

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv30f128vlf10p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Implements Field Orient Control (FOC) using Back EMF to improve motor efficiency
- Utilizes SpinTAC control theory that improves overall system performance and reliability

Ordering Information

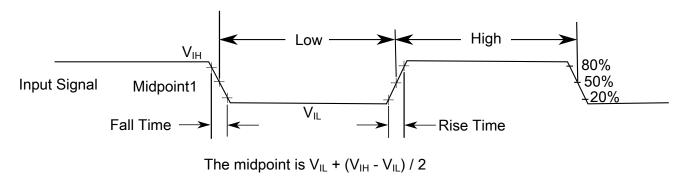
Part Number	Me	mory	Number of GPIOs
	Flash (KB)	SRAM (KB)	
MKV30F128VLH10	128	16	46
MKV30F128VLF10	128	16	35
MKV30F128VFM10	128	16	26
MKV30F64VLH10	64	16	46
MKV30F64VLF10	64	16	35
MKV30F64VFM10	64	16	26
MKV30F128VLF10P	120	16	35
MKV30F64VLH10P ¹	56	16	46
MKV30F64VLF10P ¹	56	16	35

1. This part number is subject to removal

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Product Selector
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KV30FKV31FPB
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KV30P64M100SFARM
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
KMS User Guide	The KMS User Guide provides a comprehensive description of the features and functions of the Kinetis Motor Suite solution.	Kinetis Motor Suite User's Guide (KMS100UG) ¹
KMS API Reference Manual	The KMS API reference manual provides a comprehensive description of the API of the Kinetis Motor Suite function blocks.	Kinetis Motor Suite API Reference Manual (KMS100RM) ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	Kinetis_V_0N36M
Package drawing	Package dimensions are provided by the part number: • MKV30F64VLF10P • MKV30F64VLH10P • MKV30F128VLH10 • MKV30F128VLF10 • MKV30F128VFM10 • MKV30F128VLF10P	 98ASH00962A 98ASS23234W 98ASS23234W 98ASH00962A 98ARE10566D 98ASH00962A

1. To find the associated resource, go to freescale.com and perform a search using Document ID


Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	145	mA
V _{DIO}	Digital input voltage	-0.3	V _{DD} + 0.3	V
V _{AIO}	Analog ¹	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

 Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	3.6	V	

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage	$0.7 \times V_{DD}$	_	V	
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.75 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$				
V _{IL}	Input low voltage		$0.35 \times V_{DD}$	V	
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.3 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$				
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICIO}	Analog and I/O pin DC injection current — single pin				1
	• $V_{IN} < V_{SS}$ -0.3V (Negative current injection)	-3	—	mA	
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	

Table 1. Voltage and current operating requirements (continued)

 All analog and I/O pins are internally clamped to V_{SS} through ESD protection diodes. If V_{IN} is less than V_{IO_MIN} or greater than V_{IO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{ICIO}I.

2. Open drain outputs must be pulled to VDD.

2.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	

Table continues on the next page ...

7

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLLS3 → RUN 					
		_	_	75	μs	
	VLPS → RUN					
		—	—	5.7	μs	
	STOP → RUN					
		—	_	5.7	μs	

 Table 4. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_OPT[LPBOOT]=1)

2.2.5 Power consumption operating behaviors

The current parameters in the table below are derived from code executing a while(1) loop from flash, unless otherwise noted.

The IDD typical values represent the statistical mean at 25°C, and the IDD maximum values for RUN, WAIT, VLPR, and VLPW represent data collected at 125°C junction temperature unless otherwise noted. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_HSRUN}	High Speed Run mode current - all peripheral clocks disabled, CoreMark benchmark code executing from flash					
	@ 1.8V	—	18.70	19.37	mA	2, 3, 4
	@ 3.0V	—	18.71	19.38	mA	
I _{DD_HSRUN}	High Speed Run mode current - all peripheral clocks disabled, code executing from flash					
	@ 1.8V	—	18.13	18.80	mA	4
	@ 3.0V	—	18.19	18.86	mA	
I _{DD_HSRUN}	High Speed Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V	—	22.2	22.87	mA	5
	@ 3.0V	—	22.4	23.07	mA	
I _{DD_RUN}	Run mode current in Compute operation — CoreMark benchmark code executing from flash					
	@ 1.8V		12.74	13.41	mA	2, 3, 6
	@ 3.0V	_	12.82	13.49	mA	

 Table 5. Power consumption operating behaviors

Table continues on the next page...

Table 5. Power consumption operating behaviors (continued)

Symbo	Description	Min.	Тур.	Max.	Unit	Notes
	@ 105°C	—	6.9	8.25	μA	

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. Cache on and prefetch on, low compiler optimization
- 3. CoreMark benchmark compiled using IAR 7.2 with optimization level low
- 4. 100 MHz core and system clock, 50 MHz bus clock, and 25 MHz flash clock. MCG configured for FEE mode. All peripheral clocks disabled.
- 5. 100 MHz core and system clock, 50 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 6. 72 MHz core and system clock, 36 MHz bus clock and 24 MHz flash clock. MCG configured for FEE mode. All peripheral clocks disabled. Compute operation.
- 7. 72 MHz core and system clock, 36 MHz bus clock, and 24 MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled.
- 8. 72 MHz core and system clock, 36 MHz bus clock, and 24 MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 9. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEI mode. Compute operation.
- 10. 25 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode.
- 11. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. Compute operation. Code executing from flash.
- 12. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 13. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled, but peripherals are not in active operation. Code executing from flash.
- 14. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.

Symbol	Description		٦	Fempera	ature (°C	Temperature (°C)				
		-40	25	50	70	85	105			
IIREFSTEN4MHz	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA		
IREFSTEN32KHz	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA		
IEREFSTEN4MHz	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA		
EREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.									
	VLLS1	440	490	540	560	570	580	nA		
	VLLS3	440	490	540	560	570	580			
	LLS	490	490	540	560	570	680			

 Table 6. Low power mode peripheral adders—typical value

Table continues on the next page...

General

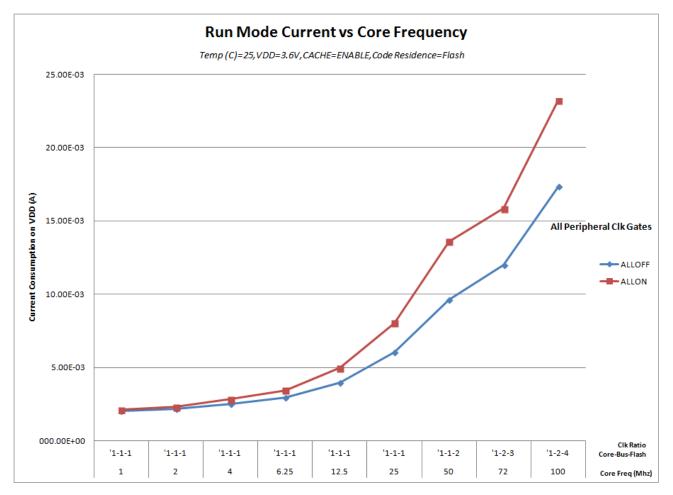


Figure 3. Run mode supply current vs. core frequency

2.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\Theta JA} \times$ chip power dissipation.

2.4.2 Thermal attributes

Board type	Symbol	Descriptio n	64 LQFP	48 LQFP	32 QFN	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	66	79	97	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	48	55	33	°C/W	1
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	54	67	81	°C/W	1
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	41	49	28	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	30	33	13	°C/W	2
_	R _{0JC}	Thermal resistance, junction to case	17	23	2.0	°C/W	3

Table continues on the next page ...

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal VDD and 25 °C		32.768	—	kHz	
Δf_{ints_t}		internal reference frequency voltage and temperature	—	+0.5/-0.7	± 2	%	
f_{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	—	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM		_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature	—	+0.5/-0.7	± 2	%f _{dco}	1, 2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.3	± 1.5	%f _{dco}	1
f _{intf_ft}		frequency (fast clock) — t nominal VDD and 25°C	_	4	—	MHz	
∆f _{intf_ft}	(fast clock) over te	on of internal reference clock emperature and voltage — t nominal VDD and 25 °C	_	+1/-2	± 5	%f _{intf_ft}	
f _{intf_t}		frequency (fast clock) — ominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	—	—	kHz	
		FL	L				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × $f_{fll ref}$	80	83.89	100	MHz	
dco_t_DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}		23.99		MHz	5, 6
		Mid range (DRS=01) 1464 × f _{fll_ref}		47.97		MHz	
	1			1			

Table 15. MCG specifications

Table continues on the next page...

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	—	95.98	—	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	_	_	ps	
	• f _{VCO} = 48 M		_	180	_		
	• f _{VCO} = 98 M	Hz		150			
t _{fll_acquire}	FLL target freque	ncy acquisition time	—		1	ms	7

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2.0 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 IRC48M specifications

Table 16. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DD48M}	Supply current	—	400	500	μA	
f _{irc48m}	Internal reference frequency	—	48	—	MHz	
Δf _{irc48m_hv}	Total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over full temperature	_	± 0.5	± 1.5	%f _{irc48m}	
Δf _{irc48m_hv}	Total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over -40°C to 85°C	_	± 0.5	± 1.0	%f _{irc48m}	
∆f _{irc48m_lv}	Total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over full temperature	_	± 0.5	± 2.0	%f _{irc48m}	
J _{cyc_irc48m}	Period Jitter (RMS)	_	35	150	ps	
t _{irc48mst}	Startup time		2	3	μs	1

1. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings:

- MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10 or MCG_C5[PLLCLKEN0]=1, or
- SIM_SOPT2[PLLFLLSEL]=11

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

 Table 17. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 $^{\circ}$ C

2. See crystal or resonator manufacturer's recommendation

3. C_x and C_y can be provided by using either integrated capacitors or external components.

4. When low-power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

3.3.3.2 Oscillator frequency specifications

Table 18. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)		_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750		ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

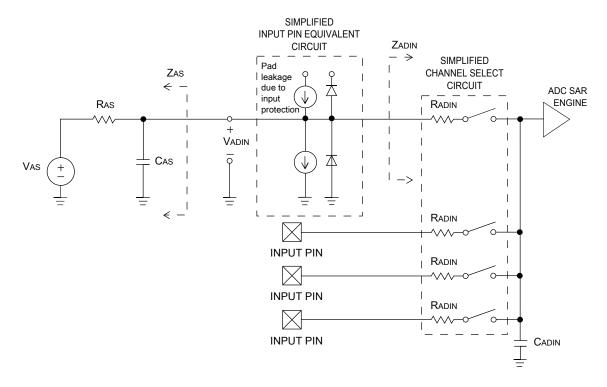


Figure 11. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

				DDA,		33A/	
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to	LSB ⁴	5
	linearity	 <12-bit modes 	_	±0.2	+1.9 -0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	—	±1.0	–2.7 to +1.9	LSB ⁴	5

Table 24.	16-bit ADC	characteristics	(V _{REFH} =	V_{DDA} ,	V _{REFL} =	V _{SSA})
-----------	------------	-----------------	----------------------	-------------	---------------------	--------------------

Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• <12-bit modes	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^5$
		<12-bit modes	_	-1.4	-1.8		
EQ	Quantization error	16-bit modes	_	-1 to 0		LSB ⁴	
		• ≤13-bit modes	_	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	h. it	
		• Avg = 4	11.4	13.1		bits	
		-			_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	—	-94	_	dB	
		16-bit single-ended mode		05		üD	
		• Avg = 32	_	-85	_		
SFDR	Spurious free	16-bit differential mode		0.5		dB	7
	dynamic range	• Avg = 32	82	95		٩D	
		16-bit single-ended mode	78	90		dB	
		 Avg = 32 	70	90			
		- Avg - 52					
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

33

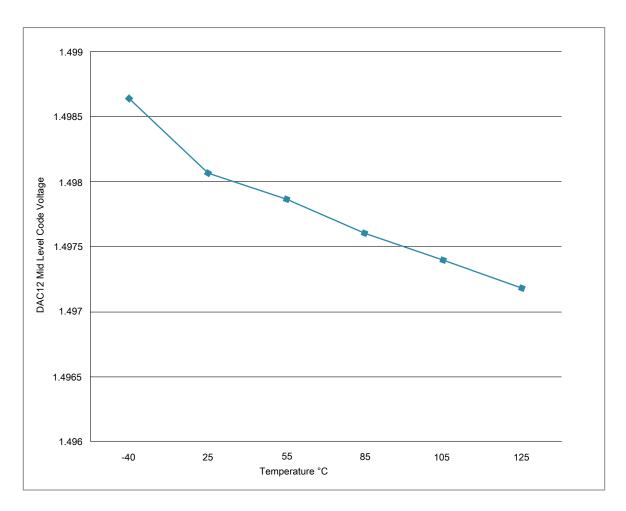


Figure 17. Offset at half scale vs. temperature

3.6.4 Voltage reference electrical specifications

Table 28.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min. Max.		Unit	Notes
V _{DDA}	Supply voltage	1.71 3.6		V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25°C	1.1920	1.1950	1.1980	V	1
V _{out}	Voltage reference output with user trim at nominal V _{DDA} and temperature=25°C	1.1945	1.1950	1.1955	V	1
V _{step}	Voltage reference trim step	—	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	—	_	15	mV	1
I _{bg}	Bandgap only current	_	—	80	μA	
I _{lp}	Low-power buffer current	—	—	360	uA	1
I _{hp}	High-power buffer current	_	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	-	200	_		
T _{stup}	Buffer startup time	_	—	100	μs	
T _{chop_osc_st}	_{sc_st} Internal bandgap start-up delay with chop oscillator enabled		-	35	ms	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	-	2	—	mV	1

Table 29.	VREF full-range operating behaviors
-----------	-------------------------------------

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 30. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	70	°C	

Table 31. VREF limited-range operating behaviors

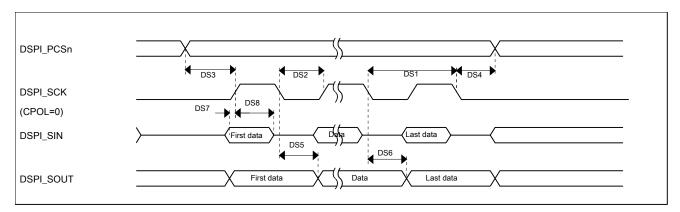
Symbol	Description	Min.	Max.	Unit	Notes
V _{tdrift}	Temperature drift ($V_{max} - V_{min}$ across the limited temperature range)	—	10	mV	

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 DSPI switching specifications (limited voltage range)


The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	16.2	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 32. Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 18. DSPI classic SPI timing — master mode

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	12.5	MHz	1
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	_	ns	
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS11	DSPI_SCK to DSPI_SOUT valid	—	21.4	ns	
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns	
DS13	DSPI_SIN to DSPI_SCK input setup	2.6	_	ns	
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns	
DS15	DSPI_SS active to DSPI_SOUT driven	—	17	ns	
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	17	ns	

Table 33. Slave mode DSPI timing (limited voltage range)

1. The maximum operating frequency is measured with noncontinuous CS and SCK. When DSPI is configured with continuous CS and SCK, the SPI clock must not be greater than 1/6 of the bus clock. For example, when the bus clock is 60 MHz, the SPI clock must not be greater than 10 MHz.

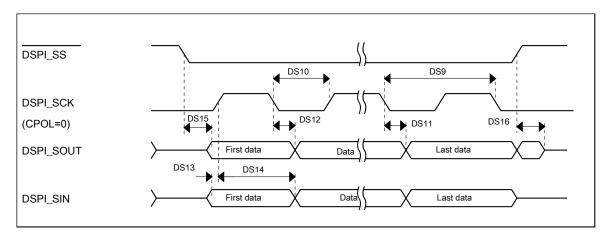
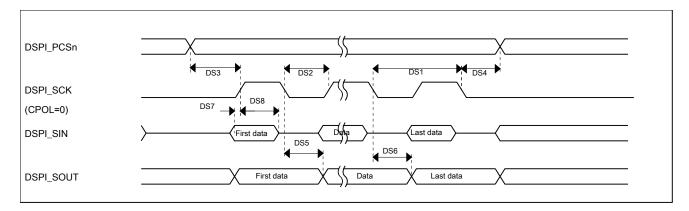


Figure 19. DSPI classic SPI timing — slave mode


3.8.2 DSPI switching specifications (full voltage range)

The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	24.6	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

- 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 20. DSPI classic SPI timing — master mode

Characteristic	Symbol	Standa	rd Mode	Fast Mode		Unit	
		Minimum	Maximum	Minimum	Maximum		
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs	
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ^{3, 6}	—	ns	
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns	
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns	
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	—	μs	
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs	
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns	

Table 36. I ²C timing (continued)

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V.

The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5	—	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I_2C bus devices	t _{HD} ; DAT	0	—	μs
Data set-up time	t _{SU} ; DAT	50	—	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b ^{, 2}	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 37. I ²C 1 Mbps timing

1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins across the full voltage range.

2. C_b = total capacitance of the one bus line in pF.

46

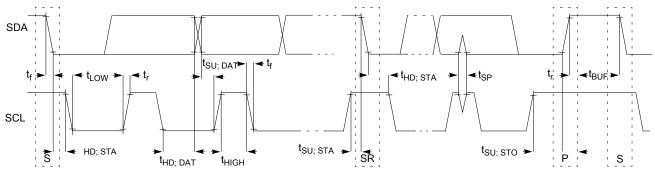


Figure 22. Timing definition for devices on the I²C bus

3.8.4 UART switching specifications

See General switching specifications.

3.9 Kinetis Motor Suite

Kinetis Motor Suite is a bundled software solution that enables the rapid configuration of motor drive systems, and accelerates development of the final motor drive application.

Several members of the KV3x family are enabled with Kinetis motor suite. The enabled devices can be identified within the orderable part numbers in this table. For more information refer to Kinetis Motor Suite User's Guide (KMS100UG) and Kinetis Motor Suite API Reference Manual (KMS100RM).

NOTE

To find the associated resource, go to freescale.com and perform a search using Document ID.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

Rev. No.	Date	Substantial Changes
		 In "Slave mode DSPI timing (limited voltage range)" table, added footnote regarding maximum frequency of operation Added new section, "Recommended connections for unused analog and digital pins" Added Terminology and Guidelines section Updated Thermal Attributes value for 48LQFP Added KMS related information in front matter Added Kinetis Motor Suite section Added "S" in Format and Part Identification table Updated the Part Number Example Deleted Package Your Way footnote attached to 48 LQFP
3	4/2015	 Throughout: Modified notes related to 48-pin LQFP to say, "The 48-pin LQFP package for this product is not yet available; however, it is included in a Package You Way program for Kinetis MCUs. Please visit www.Freescale.com/KPYW for more details." On page 1: Under "Clocks," corrected second and third bullets—moved "with FLL" from "internal oscillators" to "multipurpose clock generator" bullet Under "Communication interfaces," updated I²C bullet to indicate support for up to 1 Mbps operation Under "Operating characteristics," specified that voltage range includes flash writes In "Voltage and current operating requirements" table: Removed content related to positive injection Updated footnote 1 to say that all analog and I/O pins are internally clamped to V_{SS} only (not V_{SS} and V_{DD})through ESD protection diodes. In "Power mode transition operating behaviors" table. Provided additional temperature data Added Max IDD values based on characterization results equivalent to mean + 3 sigma Removed rows for LLS2 and LLS3 Updated "EMC radiated emissions operating behaviors" table In "Thermal operating requirements" table, added the following footnote for ambient temperature: "Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J. The simplest method to determine T_J is: T_J = T_A + O_{JA} x chip power dissipation" Updated "IRC48M Specifications": Updated maximum values for Δ_{IIrc48m_IN} and Δ_{IIrc48m_IN} (full temperature) Added the following footnote on maximum Fast mode value for SCL Clock Frequency: "The maximum Sus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V." Updated "informing" table
2	8/2014	• On p. 1, under "Memories and memory interfaces," added bullet, "Preprogrammed Kinetis flashloader for one-time, in-system factory programming"

Table continues on the next page ...