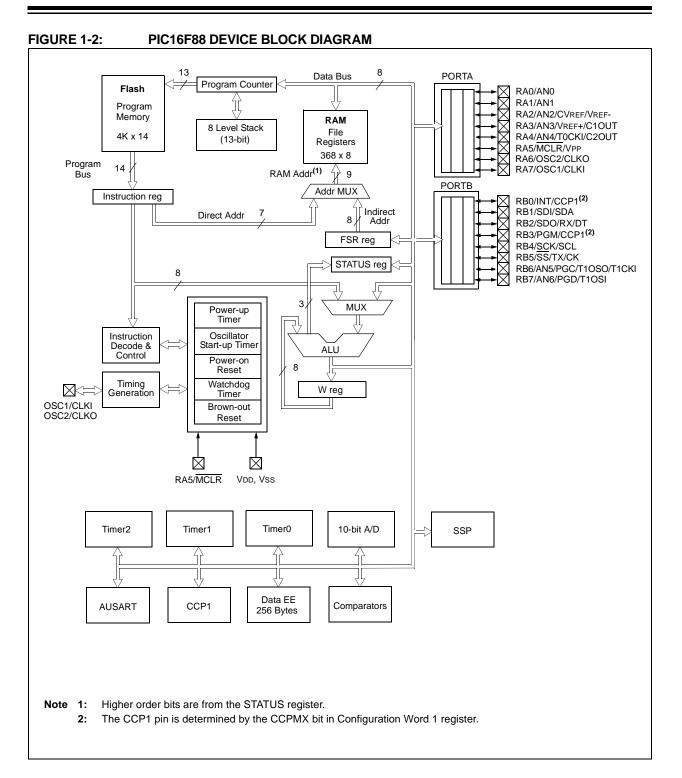


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f87-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	l/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT/CCP1 ⁽⁵⁾	6	7	7			
RB0				I/O	TTL	Bidirectional I/O pin.
INT				I	ST ⁽¹⁾	External interrupt pin.
CCP1				I/O	ST	Capture input, Compare output, PWM output.
RB1/SDI/SDA	7	8	8			
RB1 SDI				I/O I	TTL ST	Bidirectional I/O pin. SPI data in.
SDA				1/0	ST	$I^2 C^{TM}$ data.
RB2/SDO/RX/DT	8	9	9	1/0	01	
RB2	0	9	9	I/O	TTL	Bidirectional I/O pin.
SDO				0	ST	SPI data out.
RX				I		AUSART asynchronous receive.
DT				I/O		AUSART synchronous detect.
RB3/PGM/CCP1 ⁽⁵⁾	9	10	10			
RB3				I/O	TTL	Bidirectional I/O pin.
PGM				I/O	ST	Low-Voltage ICSP™ Programming enable pin.
CCP1				I	ST	Capture input, Compare output, PWM output.
RB4/SCK/SCL	10	11	12			
RB4 SCK				1/0 1/0	TTL ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI.
SCL				1/0	ST	Synchronous serial clock input/output for SP1.
RB5/SS/TX/CK	11	12	13	•	01	Cynonionous senarolook inpartor r C.
RB5	1 11	12	15	I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
SS				1/0	TTL	Slave select for SPI in Slave mode.
TX				0		AUSART asynchronous transmit.
СК				I/O		AUSART synchronous clock.
RB6/AN5/PGC/T1OSO/	12	13	15			
T1CKI						
				I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
AN5 ⁽⁴⁾ PGC				I I/O	ST ⁽²⁾	Analog input channel 5. In-Circuit Debugger and programming clock pin.
T10S0				0	ST	Timer1 oscillator output.
T1CKI				I	ST	Timer1 external clock input.
RB7/AN6/PGD/T1OSI	13	14	16			
RB7		17	10	I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
AN6 ⁽⁴⁾				I		Analog input channel 6.
PGD				I	ST ⁽²⁾	In-Circuit Debugger and ICSP programming data pi
T1OSI				I	ST	Timer1 oscillator input.
Vss	5	5, 6	3, 5	Р	-	Ground reference for logic and I/O pins.
VDD	14	15, 16	17, 19	Р	-	Positive supply for logic and I/O pins.

