

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv30f128vfm10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Implements Field Orient Control (FOC) using Back EMF to improve motor efficiency
- Utilizes SpinTAC control theory that improves overall system performance and reliability

Ordering Information

Part Number	Memory		Number of GPIOs
	Flash (KB)	SRAM (KB)	
MKV30F128VLH10	128	16	46
MKV30F128VLF10	128	16	35
MKV30F128VFM10	128	16	26
MKV30F64VLH10	64	16	46
MKV30F64VLF10	64	16	35
MKV30F64VFM10	64	16	26
MKV30F128VLF10P	120	16	35
MKV30F64VLH10P ¹	56	16	46
MKV30F64VLF10P ¹	56	16	35

1. This part number is subject to removal

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Product Selector
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KV30FKV31FPB
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KV30P64M100SFARM
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
KMS User Guide	The KMS User Guide provides a comprehensive description of the features and functions of the Kinetis Motor Suite solution.	Kinetis Motor Suite User's Guide (KMS100UG) ¹
KMS API Reference Manual	The KMS API reference manual provides a comprehensive description of the API of the Kinetis Motor Suite function blocks.	Kinetis Motor Suite API Reference Manual (KMS100RM) ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	Kinetis_V_0N36M
Package drawing	Package dimensions are provided by the part number: MKV30F64VLF10P MKV30F64VLH10P MKV30F128VLH10 MKV30F128VLF10 MKV30F128VFM10 MKV30F128VLF10P	 98ASH00962A 98ASS23234W 98ASS23234W 98ASH00962A 98ARE10566D 98ASH00962A

1. To find the associated resource, go to freescale.com and perform a search using Document ID

Table of Contents

1	Rati	ngs		.5
	1.1	Therma	al handling ratings	. 5
	1.2	Moistu	re handling ratings	5
	1.3	ESD ha	andling ratings	.5
	1.4	Voltage	e and current operating ratings	5
2	Gen	eral		6
	2.1	AC ele	ctrical characteristics	.6
	2.2	Nonsw	itching electrical specifications	.6
		2.2.1	Voltage and current operating requirements	. 6
		2.2.2	LVD and POR operating requirements	.7
		2.2.3	Voltage and current operating behaviors	.8
		2.2.4	Power mode transition operating behaviors	. 9
		2.2.5	Power consumption operating behaviors	10
		2.2.6	EMC radiated emissions operating behaviors	. 16
		2.2.7	Designing with radiated emissions in mind	.17
		2.2.8	Capacitance attributes	.17
	2.3	Switch	ing specifications	.17
		2.3.1	Device clock specifications	.17
		2.3.2	General switching specifications	. 18
	2.4	Therma	al specifications	. 18
		2.4.1	Thermal operating requirements	. 19
		2.4.2	Thermal attributes	.19
3	Peri	pheral o	operating requirements and behaviors	. 20
	3.1	Core m	nodules	. 20
		3.1.1	SWD electricals	. 20
		3.1.2	JTAG electricals	21
	3.2	System	n modules	. 24
	3.3	Clock r	nodules	. 24
		3.3.1	MCG specifications	.24
		3.3.2	IRC48M specifications	.26
	_	3.3.3	Oscillator electrical specifications	.26
	3.4	Memor	Tes and memory interfaces	. 29
		3.4.1	Flash electrical specifications	.29
	3.5	Securit	y and integrity modules	30

