actively used during configuration and all I/O-type, DCI-type, VREF-type, GCLK-type pins are high impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 79 as shaded table entries or cells. These pins have a pull-up resistor to their associated VCCO if the HSWAP_EN pin is Low. When HSWAP_EN is High, these pull-up resistors are disabled during configuration.

Some pins always have an active pull-up resistor during configuration, regardless of the value applied to the HSWAP_EN pin. After configuration, these pull-up resistors are controlled by Bitstream Options.

- All the dedicated CONFIG-type configuration pins (CCLK, PROG_B, DONE, M2, M1, M0, and HSWAP_EN) have a
 pull-up resistor to VCCAUX.
- All JTAG-type pins (TCK, TDI, TMS, TDO) have a pull-up resistor to VCCAUX.
- The INIT_B DUAL-purpose pin has a pull-up resistor to VCCO_4 or VCCO_BOTTOM, depending on package style.

After configuration completes, some pins have optional behavior controlled by the configuration bitstream loaded into the part. For example, via the bitstream, all unused I/O pins can be collectively configured as input pins with either a pull-up resistor, a pull-down resistor, or be left in a high-impedance state.

		Bitstream				
Pin Name	Serial	Modes	SelectMap Pa	arallel Modes	JTAG Mode	Configuration
	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	<1:0:1>	Option
I/O: General-pur	pose I/O pins					
IO						UnusedPin
IO_Lxxy_#						UnusedPin
DUAL: Dual-pur	pose configuration	pins				
IO_Lxxy_#/ DIN/D0	DIN (I)	DIN (I)	D0 (I/O)	D0 (I/O)		Persist UnusedPin
IO_Lxxy_#/ D1			D1 (I/O)	D1 (I/O)		Persist UnusedPin
IO_Lxxy_#/ D2			D2 (I/O)	D2 (I/O)		Persist UnusedPin
IO_Lxxy_#/ D3			D3 (I/O)	D3 (I/O)		Persist UnusedPin
IO_Lxxy_#/ D4			D4 (I/O)	D4 (I/O)		Persist UnusedPin

Table 79: Pin Behavior After Power-Up, During Configuration

Table 79: Pin Behavior After Power-Up, During Configuration (Cont'd)

		Bitstream				
Pin Name	Serial	Serial Modes		arallel Modes	JTAG Mode	Configuration
	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	<1:0:1>	Option
JTAG: JTAG inte	erface pins (pull-u	p resistor to VCC	AUX always activ	e during configur	ation, regardless	of HSWAP_EN pin)
TDI	TDI (I)	TDI (I)	TDI (I)	TDI (I)	TDI (I)	TdiPin
TMS	TMS (I)	TMS (I)	TMS (I)	TMS (I)	TMS (I)	TmsPin
ТСК	TCK (I)	TCK (I)	TCK (I)	TCK (I)	TCK (I)	TckPin
TDO	TDO (O)	TDO (O)	TDO (O)	TDO (O)	TDO (O)	TdoPin