TABLE 1-2:	PIC16F87/88 PINOUT DESCRIPTION ((CONTINUED)

- = Not used TTL = TTL Input ST = Schmitt Trigger Input
 Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

5: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any Status bits, see Section 16.0 "Instruction Set Summary".

Note: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS: ARITHMETIC STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
	IRP	RP1	RP0	TO	PD	Z	DC	С			
	bit 7							bit 0			
bit 7	1 = Bank	ster Bank Sel 2, 3 (100h-1F 0, 1 (00h-FFt	Fh)	for indirect a	ddressing)						
bit 6-5	11 = Bank	Register Ban 3 (180h-1FF	h)	(used for dir	ect address	sing)					
	01 = Bank 00 = Bank	2 (100h-17F 1 (80h-FFh) 0 (00h-7Fh) is 128 bytes									
bit 4	TO: Time-	out bit									
		power-up, CL		tion or SLEE	P instruction	n					
bit 3	PD: Powe	r-Down bit									
		power-up or b ecution of the									
bit 2	Z: Zero bit	t									
		esult of an ari esult of an ari									
bit 1	DC: Digit	carry/borrow b	oit (Addwf, A	DDLW, SUBLI	N and SUBW	F instructio	ns) (1)				
		ry-out from the arry-out from t				red					
bit 0	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW and SUBWF instructions) ^(1,2)										
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 										
	Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.										
	2:	For rotate (R: bit of the sou		ructions, this	bit is loade	d with eithe	r the high or	low-order			
	Logondy										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit 0

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit
	1 = Enables all unmasked peripheral interrupts
	 0 = Disables all peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 interrupt
	0 = Disables the TMR0 interrupt
bit 4	INTOIE: RB0/INT External Interrupt Enable bit
	1 = Enables the RB0/INT external interrupt
1.14.0	0 = Disables the RB0/INT external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
511 2	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTOIF: RB0/INT External Interrupt Flag bit
	1 = The RB0/INT external interrupt occurred (must be cleared in software)
	0 = The RB0/INT external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit
	A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch
	condition and allow flag bit RBIF to be cleared.
	1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
	0 = None of the RB7:RB4 pins have changed state
	Legend:
	D. Deadable bit W. Writeble bit II. Unimplemented bit read as (0)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.6.3 CLOCK TRANSITION AND WDT

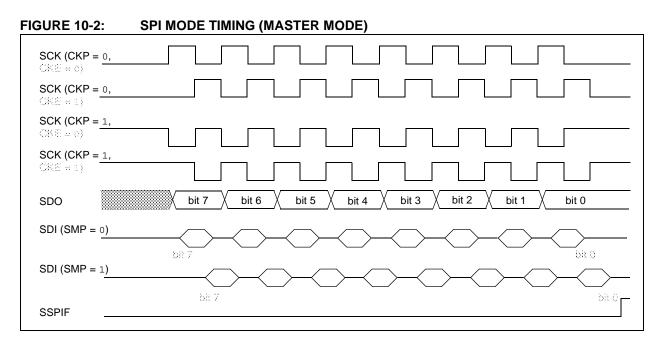
When clock switching is performed, the Watchdog Timer is disabled because the Watchdog ripple counter is used as the Oscillator Start-up Timer.

Once the clock transition is complete (i.e., new oscillator selection switch has occurred), the Watchdog counter is re-enabled with the counter reset. This allows the user to synchronize the Watchdog Timer to the start of execution at the new clock frequency.

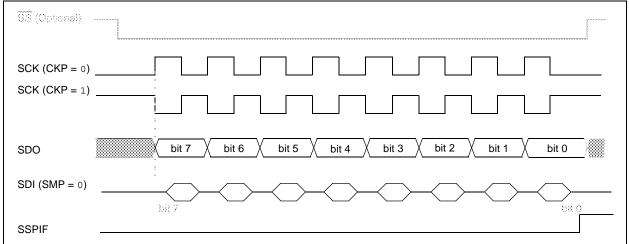
Note:	The OST is only used when switching to
	XT, HS and LP Oscillator modes.