	3.6	Analog		. 30
		3.6.1	ADC electrical specifications	30
		3.6.2	CMP and 6-bit DAC electrical specifications	34
		3.6.3	12-bit DAC electrical characteristics	37
		3.6.4	Voltage reference electrical specifications	40
	3.7	Timers		41
	3.8	Comm	unication interfaces	41
		3.8.1	DSPI switching specifications (limited voltage	
			range)	42
		3.8.2	DSPI switching specifications (full voltage	
			range)	43
		3.8.3	Inter-Integrated Circuit Interface (I2C) timing	45
		3.8.4	UART switching specifications	47
	3.9	Kinetis	Motor Suite	. 47
4	Dim	ensions	5	47
	4.1	Obtain	ing package dimensions	. 47
5	Pinc	out		48
	5.1	KV30F	Signal Multiplexing and Pin Assignments	48
	5.2	Recom	mended connection for unused analog and	
		digital	pins	50
	5.3	KV30F	Pinouts	51
6	Part	identifi	cation	54
	6.1	Descri	ption	54
	6.2	Format	t	54
	6.3	Fields.		55
	6.4	Examp	le	55
7	Terr	ninolog	y and guidelines	56
	7.1	Definiti	ons	56
	7.2	Examp	les	56
	7.3	Typica	I-value conditions	57
	7.4	Relatio	onship between ratings and operating	
		require	ments	57
	7.5	Guideli	ines for ratings and operating requirements	58
8	Rev	ision Hi	story	58

Symbol	Description		Temperature (°C)				Unit	
		-40	25	50	70	85	105	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48 Mhz internal reference clock	350	350	350	350	350	350	μA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	>OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	42	42	42	42	42	42	μA

Table 6.	Low power n	node peripheral	adders-typic	al value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at frequencies between 50 MHz and 100MHz.
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

4. IEC Level Maximums: N \leq 12dBmV, M \leq 18dBmV, L \leq 24dBmV, K \leq 30dBmV, I \leq 36dBmV .

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes	
	High Speed run mode					
f _{SYS}	System and core clock	—	100	MHz		
f _{BUS}	Bus clock	—	50	MHz		
	Normal run mode (and High Speed run mode ur	nless otherwis	se specified a	bove)		
f _{SYS}	System and core clock	—	72	MHz		
f _{BUS}	Bus clock	_	50	MHz		
f _{FLASH}	Flash clock	—	25	MHz		
f _{LPTMR}	LPTMR clock	—	25	MHz		
	VLPR mode ¹					
f _{SYS}	System and core clock	_	4	MHz		
f _{BUS}	Bus clock	_	4	MHz		
f _{FLASH}	Flash clock	—	1	MHz		
f _{ERCLK}	External reference clock	—	16	MHz		

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR_pin}	LPTMR clock	—	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz	

Table 9.	Device clock s	pecifications	(continued)
1 4510 01		poolinoutiono	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

 Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path	50	_	ns	4
	Port rise and fall time				5
	Slew disabled	—			
	• $1.71 \le V_{DD} \le 2.7V$	—	10	ns	
	• $2.7 \le V_{DD} \le 3.6V$		5	ns	
	Slew enabled	—			
	• $1.71 \le V_{DD} \le 2.7V$	—	30	ns	
	• $2.7 \le V_{DD} \le 3.6V$		16	ns	

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 5. 25 pF load

2.4 Thermal specifications

Peripheral operating requirements and behaviors

Board type	Symbol	Descriptio n	64 LQFP	48 LQFP	32 QFN	Unit	Notes
_	Ψ _{JT}	Thermal characterizati on parameter, junction to package top outside center (natural convection)	3	5	6	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 12. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	SWD_CLK frequency of operation			
	Serial wire debug	0	33	MHz
S2	SWD_CLK cycle period	1/S1	—	ns
S3	SWD_CLK clock pulse width			
	Serial wire debug	15	—	ns
S4	SWD_CLK rise and fall times	_	3	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	8	—	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	1.4	—	ns
S11	SWD_CLK high to SWD_DIO data valid	—	25	ns
S12	SWD_CLK high to SWD_DIO high-Z	5	—	ns

Figure 5. Serial wire clock input timing

3.1.2 JTAG electricals

Table 13. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
J2	TCLK cycle period	1/J1	—	ns
J3	TCLK clock pulse width			