Table 103: FG676 Package Pinout (Cont'd)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	XC3S4000 Pin Name	XC3S5000 Pin Name	FG676 Pin Number	Туре
N/A	GND	GND	GND	GND	GND	D15	GND
N/A	GND	GND	GND	GND	GND	D23	GND
N/A	GND	GND	GND	GND	GND	K11	GND
N/A	GND	GND	GND	GND	GND	K12	GND
N/A	GND	GND	GND	GND	GND	K15	GND
N/A	GND	GND	GND	GND	GND	K16	GND
N/A	GND	GND	GND	GND	GND	L10	GND
N/A	GND	GND	GND	GND	GND	L11	GND
N/A	GND	GND	GND	GND	GND	L12	GND
N/A	GND	GND	GND	GND	GND	L13	GND
N/A	GND	GND	GND	GND	GND	L14	GND
N/A	GND	GND	GND	GND	GND	L15	GND
N/A	GND	GND	GND	GND	GND	L16	GND
N/A	GND	GND	GND	GND	GND	L17	GND
N/A	GND	GND	GND	GND	GND	M4	GND
N/A	GND	GND	GND	GND	GND	M10	GND
N/A	GND	GND	GND	GND	GND	M11	GND
N/A	GND	GND	GND	GND	GND	M12	GND
N/A	GND	GND	GND	GND	GND	M13	GND
N/A	GND	GND	GND	GND	GND	M14	GND
N/A	GND	GND	GND	GND	GND	M15	GND
N/A	GND	GND	GND	GND	GND	M16	GND
N/A	GND	GND	GND	GND	GND	M17	GND
N/A	GND	GND	GND	GND	GND	M23	GND
N/A	GND	GND	GND	GND	GND	N11	GND
N/A	GND	GND	GND	GND	GND	N12	GND
N/A	GND	GND	GND	GND	GND	N13	GND
N/A	GND	GND	GND	GND	GND	N14	GND
N/A	GND	GND	GND	GND	GND	N15	GND
N/A	GND	GND	GND	GND	GND	N16	GND
N/A	GND	GND	GND	GND	GND	P11	GND
N/A	GND	GND	GND	GND	GND	P12	GND
N/A	GND	GND	GND	GND	GND	P13	GND
N/A	GND	GND	GND	GND	GND	P14	GND
N/A	GND	GND	GND	GND	GND	P15	GND
N/A	GND	GND	GND	GND	GND	P16	GND
N/A	GND	GND	GND	GND	GND	R4	GND
N/A	GND	GND	GND	GND	GND	R10	GND
N/A	GND	GND	GND	GND	GND	R11	GND
N/A	GND	GND	GND	GND	GND	R12	GND
N/A	GND	GND	GND	GND	GND	R13	GND
N/A	GND	GND	GND	GND	GND	R14	GND
N/A	GND	GND	GND	GND	GND	R15	GND

www.xilinx.com

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
0	IO_L30N_0	IO_L30N_0	G15	I/O
0	IO_L30P_0	IO_L30P_0	F15	I/O
0	IO_L31N_0	IO_L31N_0	D15	I/O
0	IO_L31P_0/VREF_0	IO_L31P_0/VREF_0	C15	VREF
0	IO_L32N_0/GCLK7	IO_L32N_0/GCLK7	B15	GCLK
0	IO_L32P_0/GCLK6	IO_L32P_0/GCLK6	A15	GCLK
0	N.C. (�)	IO_L35N_0	B7	I/O
0	N.C. (�)	IO_L35P_0	A7	I/O
0	N.C. (�)	IO_L36N_0	G7	I/O
0	N.C. (�)	IO_L36P_0	H8	I/O
0	N.C. (�)	IO_L37N_0	E9	I/O
0	N.C. (�)	IO_L37P_0	D9	I/O
0	N.C. (�)	IO_L38N_0	B9	I/O
0	N.C. (�)	IO_L38P_0	A9	I/O
0	VCCO_0	VCCO_0	C5	VCCO
0	VCCO_0	VCCO_0	E7	VCCO
0	VCCO_0	VCCO_0	C9	VCCO
0	VCCO_0	VCCO_0	G9	VCCO
0	VCCO_0	VCCO_0	J11	VCCO
0	VCCO_0	VCCO_0	L12	VCCO
0	VCCO_0	VCCO_0	C13	VCCO
0	VCCO_0	VCCO_0	G13	VCCO
0	VCCO_0	VCCO_0	L13	VCCO
0	VCCO_0	VCCO_0	L14	VCCO
1	IO	IO	E25	I/O
1	IO	IO	J21	I/O
1	IO	IO	K20	I/O
1	IO	IO	F18	I/O
1	IO	IO	F16	I/O
1	IO	IO	A16	I/O
1	IO/VREF_1	IO/VREF_1	J17	VREF
1	IO_L01N_1/VRP_1	IO_L01N_1/VRP_1	A27	DCI
1	IO_L01P_1/VRN_1	IO_L01P_1/VRN_1	B27	DCI
1	IO_L02N_1	IO_L02N_1	D26	I/O
1	IO_L02P_1	IO_L02P_1	C27	I/O
1	IO_L03N_1	IO_L03N_1	A26	I/O
1	IO_L03P_1	IO_L03P_1	B26	I/O
1	IO_L04N_1	IO_L04N_1	B25	I/O
1	IO_L04P_1	IO_L04P_1	C25	I/O
1	IO_L05N_1	IO_L05N_1	F24	I/O