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

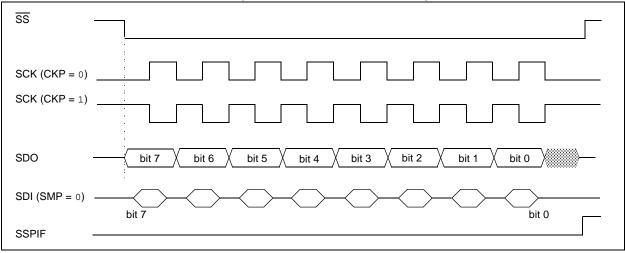
U-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0
-	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	IOFS	SCS1	SCS0
bit 7							bit 0

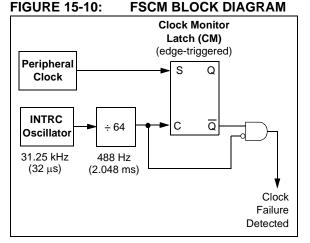

- bit 7 Unimplemented: Read as '0'
- bit 6-4 IRCF<2:0>: Internal RC Oscillator Frequency Select bits
 - 000 = 31.25 kHz
 - 001 = 125 kHz
 - 010 = 250 kHz
 - 011 = 500 kHz
 - 100 = 1 MHz
 - 101 = 2 MHz
 - 110 = 4 MHz
 - 111 = 8 MHz

bit 3 **OSTS:** Oscillator Start-up Time-out Status bit⁽¹⁾


- 1 = Device is running from the primary system clock
- 0 = Device is running from T1OSC or INTRC as a secondary system clock
 - Note 1: Bit resets to '0' with Two-Speed Start-up mode and LP, XT or HS selected as the oscillator mode.
- bit 2 **IOFS:** INTOSC Frequency Stable bit
 - 1 = Frequency is stable
 - 0 = Frequency is not stable
- bit 1-0 SCS<1:0>: Oscillator Mode Select bits
 - 00 = Oscillator mode defined by FOSC<2:0>
 - 01 = T1OSC is used for system clock
 - 10 = Internal RC is used for system clock
 - 11 = Reserved

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented	ed bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		


NOTES:


© 2002-2013 Microchip Technology Inc.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	
	bit 7							bit 0	
bit 7-6	ADCS<1:0)>: A/D Conv	version Cloc	k Select bits					
	If ADCS2 :								
	00 = Fosc 01 = Fosc								
	10 = FOSC 10 = FOSC								
		clock derive	d from the ir	nternal A/D n	nodule RC o	oscillator)			
	If ADCS2 :	= 1:							
	00 = Fosc								
	01 = FOSC								
	10 = FOSC/64 11 = FRC (clock derived from the internal A/D module RC oscillator)								
bit 5-3	CHS<2:0>: Analog Channel Select bits								
		annel 0 (RA0							
		annel 1 (RA1	,						
		annel 2 (RA2 annel 3 (RA3	,						
	011 = Channel 3 (RA3/AN3) 100 = Channel 4 (RA4/AN4)								
	101 = Channel 5 (RB6/AN5)								
	110 = Channel 6 (RB7/AN6)								
bit 2	GO/DONE: A/D Conversion Status bit								
	If ADON = 1: 1 = A/D conversion in progress (setting this bit starts the A/D conversion)								
	0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D								
	conversion is complete)								
bit 1	Unimplemented: Read as '0'								
bit 0	ADON: A/D On bit								
	 1 = A/D converter module is operating 0 = A/D converter module is shut off and consumes no operating current 								
	Legend:								
	R = Reada	able bit	W = W	/ritable bit	U = Unir	mplemented bi	t, read as '	0'	
	-n = Value		(1) _ D	it is set	(O' D:+	is cleared	k = Bit is ur		