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes	
	High range (DRS=11)		_	95.98	—	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter	FLL period jitter				ps	
	• f _{VCO} = 48 M	_	180	_			
	• f _{VCO} = 98 M	IHz		150			
t _{fll_acquire}	FLL target freque	ncy acquisition time	—		1	ms	7

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2.0 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 IRC48M specifications

Table 16. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DD48M}	Supply current	_	400	500	μA	
f _{irc48m}	Internal reference frequency	_	48	—	MHz	
∆f _{irc48m_hv}	Total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over full temperature	_	± 0.5	± 1.5	%f _{irc48m}	
Δf _{irc48m_hv}	Total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over -40°C to 85°C	_	± 0.5	± 1.0	%f _{irc48m}	
∆f _{irc48m_lv}	Total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over full temperature	_	± 0.5	± 2.0	%f _{irc48m}	
J _{cyc_irc48m}	Period Jitter (RMS)	_	35	150	ps	
t _{irc48mst}	Startup time		2	3	μs	1

1. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings:

- MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10 or MCG_C5[PLLCLKEN0]=1, or
- SIM_SOPT2[PLLFLLSEL]=11

3.3.3 Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	_	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10		MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_	_		MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)		_		kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)				kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	

3.3.3.1 Oscillator DC electrical specifications Table 17. Oscillator DC electrical specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	—	V _{DD}	_	V	

 Table 17. Oscillator DC electrical specifications (continued)

1. V_{DD} =3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x and C_y can be provided by using either integrated capacitors or external components.

4. When low-power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

3.3.3.2 Oscillator frequency specifications

Table 18. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	—	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		 <12-bit modes 	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^5$
		 <12-bit modes 	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes	_	-1 to 0	_	LSB ⁴	
		 ≤13-bit modes 	_	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	bits	
		• Avg = 4	11.4	13.1	_		
						bits	
SINAD	distortion	See ENOB	6.02 ×	6.02 × ENOB + 1.76			
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32		-94	_	dB	
		16-bit single-ended mode		-85			
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode	00	05	_	dB	7
	dynamic range	• Avg = 32	02	95		dB	
		16-hit single-ended mode	78	90			
		• Avg = 32	70	30			
		,					
E _{IL}	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

33

Figure 22. Timing definition for devices on the I²C bus

3.8.4 UART switching specifications

See General switching specifications.

3.9 Kinetis Motor Suite

Kinetis Motor Suite is a bundled software solution that enables the rapid configuration of motor drive systems, and accelerates development of the final motor drive application.

Several members of the KV3x family are enabled with Kinetis motor suite. The enabled devices can be identified within the orderable part numbers in this table. For more information refer to Kinetis Motor Suite User's Guide (KMS100UG) and Kinetis Motor Suite API Reference Manual (KMS100RM).

NOTE

To find the associated resource, go to freescale.com and perform a search using Document ID.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ARE10566D
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

5 Pinout

5.1 KV30F Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64 LQFP	48 LQFP	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	-	-	PTE0/ CLKOUT32K	ADC1_SE4a	ADC1_SE4a	PTE0/ CLKOUT32K		UART1_TX				
2	-	-	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0		UART1_RX				
3	1	1	VDD	VDD	VDD							
4	2	2	VSS	VSS	VSS							
5	3	3	PTE16	ADC0_SE4a/ ADC0_DP1/ ADC1_DP2	ADC0_SE4a/ ADC0_DP1/ ADC1_DP2	PTE16	SPI0_PCS0	UART1_TX	FTM_CLKIN0		FTM0_FLT3	
6	4	4	PTE17	ADC0_SE5a/ ADC0_DM1/ ADC1_DM2	ADC0_SE5a/ ADC0_DM1/ ADC1_DM2	PTE17	SPI0_SCK	UART1_RX	FTM_CLKIN1		LPTMR0_ ALT3	
7	5	5	PTE18	ADC0_SE6a/ ADC1_DP1/ ADC0_DP2	ADC0_SE6a/ ADC1_DP1/ ADC0_DP2	PTE18	SPI0_SOUT	UART1_CTS_ b	I2C0_SDA			
8	6	6	PTE19	ADC0_SE7a/ ADC1_DM1/ ADC0_DM2	ADC0_SE7a/ ADC1_DM1/ ADC0_DM2	PTE19	SPI0_SIN	UART1_RTS_ b	I2C0_SCL			
9	7	_	ADC0_DP0/ ADC1_DP3	ADC0_DP0/ ADC1_DP3	ADC0_DP0/ ADC1_DP3							
10	8	-	ADC0_DM0/ ADC1_DM3	ADC0_DM0/ ADC1_DM3	ADC0_DM0/ ADC1_DM3							
11	-	-	ADC1_DP0/ ADC0_DP3	ADC1_DP0/ ADC0_DP3	ADC1_DP0/ ADC0_DP3							
12	—	-	ADC1_DM0/ ADC0_DM3	ADC1_DM0/ ADC0_DM3	ADC1_DM0/ ADC0_DM3							
13	9	7	VDDA	VDDA	VDDA							

