

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv30f64vlf10r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	145	mA
V _{DIO}	Digital input voltage	-0.3	V _{DD} + 0.3	V
V _{AIO}	Analog ¹	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

 Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLLS3 → RUN 					
		_	_	75	μs	
	VLPS → RUN					
		—	—	5.7	μs	
	• STOP \rightarrow RUN					
		—	—	5.7	μs	

 Table 4. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_OPT[LPBOOT]=1)

2.2.5 Power consumption operating behaviors

The current parameters in the table below are derived from code executing a while(1) loop from flash, unless otherwise noted.

The IDD typical values represent the statistical mean at 25°C, and the IDD maximum values for RUN, WAIT, VLPR, and VLPW represent data collected at 125°C junction temperature unless otherwise noted. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current		—	See note	mA	1
I _{DD_HSRUN}	High Speed Run mode current - all peripheral clocks disabled, CoreMark benchmark code executing from flash					
	@ 1.8V	—	18.70	19.37	mA	2, 3, 4
	@ 3.0V	—	18.71	19.38	mA	
IDD_HSRUN	High Speed Run mode current - all peripheral clocks disabled, code executing from flash					
	@ 1.8V	—	18.13	18.80	mA	4
	@ 3.0V	—	18.19	18.86	mA	
I _{DD_HSRUN}	High Speed Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V		22.2	22.87	mA	5
	@ 3.0V		22.4	23.07	mA	
I _{DD_RUN}	Run mode current in Compute operation — CoreMark benchmark code executing from flash					
	@ 1.8V	—	12.74	13.41	mA	2, 3, 6
	@ 3.0V		12.82	13.49	mA	

 Table 5. Power consumption operating behaviors

Table continues on the next page...

Symbol	Description		•	Tempera	ature (°C))		Unit
		-40	25	50	70	85	105	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48 Mhz internal reference clock	350	350	350	350	350	350	μA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	>OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	42	42	42	42	42	42	μA

Table 6.	Low power n	node peripheral	adders-typic	al value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at frequencies between 50 MHz and 100MHz.
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

General

Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors for 64 LQFP package

Parame ter	Conditions	Clocks	Frequency range	Level (Typ.)	Unit	Notes
V _{EME}	Device configuration, test	FSYS = 100 MHz	150 kHz–50 MHz	11	dBuV	1, 2, 3
	conditions and EM	FBUS = 50 MHz	50 MHz–150 MHz	12		
	61967-2.	External crystal = 10 MHz	150 MHz–500 MHz	11		
	Supply voltage: VDD =		500 MHz–1000 MHz	8		
	3.3 V		IEC level	Ν		4
	Temp = 25°C					

1. Measurements were made per IEC 61967-2 while the device was running typical application code.

- 2. Measurements were performed on the 64LQFP device, MKV30F128VLH10.
- 3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

2.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\Theta JA} \times$ chip power dissipation.

2.4.2 Thermal attributes

Board type	Symbol	Descriptio n	64 LQFP	48 LQFP	32 QFN	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	66	79	97	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	48	55	33	°C/W	1
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./min. air speed)	54	67	81	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	41	49	28	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	30	33	13	°C/W	2
_	R _{0JC}	Thermal resistance, junction to case	17	23	2.0	°C/W	3

Table continues on the next page ...

Peripheral operating requirements and behaviors

Board type	Symbol	Descriptio n	64 LQFP	48 LQFP	32 QFN	Unit	Notes
_	Ψ _{JT}	Thermal characterizati on parameter, junction to package top outside center (natural convection)	3	5	6	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 12. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	SWD_CLK frequency of operation			
	Serial wire debug	0	33	MHz
S2	SWD_CLK cycle period	1/S1	—	ns
S3	SWD_CLK clock pulse width			
	Serial wire debug	15	—	ns
S4	SWD_CLK rise and fall times	_	3	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	8	—	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	1.4	—	ns
S11	SWD_CLK high to SWD_DIO data valid	—	25	ns
S12	SWD_CLK high to SWD_DIO high-Z	5	—	ns

3.3.3 Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	_	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10		MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_	_		MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)		_		kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)				kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	

3.3.3.1 Oscillator DC electrical specifications Table 17. Oscillator DC electrical specifications

Table continues on the next page...