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
2	VCCO_2	VCCO_2	J28	VCCO
2	VCCO_2	VCCO_2	N28	VCCO
3	IO	Ю	AB25	I/O
3	IO_L01N_3/VRP_3	IO_L01N_3/VRP_3	AH30	DCI
3	IO_L01P_3/VRN_3	IO_L01P_3/VRN_3	AH29	DCI
3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	AG28	VREF
3	IO_L02P_3	IO_L02P_3	AG27	I/O
3	IO_L03N_3	IO_L03N_3	AG30	I/O
3	IO_L03P_3	IO_L03P_3	AG29	I/O
3	IO_L04N_3	IO_L04N_3	AF30	I/O
3	IO_L04P_3	IO_L04P_3	AF29	I/O
3	IO_L05N_3	IO_L05N_3	AE26	I/O
3	IO_L05P_3	IO_L05P_3	AF27	I/O
3	IO_L06N_3	IO_L06N_3	AE29	I/O
3	IO_L06P_3	IO_L06P_3	AE28	I/O
3	IO_L07N_3	IO_L07N_3	AD28	I/O
3	IO_L07P_3	IO_L07P_3	AD27	I/O
3	IO_L08N_3	IO_L08N_3	AD30	I/O
3	IO_L08P_3	IO_L08P_3	AD29	I/O
3	IO_L09N_3	IO_L09N_3	AC24	I/O
3	IO_L09P_3/VREF_3	IO_L09P_3/VREF_3	AD25	VREF
3	IO_L10N_3	IO_L10N_3	AC26	I/O
3	IO_L10P_3	IO_L10P_3	AC25	I/O
3	IO_L11N_3	IO_L11N_3	AC28	I/O
3	IO_L11P_3	IO_L11P_3	AC27	I/O
3	IO_L13N_3/VREF_3	IO_L13N_3/VREF_3	AC30	VREF
3	IO_L13P_3	IO_L13P_3	AC29	I/O
3	IO_L14N_3	IO_L14N_3	AB27	I/O
3	IO_L14P_3	IO_L14P_3	AB26	I/O
3	IO_L15N_3	IO_L15N_3	AB30	I/O
3	IO_L15P_3	IO_L15P_3	AB29	I/O
3	IO_L16N_3	IO_L16N_3	AA22	I/O
3	IO_L16P_3	IO_L16P_3	AB23	I/O
3	IO_L17N_3	IO_L17N_3	AA25	I/O
3	IO_L17P_3/VREF_3	IO_L17P_3/VREF_3	AA24	VREF
3	IO_L19N_3	IO_L19N_3	AA29	I/O
3	IO_L19P_3	IO_L19P_3	AA28	I/O
3	IO_L20N_3	IO_L20N_3	Y21	I/O
3	IO_L20P_3	IO_L20P_3	AA21	I/O
3	IO_L21N_3	IO_L21N_3	Y24	I/O

Table 107: FG900 Package Pinout (Cont'd)

Bank	XC3S2000 Pin Name	XC3S4000, XC3S5000 Pin Name	FG900 Pin Number	Туре
N/A	GND	GND	T12	GND
N/A	GND	GND	N13	GND
N/A	GND	GND	P13	GND
N/A	GND	GND	R13	GND
N/A	GND	GND	T13	GND
N/A	GND	GND	U13	GND
N/A	GND	GND	V13	GND
N/A	GND	GND	A14	GND
N/A	GND	GND	E14	GND
N/A	GND	GND	H14	GND
N/A	GND	GND	N14	GND
N/A	GND	GND	P14	GND
N/A	GND	GND	R14	GND
N/A	GND	GND	T14	GND
N/A	GND	GND	U14	GND
N/A	GND	GND	V14	GND
N/A	GND	GND	AC14	GND
N/A	GND	GND	AF14	GND
N/A	GND	GND	AK14	GND
N/A	GND	GND	M15	GND
N/A	GND	GND	N15	GND
N/A	GND	GND	P15	GND
N/A	GND	GND	R15	GND
N/A	GND	GND	T15	GND
N/A	GND	GND	U15	GND
N/A	GND	GND	V15	GND
N/A	GND	GND	W15	GND
N/A	GND	GND	M16	GND
N/A	GND	GND	N16	GND
N/A	GND	GND	P16	GND
N/A	GND	GND	R16	GND
N/A	GND	GND	T16	GND
N/A	GND	GND	U16	GND
N/A	GND	GND	V16	GND
N/A	GND	GND	W16	GND
N/A	GND	GND	A17	GND
N/A	GND	GND	E17	GND
N/A	GND	GND	H17	GND
N/A	GND	GND	N17	GND
N/A	GND	GND	P17	GND