R/P-1			R/P-1	WORD 1 REGISTER (ADDRESS 2007h) R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1
		VRT0 CPD	1	BOREN MCLRE FOSC2 PWRTEN WDTEN FOSC1 FOSC0
bit 13			LVI	bit 0
				5.1 0
bit 13	CP: Flash Program Mem	ory Code Pro	tection bi	its
	1 = Code protection off			
	0 = 0000h to 0FFFh code	•	ll protect	ed)
bit 12	CCPMX: CCP1 Pin Select			
	1 = CCP1 function on RE 0 = CCP1 function on RE			
bit 11	DEBUG: In-Circuit Debug	ger Mode bit		
		-		7 are general purpose I/O pins
	0 = In-Circuit Debugger e	nabled, RB6	and RB7	7 are dedicated to the debugger
bit 10-9	5	m Memory W	/rite Enat	ble bits
	11 = Write protection off	e-protected	0100h to	0FFFh may be modified by EECON control
		•		0FFFh may be modified by EECON control
	00 = 0000h to 0FFFh write	e-protected		
bit 8	CPD: Data EE Memory C	ode Protectio	on bit	
	 1 = Code protection off 0 = Data EE memory cod 	o protoctod		
bit 7	LVP: Low-Voltage Progra		la hit	
		-		age Programming enabled
	0 = RB3 is digital I/O, HV			
bit 6	BOREN: Brown-out Rese	et Enable bit		
	1 = BOR enabled			
hit E	0 = BOR disabled MCLRE: RA5/MCLR/VPF	Din Function		-iu
bit 5	1 = RA5/MCLR/VPP pin f			Sit.
				ACLR internally tied to VDD
bit 3	PWRTEN: Power-up Tim	er Enable bit		
	1 = PWRT disabled			
	0 = PWRT enabled			
bit 2	WDTEN: Watchdog Time 1 = WDT enabled	r Enable bit		
	0 = WDT disabled			
bit 4, 1-0) FOSC<2:0>: Oscillator S	election bits		
	111 = EXTRC oscillator;			
	110 = EXTRC oscillator;			
				/OSC2/CLKO pin and port I/O function on RA7/OSC1/CLKI pir oth RA6/OSC2/CLKO pin and RA7/OSC1/CLKI pin
	011 = ECIO; port I/O fun			
	010 = HS oscillator			
	001 = XT oscillator 000 = LP oscillator			
	Legend:			
	R = Readable bit		Writable	
	-n = Value at POR	'1' =	Bit is set	t '0' = Bit is cleared $x = Bit$ is unknown

15.12.4 FAIL-SAFE OPTION

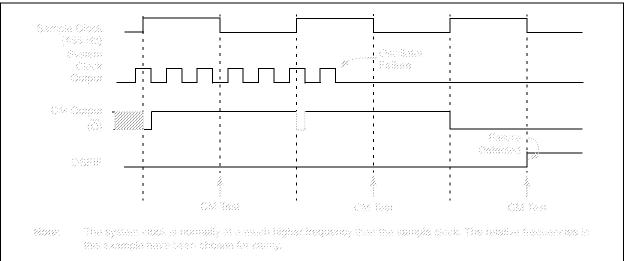
The Fail-Safe Clock Monitor (FSCM) is designed to allow the device to continue to operate even in the event of an oscillator failure.

The FSCM function is enabled by setting the FCMEN bit in Configuration Word 2.

In the event of an oscillator failure, the FSCM will generate an oscillator fail interrupt and will switch the system clock over to the internal oscillator. The system will continue to come from the internal oscillator until the fail-safe condition is exited. The fail-safe condition is exited with either a Reset, the execution of a SLEEP instruction or a write to the OSCCON register.

The frequency of the internal oscillator will depend upon the value contained in the IRCF bits. Another clock source can be selected via the IRCF and the SCS bits of the OSCCON register. The FSCM sample clock is generated by dividing the INTRC clock by 64. This will allow enough time between FSCM sample clocks for a system clock edge to occur.