5.2 Recommended connection for unused analog and digital pins

The following table shows the recommended connections for analog interface pins if those analog interfaces are not used in the customer's application.

Pin Type		Short recommendation	Detailed recommendation
Analog/non GPIO	PGAx/ADCx	Float	Analog input - Float
Analog/non GPIO	ADCx/CMPx	Float	Analog input - Float
Analog/non GPIO	VREF_OUT	Float	Analog output - Float
Analog/non GPIO	DACx_OUT	Float	Analog output - Float
Analog/non GPIO	RTC_WAKEUP_B	Float	Analog output - Float
Analog/non GPIO	XTAL32	Float	Analog output - Float
Analog/non GPIO	EXTAL32	Float	Analog input - Float
GPIO/Analog	PTA18/EXTAL0	Float	Analog input - Float
GPIO/Analog	PTA19/XTAL0	Float	Analog output - Float
GPIO/Analog	PTx/ADCx	Float	Float (default is analog input)
GPIO/Analog	PTx/CMPx	Float	Float (default is analog input)
GPIO/Digital	PTA0/JTAG_TCLK	Float	Float (default is JTAG with pulldown)
GPIO/Digital	PTA1/JTAG_TDI	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA2/JTAG_TDO	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA3/JTAG_TMS	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA4/NMI_b	$10k\Omega$ pullup or disable and float	Pull high or disable in PCR & FOPT and float
GPIO/Digital	РТх	Float	Float (default is disabled)
VDDA	VDDA	Always connect to VDD potential	Always connect to VDD potential
VREFH	VREFH	Always connect to VDD potential	Always connect to VDD potential
VREFL	VREFL	Always connect to VSS potential	Always connect to VSS potential
VSSA	VSSA	Always connect to VSS potential	Always connect to VSS potential

 Table 38.
 Recommended connection for unused analog interfaces

Figure 25. KV30F 32 QFN pinout diagram (Transparent top view)

6 Part identification

6.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

6.2 Format

Part numbers for this device have the following format:

Q KV## A FFF R T PP CC S N

6.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values	
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification 	
KV##	Kinetis V Series	KV3x: Cortex-M4 based MCU	
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU 	
FFF	Program flash memory size • 64 = 64 KB • 128 = 128 KB • 256 = 256 KB • 512 = 512 KB • 512 = 512 KB		
R	Silicon revision	 (Blank) = Main A = Revision after main 	
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85 	
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 XFBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) 	
СС	Maximum CPU frequency (MHz)	 10 = 100 MHz 12 = 120 MHz 	
S	Software type	 P = KMS-PMSM and BLDC (Blank) = Not software enabled 	
N	Packaging type	 R = Tape and reel (Blank) = Trays 	