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
1	IO_L27N_1	IO_L27N_1	F19	I/O
1	IO_L27P_1	IO_L27P_1	G19	I/O
1	IO_L28N_1	IO_L28N_1	B19	I/O
1	IO_L28P_1	IO_L28P_1	C19	I/O
1	IO_L29N_1	IO_L29N_1	J18	I/O
1	IO_L29P_1	IO_L29P_1	K18	I/O
1	IO_L30N_1	IO_L30N_1	G18	I/O
1	IO_L30P_1	IO_L30P_1	H18	I/O
1	IO_L31N_1/VREF_1	IO_L31N_1/VREF_1	D18	VREF
1	IO_L31P_1	IO_L31P_1	E18	I/O
1	IO_L32N_1/GCLK5	IO_L32N_1/GCLK5	B18	GCLK
1	IO_L32P_1/GCLK4	IO_L32P_1/GCLK4	C18	GCLK
1	N.C. (�)	IO_L33N_1	C28	I/O
1	N.C. (�)	IO_L33P_1	D28	I/O
1	N.C. (♦)	IO_L34N_1	A28	I/O
1	N.C. (♦)	IO_L34P_1	B28	I/O
1	N.C. (♦)	IO_L35N_1	J24	I/O
1	N.C. (�)	IO_L35P_1	K24	I/O
1	N.C. (�)	IO_L36N_1	F24	I/O
1	N.C. (�)	IO_L36P_1	G24	I/O
1	IO_L37N_1	IO_L37N_1	J20	I/O
1	IO_L37P_1	IO_L37P_1	K20	I/O
1	IO_L38N_1	IO_L38N_1	F20	I/O
1	IO_L38P_1	IO_L38P_1	G20	I/O
1	IO_L39N_1	IO_L39N_1	C20	I/O
1	IO_L39P_1	IO_L39P_1	D20	I/O
1	IO_L40N_1	IO_L40N_1	A20	I/O
1	IO_L40P_1	IO_L40P_1	B20	I/O
1	VCCO_1	VCCO_1	B22	VCCO
1	VCCO_1	VCCO_1	C27	VCCO
1	VCCO_1	VCCO_1	C31	VCCO
1	VCCO_1	VCCO_1	D19	VCCO
1	VCCO_1	VCCO_1	D24	VCCO
1	VCCO_1	VCCO_1	F22	VCCO
1	VCCO_1	VCCO_1	G27	VCCO
1	VCCO_1	VCCO_1	H20	VCCO
1	VCCO_1	VCCO_1	H24	VCCO
1	VCCO_1	VCCO_1	M19	VCCO
1	VCCO_1	VCCO_1	M20	VCCO
1	VCCO_1	VCCO_1	M21	VCCO

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
6	IO_L37N_6	IO_L37N_6	W3	I/O
6	IO_L37P_6	IO_L37P_6	W2	I/O
6	IO_L38N_6	IO_L38N_6	V6	I/O
6	IO_L38P_6	IO_L38P_6	V5	I/O
6	IO_L39N_6	IO_L39N_6	V4	I/O
6	IO_L39P_6	IO_L39P_6	V3	I/O
6	IO_L40N_6	IO_L40N_6	V2	I/O
6	IO_L40P_6/VREF_6	IO_L40P_6/VREF_6	V1	VREF
6	N.C. (�)	IO_L41N_6	AH4	I/O
6	N.C. (�)	IO_L41P_6	AH3	I/O
6	N.C. (�)	IO_L44N_6	AD7	I/O
6	N.C. (�)	IO_L44P_6	AD6	I/O
6	IO_L45N_6	IO_L45N_6	AC4	I/O
6	IO_L45P_6	IO_L45P_6	AC3	I/O
6	N.C. (�)	IO_L46N_6	AA10	I/O
6	N.C. (�)	IO_L46P_6	AA9	I/O
6	IO_L48N_6	IO_L48N_6	Y7	I/O
6	IO_L48P_6	IO_L48P_6	Y6	I/O
6	N.C. (�)	IO_L49N_6	W11	I/O
6	N.C. (�)	IO_L49P_6	V11	I/O
6	IO_L52N_6	IO_L52N_6	V8	I/O
6	IO_L52P_6	IO_L52P_6	V7	I/O
6	VCCO_6	VCCO_6	AA12	VCCO
6	VCCO_6	VCCO_6	AB12	VCCO
6	VCCO_6	VCCO_6	AB2	VCCO
6	VCCO_6	VCCO_6	AB6	VCCO
6	VCCO_6	VCCO_6	AD4	VCCO
6	VCCO_6	VCCO_6	AD8	VCCO
6	VCCO_6	VCCO_6	AG3	VCCO
6	VCCO_6	VCCO_6	AG7	VCCO
6	VCCO_6	VCCO_6	AL3	VCCO
6	VCCO_6	VCCO_6	W12	VCCO
6	VCCO_6	VCCO_6	W4	VCCO
6	VCCO_6	VCCO_6	Y12	VCCO
6	VCCO_6	VCCO_6	Y8	VCCO
7	IO	IO	G1	I/O
7	10	IO	G2	I/O
7	10	IO	U10	I/O
7	IO	IO	U9	I/O
7	IO_L01N_7/VRP_7	IO_L01N_7/VRP_7	C1	DCI

Table 110: FG1156 Package Pinout (Cont'd)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
7	IO_L22P_7	IO_L22P_7	M6	I/O
7	IO_L23N_7	IO_L23N_7	M3	I/O
7	IO_L23P_7	IO_L23P_7	M4	I/O
7	IO_L24N_7	IO_L24N_7	N10	I/O
7	IO_L24P_7	IO_L24P_7	M9	I/O
7	IO_L25N_7	IO_L25N_7	N3	I/O
7	IO_L25P_7	IO_L25P_7	N4	I/O
7	IO_L26N_7	IO_L26N_7	P11	I/O
7	IO_L26P_7	IO_L26P_7	N11	I/O
7	IO_L27N_7	IO_L27N_7	P7	I/O
7	IO_L27P_7/VREF_7	IO_L27P_7/VREF_7	P8	VREF
7	IO_L28N_7	IO_L28N_7	P5	I/O
7	IO_L28P_7	IO_L28P_7	P6	I/O
7	IO_L29N_7	IO_L29N_7	P3	I/O
7	IO_L29P_7	IO_L29P_7	P4	I/O
7	IO_L30N_7	IO_L30N_7	R6	I/O
7	IO_L30P_7	IO_L30P_7	R7	I/O
7	IO_L31N_7	IO_L31N_7	R3	I/O
7	IO_L31P_7	IO_L31P_7	R4	I/O
7	IO_L32N_7	IO_L32N_7	R1	I/O
7	IO_L32P_7	IO_L32P_7	R2	I/O
7	IO_L33N_7	IO_L33N_7	T10	I/O
7	IO_L33P_7	IO_L33P_7	R9	I/O
7	IO_L34N_7	IO_L34N_7	T6	I/O
7	IO_L34P_7	IO_L34P_7	T7	I/O
7	IO_L35N_7	IO_L35N_7	T2	I/O
7	IO_L35P_7	IO_L35P_7	T3	I/O
7	IO_L37N_7	IO_L37N_7	U7	I/O
7	IO_L37P_7/VREF_7	IO_L37P_7/VREF_7	U8	VREF
7	IO_L38N_7	IO_L38N_7	U5	I/O
7	IO_L38P_7	IO_L38P_7	U6	I/O
7	IO_L39N_7	IO_L39N_7	U3	I/O
7	IO_L39P_7	IO_L39P_7	U4	I/O
7	IO_L40N_7/VREF_7	IO_L40N_7/VREF_7	U1	VREF
7	IO_L40P_7	IO_L40P_7	U2	I/O
7	N.C. (�)	IO_L41N_7	G3	I/O
7	N.C. (�)	IO_L41P_7	G4	I/O
7	N.C. (�)	IO_L44N_7	L6	I/O
7	N.C. (�)	IO_L44P_7	L7	I/O
7	IO_L45N_7	IO_L45N_7	M1	I/O