On the rising edge of the postscaled clock, the monitoring latch (CM = 0) will be cleared. On a falling edge of the primary or secondary system clock, the monitoring latch will be set (CM = 1). In the event that a falling edge of the postscaled clock occurs and the monitoring latch is not set, a clock failure has been detected.


While in Fail-Safe mode, a Reset will exit the fail-safe condition. If the primary clock source is configured for a crystal, the OST timer will wait for the 1024 clock cycles for the OST time-out and the device will continue running from the internal oscillator until the OST is complete. A SLEEP instruction, or a write to the SCS bits (where SCS bits do not = 00), can be performed to put the device into a low-power mode.

Note:	Two-Speed Start-up mode is automatically						
	enabled	when	the	fail-safe	option	is	
	enabled.						

If Reset occurs while in Fail-Safe mode and the primary clock source is EC or RC, then the device will immediately switch back to EC or RC mode.

15.12.4.1 Fail-Safe in Low-Power Mode

A write to the OSCCON register, or SLEEP instruction, will end the fail-safe condition. The system clock will default to the source selected by the SCS bits, which is either T1OSC, INTRC or none (Sleep mode). However, the FSCM will continue to monitor the system clock. If the secondary clock fails, the device will immediately switch to the internal oscillator clock. If OSFIE is set, an interrupt will be generated.

FIGURE 15-11: FSCM TIMING DIAGRAM

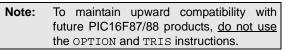
16.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 16-1, while the various opcode fields are summarized in Table 16-1.

Table 16-2 lists the instructions recognized by the MPASMTM assembler. A complete description of each instruction is also available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).


For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

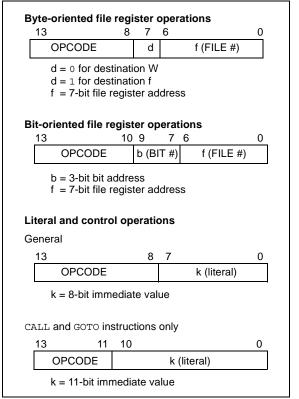
The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods. For an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


16.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared.

TABLE 16-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
ТО	Time-out bit
PD	Power-Down bit

FIGURE 16-1: GENERAL FORMAT FOR INSTRUCTIONS

18.2 DC Characteristics: Power-Down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

PIC16LF8 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC16F87 (Indus	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Device	Тур	Max	Units	Units Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC16LF87/88	310	420	μΑ	-40°C				
		300	410	μΑ	+25°C	VDD = 2.0V			
		300	410	μΑ	+85°C				
	PIC16LF87/88	550	650	μΑ	-40°C				
		530	620	μΑ	+25°C	VDD = 3.0V	Fosc = 4 MHz (RC_RUN mode,		
		530	620	μΑ	+85°C		Internal RC Oscillator)		
	All devices	1.2	1.5	mA	-40°C	Vdd = 5.0V	,		
		1.1	1.4	mA	+25°C				
		1.1	1.4	mA	+85°C				
	Extended devices	1.3	1.6	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

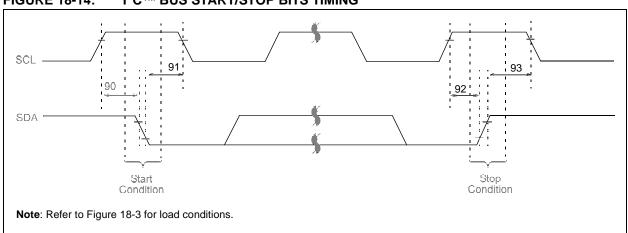
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

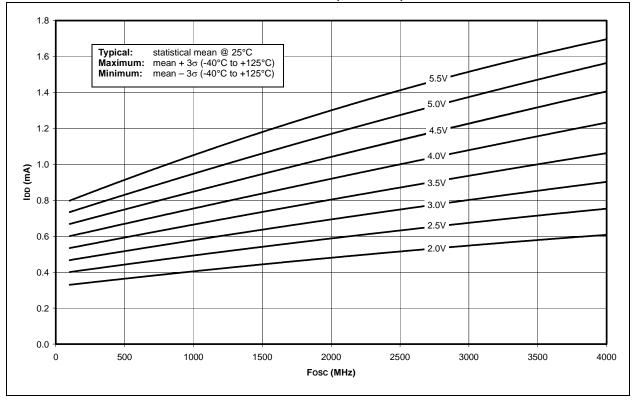
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.