6.4 Example

This is an example part number: MKV30F128VLH10P

7.4 Relationship between ratings and operating requirements

7.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
4	02/2016	 In "Power consumption operating behaviors" table, added "Low power mode peripheral adders—typical value" table In "Thermal operating requirements" table, in footnote, corrected "T_J = T_A + Θ_{JA}" to "T_J = T_A + R_{ΘJA}"

Table 39. Revision History

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		 In "Slave mode DSPI timing (limited voltage range)" table, added footnote regarding maximum frequency of operation Added new section, "Recommended connections for unused analog and digital pins" Added Terminology and Guidelines section Updated Thermal Attributes value for 48LQFP Added KMS related information in front matter Added Kinetis Motor Suite section Added "S" in Format and Part Identification table Updated the Part Number Example Deleted Package Your Way footnote attached to 48 LQFP
3	4/2015	 Throughout: Modified notes related to 48-pin LQFP to say, "The 48-pin LQFP package for this product is not yet available; however, it is included in a Package Your Way program for Kinetis MCUs. Please visit www.Freescale.com/KPYW for more details." On page 1: Under "Clocks," corrected second and third bullets—moved "with FLL" from "internal oscillators" to "multipurpose clock generator" bullet Under "Communication interfaces," updated I²C bullet to indicate support for up to 1 Mbps operation Under "Operating characteristics," specified that voltage range includes flash writes In "Voltage and current operating requirements" table: Removed content related to positive injection Updated footnote 1 to say that all analog and I/O pins are internally clamped to V_{SS} only (not V_{SS} and V_{DD})through ESD protection diodes. In "Power mode transition operating behaviors" table; Provided additional temperature data Added Max IDD values based on characterization results equivalent to mean + 3 sigma Removed rows for LLS2 and LLS3 Updated "EMC radiated emissions operating behaviors" table In "Thermal operating requirements" table, added the following footnote for ambient temperature: "Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J. The simplest method to determine T_J is: T_J = T_A + O_{JA} x chip power dissipation" Updated "IRC48M Specifications": Updated TRC48M Specifications": Updated the following footnote on maximum Fast mode value for SCL Clock Frequency: "The maximum SCL Clock Frequency: in Fast mode with maximum bus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V." Updated "inder mission for Alirc48m_Iv (Faguer, in Fast mode with maximum bus loading can only be achieved when us
2	8/2014	On p. 1, under "Memories and memory interfaces," added bullet, "Preprogrammed Kingtig flagblagder for one time in outcom factors are preprinted
		Kinetis flashloader for one-time, in-system factory programming"

Table continues on the next page ...

Rev. No.	Date	Substantial Changes	
Hev. No.	Date	 On p. 1, added parenthetical element to the following bullet under "Analog modules": Accurate internal voltage reference (not available for 32-pin QFN package) In "Voltage and current operating ratings" section, updated digital supply current maximum value In "Voltage and current operating behaviors" section, updated input leakage information In "Power consumption operating behaviors table": Updated existing typical and maximum power measurements Added new typical power measurements for the following: IDD_HSRUN (High Speed Run mode, all peripheral clocks disabled, current executing CoreMark code) IDD_HSRUN (Hugh Speed Run mode, all peripheral clocks disabled, current executing While(1) loop) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing CoreMark code) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) IDD_LVLPR (Very Low Power mode current in Compute operation, all peripheral clocks disabled, executing CoreMark code) IDD_VLPR (Very Low Power Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) Updated section, "EMC radiated emissions operating behaviors for 64 LQFP package" In "Thermal attributes" section, added 64-pin LQFP and 32-pin QFN package values Updated "WCG specifications" table Updated "WREF full-range operating behaviors" table 	
1	3/201/	• In the Part identification section, added Format and Fleids subsections	
1	3/2014		

Table 39. Revision History (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. SpinTAC is a trademark of LineStream Technologies, Inc. All rights reserved.

© 2014–2016 Freescale Semiconductor, Inc.

Document Number KV30P64M100SFA Revision 4, 02/2016