Peripheral operating requirements and behaviors

- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Figure 13. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 26. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	DACR Reference voltage		3.6	V	1
CL	C _L Output load capacitance		100	pF	2
١L	Output load current	_	1	mA	

1. The DAC reference can be selected to be V_{DDA} or V_{REFH}

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

Figure 17. Offset at half scale vs. temperature

3.6.4 Voltage reference electrical specifications

Fable 28.	VREF full-range	operating	requiremen	ts
-----------	-----------------	-----------	------------	----

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	1(00	nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25°C	1.1920	1.1950	1.1980	V	1
V _{out}	Voltage reference output with user trim at nominal V _{DDA} and temperature=25°C	1.1945	1.1950	1.1955	V	1
V _{step}	Voltage reference trim step	—	0.5	—	mV	1
V _{tdrift}	V _{tdrift} Temperature drift (Vmax -Vmin across the full temperature range)			15	mV	1
I _{bg}	I _{bg} Bandgap only current		—	80	μA	
I _{lp}	Low-power buffer current	—	_	360	uA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	T _{stup} Buffer startup time			100	μs	
T _{chop_osc_st} Internal bandgap start-up delay with chop oscillator enabled		—	—	35	ms	
V _{vdrift}	Vvdrift Voltage drift (Vmax -Vmin across the full voltage range)		2	_	mV	1

Table 29.	VREF full-range	operating behaviors
-----------	-----------------	---------------------

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 30. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	70	°C	

Table 31. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{tdrift}	Temperature drift (V _{max} -V _{min} across the limited temperature range)	_	10	mV	

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

Characteristic	Symbol	Standard Mode		Fast Mode		Unit
		Minimum	Maximum	Minimum	Maximum	
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ^{3, 6}	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

Table 36. I ²C timing (continued)

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V.

The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26		μs
LOW period of the SCL clock	t _{LOW}	0.5		μs
HIGH period of the SCL clock	t _{HIGH}	0.26		μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	—	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b ^{, 2}	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 37. I ²C 1 Mbps timing

1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins across the full voltage range.

2. C_b = total capacitance of the one bus line in pF.

46

64 LQFP	48 LQFP	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
14	10	7	VREFH	VREFH	VREFH							
15	11	8	VREFL	VREFL	VREFL							
16	12	8	VSSA	VSSA	VSSA							
17	13	-	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18							
18	14	9	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23							
19	-	-	CMP0_IN4/ ADC1_SE23	CMP0_IN4/ ADC1_SE23	CMP0_IN4/ ADC1_SE23							
20	15	10	PTE24	ADC0_SE17	ADC0_SE17	PTE24		FTM0_CH0		I2C0_SCL	EWM_OUT_b	
21	16	11	PTE25	ADC0_SE18	ADC0_SE18	PTE25		FTM0_CH1		I2C0_SDA	EWM_IN	
22	17	12	PTA0	JTAG_TCLK/ SWD_CLK		PTA0	UARTO_CTS_ b	FTM0_CH5		EWM_IN		JTAG_TCLK/ SWD_CLK
23	18	13	PTA1	JTAG_TDI		PTA1	UART0_RX	FTM2_CH0	CMP0_OUT	FTM2_QD_ PHA	FTM1_CH1	JTAG_TDI
24	19	14	PTA2	JTAG_TDO/ TRACE_SWO		PTA2	UART0_TX	FTM2_CH1	CMP1_OUT	FTM2_QD_ PHB	FTM1_CH0	JTAG_TDO/ TRACE_SWO
25	20	15	PTA3	JTAG_TMS/ SWD_DIO		PTA3	UARTO_RTS_ b	FTM0_CH0	FTM2_FLT0	EWM_OUT_b		JTAG_TMS/ SWD_DIO
26	21	16	PTA4/ LLWU_P3	NMI_b		PTA4/ LLWU_P3		FTM0_CH1		FTM0_FLT3		NMI_b
27	-	-	PTA5	DISABLED		PTA5		FTM0_CH2				JTAG_TRST_ b
28	-	-	PTA12	DISABLED		PTA12		FTM1_CH0				FTM1_QD_ PHA
29	-	-	PTA13/ LLWU_P4	DISABLED		PTA13/ LLWU_P4		FTM1_CH1				FTM1_QD_ PHB
30	22	_	VDD	VDD	VDD							
31	23	_	VSS	VSS	VSS							
32	24	17	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0			
33	25	18	PTA19	XTAL0	XTAL0	PTA19	FTM0_FLT0	FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1	
34	26	19	RESET_b	RESET_b	RESET_b							
35	27	20	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8	ADC0_SE8/ ADC1_SE8	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA	UART0_RX
36	28	21	PTB1	ADC0_SE9/ ADC1_SE9	ADC0_SE9/ ADC1_SE9	PTB1	I2C0_SDA	FTM1_CH1	FTM0_FLT2	EWM_IN	FTM1_QD_ PHB	UART0_TX
37	29	-	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	UART0_RTS_ b	FTM0_FLT1		FTM0_FLT3	
38	30	-	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	UARTO_CTS_ b			FTM0_FLT0	
39	31	_	PTB16	DISABLED		PTB16		UART0_RX	FTM_CLKIN0		EWM_IN	

5.2 Recommended connection for unused analog and digital pins

The following table shows the recommended connections for analog interface pins if those analog interfaces are not used in the customer's application.

Pin Type		Short recommendation	Detailed recommendation
Analog/non GPIO	PGAx/ADCx	Float	Analog input - Float
Analog/non GPIO	ADCx/CMPx	Float	Analog input - Float
Analog/non GPIO	VREF_OUT	Float	Analog output - Float
Analog/non GPIO	DACx_OUT	Float	Analog output - Float
Analog/non GPIO	RTC_WAKEUP_B	Float	Analog output - Float
Analog/non GPIO	XTAL32	Float	Analog output - Float
Analog/non GPIO	EXTAL32	Float	Analog input - Float
GPIO/Analog	PTA18/EXTAL0	Float	Analog input - Float
GPIO/Analog	PTA19/XTAL0	Float	Analog output - Float
GPIO/Analog	PTx/ADCx	Float	Float (default is analog input)
GPIO/Analog	PTx/CMPx	Float	Float (default is analog input)
GPIO/Digital	PTA0/JTAG_TCLK	Float	Float (default is JTAG with pulldown)
GPIO/Digital	PTA1/JTAG_TDI	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA2/JTAG_TDO	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA3/JTAG_TMS	Float	Float (default is JTAG with pullup)
GPIO/Digital	PTA4/NMI_b	$10k\Omega$ pullup or disable and float	Pull high or disable in PCR & FOPT and float
GPIO/Digital	РТх	Float	Float (default is disabled)
VDDA	VDDA	Always connect to VDD potential	Always connect to VDD potential
VREFH	VREFH	Always connect to VDD potential	Always connect to VDD potential
VREFL	VREFL	Always connect to VSS potential	Always connect to VSS potential
VSSA	VSSA	Always connect to VSS potential	Always connect to VSS potential

 Table 38.
 Recommended connection for unused analog interfaces

Figure 24. KV30F 48 LQFP pinout diagram

Figure 25. KV30F 32 QFN pinout diagram (Transparent top view)

6 Part identification

6.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

6.2 Format

Part numbers for this device have the following format:

Q KV## A FFF R T PP CC S N

6.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values	
Q	Qualification status • M = Fully qualified, general mail • P = Prequalification		
KV##	Kinetis V Series	KV3x: Cortex-M4 based MCU	
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU 	
FFF	Program flash memory size • 64 = 64 KB • 128 = 128 KB • 256 = 256 KB • 512 = 512 KB • 512 = 512 KB		
R	Silicon revision	 (Blank) = Main A = Revision after main 	
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85 	
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 XFBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) 	
СС	Maximum CPU frequency (MHz)	 10 = 100 MHz 12 = 120 MHz 	
S	Software type• P = KMS-PMSM and BLDC• (Blank) = Not software enabled		
N	Packaging type • R = Tape and reel • (Blank) = Trays		

6.4 Example

This is an example part number: MKV30F128VLH10P

7 Terminology and guidelines

7.1 Definitions

Key terms are defined in the following table:

Term	Definition	
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:	
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 	
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.	
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip	
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions	
Typical value	A specified value for a technical characteristic that:	
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions 	
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.	

Rev. No.	Date	Substantial Changes
Hev. No.	Date	 On p. 1, added parenthetical element to the following bullet under "Analog modules": Accurate internal voltage reference (not available for 32-pin QFN package) In "Voltage and current operating ratings" section, updated digital supply current maximum value In "Voltage and current operating behaviors" section, updated input leakage information In "Power consumption operating behaviors table": Updated existing typical and maximum power measurements Added new typical power measurements for the following: IDD_HSRUN (High Speed Run mode, all peripheral clocks disabled, current executing CoreMark code) IDD_HSRUN (Hugh Speed Run mode, all peripheral clocks disabled, current executing While(1) loop) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing CoreMark code) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) IDD_LVLPR (Very Low Power mode current in Compute operation, all peripheral clocks disabled, executing CoreMark code) IDD_VLPR (Very Low Power Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) Updated section, "EMC radiated emissions operating behaviors for 64 LQFP package" In "Thermal attributes" section, added 64-pin LQFP and 32-pin QFN package values Updated "WCG specifications" table Updated "WREF full-range operating behaviors" table
1	3/201/	• In the Part identification section, added Format and Fleids subsections
1	3/2014	

Table 39. Revision History (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. SpinTAC is a trademark of LineStream Technologies, Inc. All rights reserved.

© 2014–2016 Freescale Semiconductor, Inc.

Document Number KV30P64M100SFA Revision 4, 02/2016