3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input	Тсү	-	-	ns		
71*	TscH	SCK Input High Time (Slave mode)		TCY + 20	-	_	ns	
72*	TscL	SCK Input Low Time (Slave mode)		TCY + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SC	100	—	—	ns		
74*	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	—	—	ns	
75*	TdoR	SDO Data Output Rise Time	PIC16 F 87/88 PIC16 LF 87/88		10 25	25 50	ns ns	
76*	TdoF	SDO Data Output Fall Time		10	25	ns		
77*	TssH2doZ	SS ↑ to SDO Output High-Impedan	се	10	_	50	ns	
78*	TscR	SCK Output Rise Time PIC16F87/88 (Master mode) PIC16LF87/88			10 25	25 50	ns ns	
79*	TscF	SCK Output Fall Time (Master mod	e)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC16 F 87/88 PIC16 LF 87/88		_	50 145	ns ns	
81*	TdoV2scH, TdoV2scL	SDO Data Output Setup to SCK Edge		Тсү	—	-	ns	
82*	TssL2doV	SDO Data Output Valid after $\overline{SS} \downarrow E$	_	- 1	50	ns		
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	-	-	ns	


TABLE 18-8: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

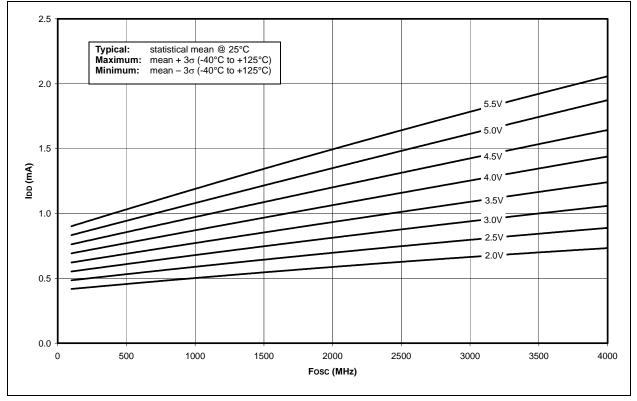


FIGURE 18-14: I²C[™] BUS START/STOP BITS TIMING

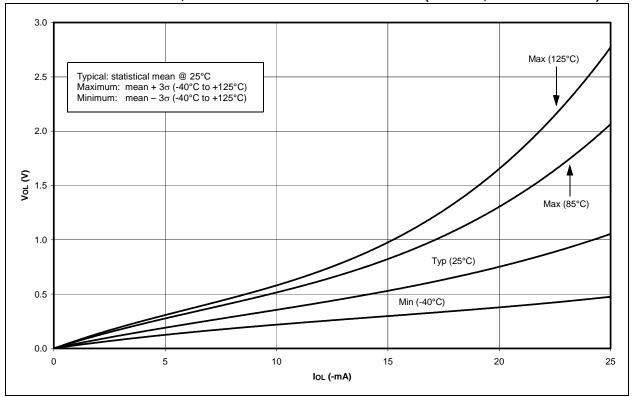
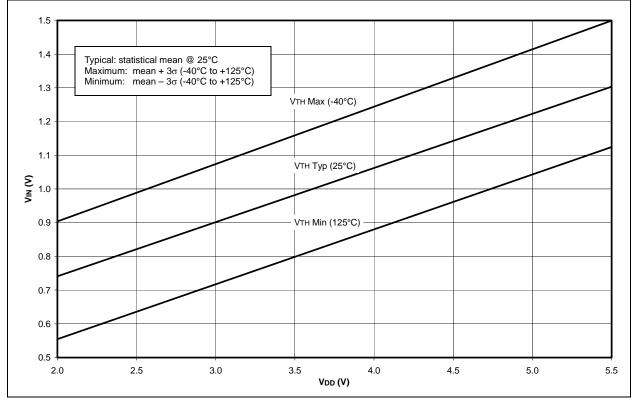
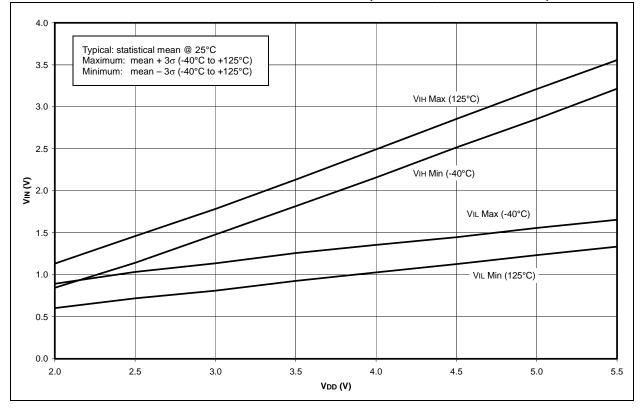
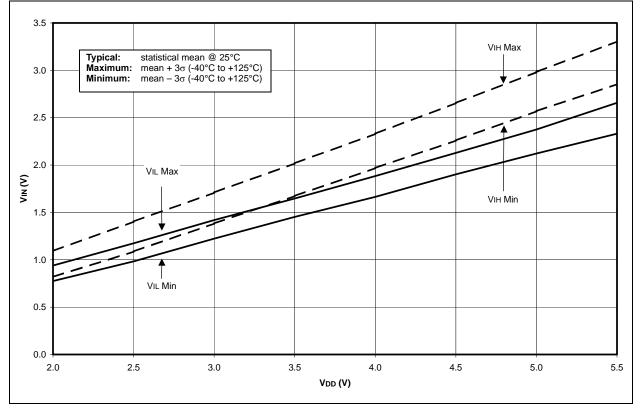
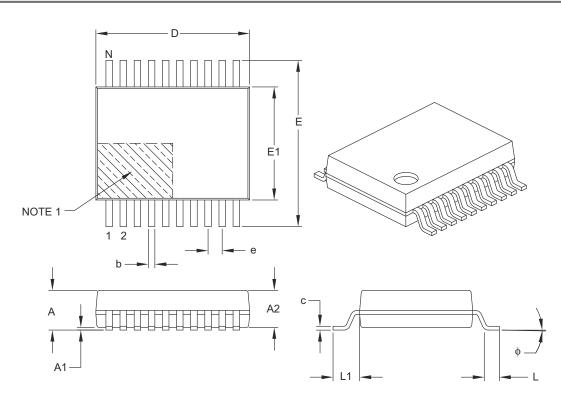




FIGURE 19-21: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 3V, -40°C TO +125°C)




FIGURE 19-23: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	n Limits	MIN	MIN NOM				
Number of Pins	Ν	20					
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	6.90	7.20	7.50			
Foot Length	L	0.55	0.75	0.95			
Footprint L1		1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

APPENDIX A: REVISION HISTORY

Revision A (November 2003)

Original data sheet for PIC16F87/88 devices.

Revision B (August 2003)

The specifications in **Section 18.0** "**Electrical Characteristics**" have been updated to include the addition of maximum specifications to the DC Characteristics tables, text clarification has been made to **Section 4.6.2** "**Clock Switching**" and there have been minor updates to the data sheet text.

Revision C (January 2005)

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in **Section 18.0 "Electrical Characteristics"** have been updated and there have been minor corrections to the data sheet text.

Revision D (October 2011)

This revision updated the package marking and package outline drawings in **Section 20.0** "**Packaging Information**".

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

TABLE B-1:	DIFFERENCES BETWEEN			
	THE PIC16F87 AND PIC16F88			

Features	PIC16F87	PIC16F88
Analog-to-Digital Converter	N/A	10-bit, 7-channel

NOTES:

NOTES: