E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f87-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT/CCP1 ⁽⁵⁾	6	7	7			
RB0				I/O	TTL	Bidirectional I/O pin.
INT				I	ST ⁽¹⁾	External interrupt pin.
CCP1				I/O	ST	Capture input, Compare output, PWM output.
RB1/SDI/SDA	7	8	8			
RB1 SDI				I/O I	TTL ST	Bidirectional I/O pin. SPI data in.
SDA				1/O	ST	$I^2 C^{TM}$ data.
RB2/SDO/RX/DT	8	9	9	1/0	01	
RB2	0	9	9	I/O	TTL	Bidirectional I/O pin.
SDO				0	ST	SPI data out.
RX				I		AUSART asynchronous receive.
DT				I/O		AUSART synchronous detect.
RB3/PGM/CCP1 ⁽⁵⁾	9	10	10			
RB3				I/O	TTL	Bidirectional I/O pin.
PGM				I/O	ST	Low-Voltage ICSP™ Programming enable pin.
CCP1				I	ST	Capture input, Compare output, PWM output.
RB4/SCK/SCL	10	11	12			
RB4 SCK				1/0 1/0	TTL ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI.
SCL				1/0	ST	Synchronous serial clock input/output for SP1.
RB5/SS/TX/CK	11	12	13	•	01	Cynonionous senarolook inpartor r C.
RB5	1 11	12	15	I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
SS				1/0	TTL	Slave select for SPI in Slave mode.
TX				0		AUSART asynchronous transmit.
СК				I/O		AUSART synchronous clock.
RB6/AN5/PGC/T1OSO/	12	13	15			
T1CKI						
				I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
AN5 ⁽⁴⁾ PGC				I I/O	ST ⁽²⁾	Analog input channel 5. In-Circuit Debugger and programming clock pin.
T10S0				0	ST	Timer1 oscillator output.
T1CKI				I	ST	Timer1 external clock input.
RB7/AN6/PGD/T1OSI	13	14	16			
RB7		17	10	I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
AN6 ⁽⁴⁾				I		Analog input channel 6.
PGD				I	ST ⁽²⁾	In-Circuit Debugger and ICSP programming data pi
T1OSI				Ι	ST	Timer1 oscillator input.
Vss	5	5, 6	3, 5	Р	-	Ground reference for logic and I/O pins.
VDD	14	15, 16	17, 19	Р	-	Positive supply for logic and I/O pins.

TABLE 1-2:	PIC16F87/88 PINOUT DESCRIPTION ((CONTINUED)

- = Not used TTL = TTL Input ST = Schmitt Trigger Input
 Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

5: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any Status bits, see Section 16.0 "Instruction Set Summary".

Note: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS: ARITHMETIC STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7	1 = Bank	ster Bank Sel 2, 3 (100h-1F 0, 1 (00h-FFt	Fh)	for indirect a	ddressing)							
bit 6-5	11 = Bank 3 (180h-1FFh)											
	01 = Bank 00 = Bank	2 (100h-17F 1 (80h-FFh) 0 (00h-7Fh) is 128 bytes										
bit 4	TO: Time-	out bit										
		power-up, CL		tion or SLEE	P instruction	n						
bit 3	PD: Powe	r-Down bit										
		power-up or b ecution of the										
bit 2	Z: Zero bit	t										
		esult of an ari esult of an ari										
bit 1	DC: Digit	carry/borrow b	oit (Addwf, A	DDLW, SUBLI	and SUBW	F instructio	ns) (1)					
		ry-out from the arry-out from t				red						
bit 0	C: Carry/b	orrow bit (AD	DWF, ADDLW,	SUBLW and	SUBWF instr	uctions) ^(1,2))					
		ry-out from the	0									
	Note 1:	For borrow, t complement			subtractior	n is execute	d by adding	the two's				
	2:	For rotate (R: bit of the sou		ructions, this	bit is loade	d with eithe	r the high or	low-order				
	Logondy											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit 0

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit
	1 = Enables all unmasked peripheral interrupts
	 0 = Disables all peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 interrupt
	0 = Disables the TMR0 interrupt
bit 4	INTOIE: RB0/INT External Interrupt Enable bit
	1 = Enables the RB0/INT external interrupt
1.14.0	0 = Disables the RB0/INT external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
511 2	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTOIF: RB0/INT External Interrupt Flag bit
	1 = The RB0/INT external interrupt occurred (must be cleared in software)
	0 = The RB0/INT external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit
	A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch
	condition and allow flag bit RBIF to be cleared.
	1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
	0 = None of the RB7:RB4 pins have changed state
	Legend:
	D. Deadable bit W. Writeble bit II. Unimplemented bit read as (0)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.7.3 SEC_RUN/RC_RUN TO PRIMARY CLOCK SOURCE

When switching from a SEC_RUN or RC_RUN mode back to the primary system clock, following a change of SCS<1:0> to '00', the sequence of events that takes place will depend upon the value of the FOSC bits in the Configuration register. If the primary clock source is configured as a crystal (HS, XT or LP), then the transition will take place after 1024 clock cycles. This is necessary because the crystal oscillator has been powered down until the time of the transition. In order to provide the system with a reliable clock when the changeover has occurred, the clock will not be released to the changeover circuit until the 1024 count has expired.

During the oscillator start-up time, the system clock comes from the current system clock. Instruction execution and/or peripheral operation continues using the currently selected oscillator as the CPU clock source, until the necessary clock count has expired, to ensure that the primary system clock is stable.

To know when the OST has expired, the OSTS bit should be monitored. OSTS = 1 indicates that the Oscillator Start-up Timer has timed out and the system clock comes from the primary clock source.

Following the oscillator start-up time, the internal Q clocks are held in the Q1 state until eight falling edge clocks are counted from the primary system clock. The clock input to the Q clocks is then released and operation resumes with the primary system clock determined by the FOSC bits (see Figure 4-10).

When in SEC_RUN mode, the act of clearing the T1OSCEN bit in the T1CON register will cause SCS<0> to be cleared, which causes the SCS<1:0> bits to revert to '00' or '10' depending on what SCS<1> is. Although the T1OSCEN bit was cleared, T1OSC will be enabled and instruction execution will continue until the OST time-out for the main system clock is complete. At that time, the system clock will switch from the T1OSC to the primary clock or the INTRC. Following this, the T1 oscillator will be shut down.

Note: If the primary system clock is either RC or EC, an internal delay timer (5-10 μs) will suspend operation after exiting Secondary Clock mode to allow the CPU to become ready for code execution.


4.7.3.1 Returning to Primary Clock Source Sequence

Changing back to the primary oscillator from SEC_RUN or RC_RUN can be accomplished by either changing SCS<1:0> to '00', or clearing the T1OSCEN bit in the T1CON register (if T1OSC was the secondary clock).

The sequence of events that follows is the same for both modes:

- If the primary system clock is configured as EC, RC or INTRC, then the OST time-out is skipped. Skip to step 3.
- 2. If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active, waiting for 1024 clocks of the primary system clock.
- 3. On the following Q1, the device holds the system clock in Q1.
- 4. The device stays in Q1 while eight falling edges of the primary system clock are counted.
- 5. Once the eight counts transpire, the device begins to run from the primary oscillator.
- If the secondary clock was INTRC and the primary is not INTRC, the INTRC will be shut down to save current providing that the INTRC is not being used for any other function, such as WDT or Fail-Safe Clock monitoring.
- If the secondary clock was T1OSC, the T1OSC will continue to run if T1OSCEN is still set; otherwise, the T1 oscillator will be shut down.

RTCinit	BANKSEL	TMR1H	
	MOVLW	0x80	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	
	MOVLW	.12	
	MOVWF	hours	
	BANKSEL	PIE1	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr	BANKSEL	TMR1H	
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVF	secs, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	seconds	; Clear seconds
	INCF	mins, f	; Increment minutes
	MOVF	mins, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	mins	; Clear minutes
	INCF	hours, f	; Increment hours
	MOVF	hours, w	
	SUBLW	.24	
	BTFSS	STATUS, Z	; 24 hours elapsed?
	RETURN		; No, done
	CLRF	hours	; Clear hours
	RETURN		; Done

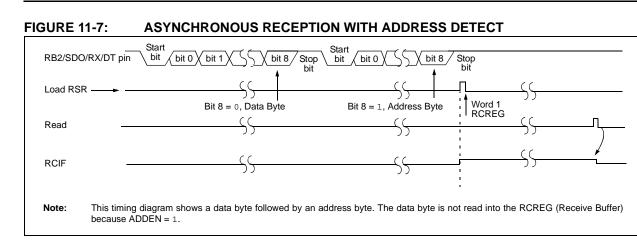
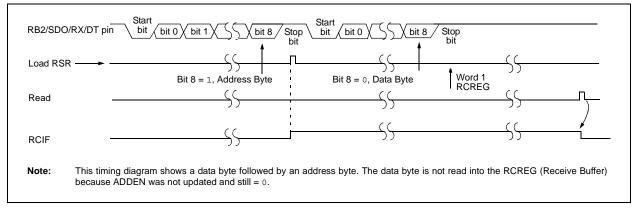

EXAMPLE 7-3: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	all c	e on other sets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1	—	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	—	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
0Eh	TMR1L	Holding	g Registe	r for the Le	ast Significa	ant Byte of th	ne 16-bit T	MR1 Regis	ster	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx	xxxx	uuuu	uuuu
10h	T1CON		T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000	0000	-uuu	uuuu

Legend:x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.Note1:This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

NOTES:

FIGURE 11-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 11-9: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
1Ah	RCREG	AUSART	Receive	Data Regi	ster					0000 0000	0000 0000
8Ch	PIE1	—	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

12.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has seven inputs for 18/20 pin devices (PIC16F88 devices only).

The conversion of an analog input signal results in a corresponding 10-bit digital number. The A/D module has a high and low-voltage reference input that is software selectable to some combination of VDD, VSS, VREF- (RA2) or VREF+ (RA3).

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- Analog Select Register (ANSEL)

The ADCON0 register, shown in Register 12-2, controls the operation of the A/D module. The ANSEL register, shown in Register 12-1 and the ADCON1 register, shown in Register 12-3, configure the functions of the port pins. The port pins can be configured as analog inputs (RA3/RA2 can also be voltage references) or as digital I/O.

Additional information on using the A/D module can be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

REGISTER 12-1: ANSEL: ANALOG SELECT REGISTER (ADDRESS9Bh) PIC16F88 DEVICES ONLY

	U-0	R/W-1						
	_	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
-	bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6-0 **ANS<6:0>:** Analog Input Select bits

Bits select input function on corresponding AN<6:0> pins.

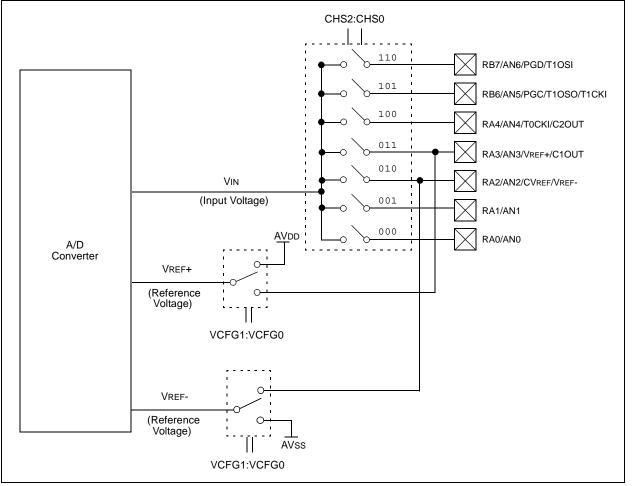
1 = Analog I/O^(1,2)

0 = Digital I/O

- **Note 1:** Setting a pin to an analog input disables the digital input buffer. The corresponding TRIS bit should be set to input mode when using pins as analog inputs. Only AN2 is an analog I/O, all other ANx pins are analog inputs.
 - **2:** See the block diagrams for the analog I/O pins to see how ANSEL interacts with the CHS bits of the ADCON0 register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRESH:ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 12-1.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see **Section 12.1** "**A/D Acquisition Requirements**". After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog/digital I/O (ANSEL)
 - Configure voltage reference (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - SET PEIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 12-1: A/D BLOCK DIAGRAM

15.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Two-Speed Start-up
- Fail-Safe Clock Monitor
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™] (ICSP[™])

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Additional information on special features is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

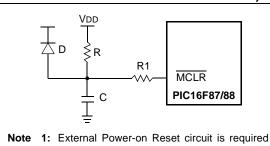
15.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory locations 2007h and 2008h.

The user will note that address 2007h is beyond the user program memory space which can be accessed only during programming.

15.3 MCLR

PIC16F87/88 devices have a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.


It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR and excessive current beyond the device specification during the ESD event. The circuit, as shown in Figure 15-2, is suggested.

Note:	For this reason, Microchip recommends
	that the MCLR pin no longer be tied
	directly to VDD.

The RA5/MCLR/VPP pin can be configured for MCLR (default), or as an I/O pin (RA5). This is configured through the MCLRE bit in Configuration Word 1.

only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.

- 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
- 3: $R1 = 1 \ k\Omega \ to \ 10 \ k\Omega \ will limit any current flow$ $ing into MCLR from external capacitor C (0.1 <math>\mu$ F), in the event of RA5/MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

15.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V-1.7V). To take advantage of the POR, tie the MCLR pin to VDD, as described in Section 15.3 "MCLR". A maximum rise time for VDD is specified. See Section 18.0 "Electrical Characteristics" for details.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For more information, see Application Note, *AN607 "Power-up Trouble Shooting"* (DS00607).

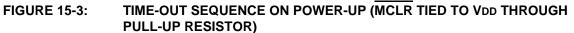
15.5 Power-up Timer (PWRT)

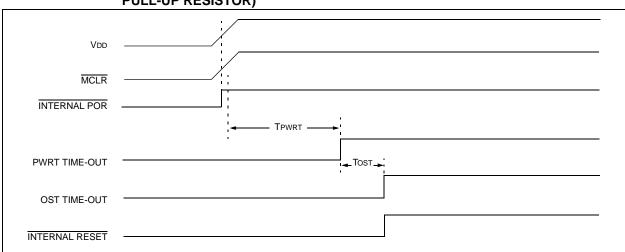
The Power-up Timer (PWRT) of the PIC16F87/88 is a counter that uses the INTRC oscillator as the clock input. This yields a count of 72 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC and will vary from chip-to-chip due to temperature and process variation. See DC parameter #33 for details.

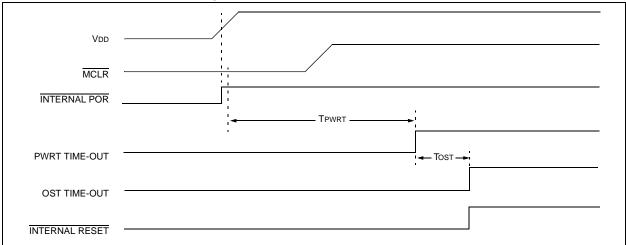
The PWRT is enabled by clearing configuration bit PWRTEN.

15.6 Oscillator Start-up Timer (OST)


The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.


The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

15.7 Brown-out Reset (BOR)


The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ s), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a Reset may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer (if enabled) will keep the device in Reset for TPWRT (parameter #33, about 72 ms). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. Unlike previous PIC16 devices, the PWRT is no longer automatically enabled when the Brown-out Reset circuit is enabled. The PWRTEN and BOREN configuration bits are independent of each other.

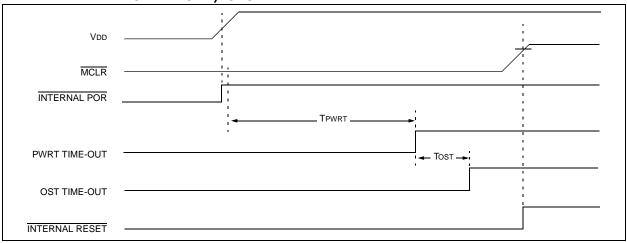


FIGURE 15-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK): CASE 2

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' = 0, the result is stored in W. If 'd' = 1, the result is stored back in register 'f'.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$, PCLATH<4:3> $\rightarrow PC<12:11>$
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.

DECF	Decrement f	INCF	Increment f
Syntax:	[label] DECF f,d	Syntax:	[label] INCF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) – 1 \rightarrow (destination)	Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	Decrement register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) $-1 \rightarrow$ (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2 TCY instruction.	Description:	The contents of register 'f' are incremented. If 'd' = 0, the result is placed in the W register. If 'd' = 1, the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2 TCY instruction.

17.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

17.1 MPLAB Integrated Development Environment Software

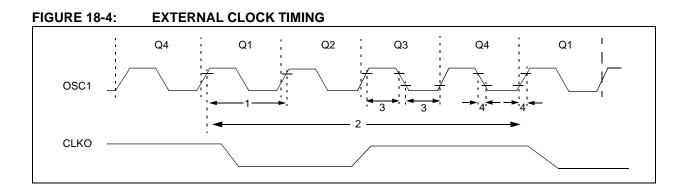
The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.


18.3 DC Characteristics: Internal RC Accuracy PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial)

	PIC16LF87/88 (Industrial) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial						
PIC16F (Indu	587/88 ustrial, Extended)	IOperating temperature $-40^{\circ}\text{C} < T\text{A} < +85^{\circ}\text{C}$ for industrial					
Param No.	ⁿ Device Min Typ Max Units Conditions			ditions			
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾						
	PIC16LF87/88	-2	±1	2	%	+25°C	
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V
		-10	_	10	%	-40°C to +85°C	
	PIC16F87/88	-2	±1	2	%	25°C	
		-5	_	5	%	-10°C to +85°C	VDD = 4.5-5.5V
		-10	_	10	%	-40°C to +85°C	
	Extended devices	-15	—	15	%	-40°C to +125°C	VDD = 4.5-5.5V
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾						
	PIC16LF87/88	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V
	PIC16F87/88	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

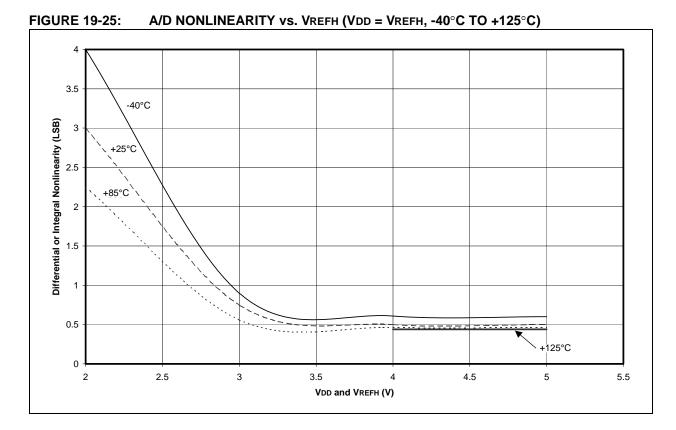
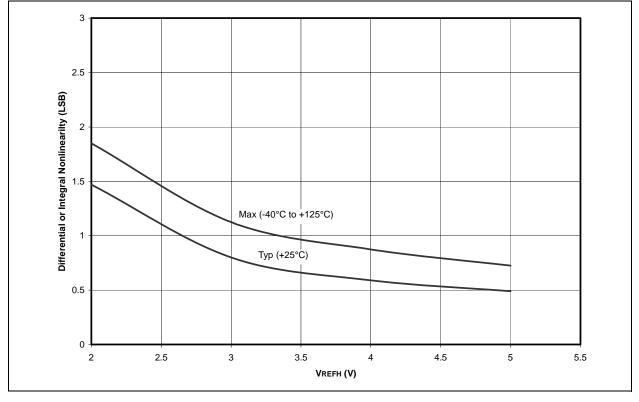


TABLE 18-3: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKI Frequency	DC	_	1	MHz	XT and RC Oscillator mode
		(Note 1)	DC	_	20	MHz	HS Oscillator mode
			DC	—	32	kHz	LP Oscillator mode
		Oscillator Frequency	DC	_	4	MHz	RC Oscillator mode
		(Note 1)	0.1	—	4	MHz	XT Oscillator mode
			4 5	_	20 200	MHz kHz	HS Oscillator mode LP Oscillator mode
1	Tosc	External CLKI Period (Note 1)	1000	_	—	ns	XT and RC Oscillator modes
			50	_		ns	HS Oscillator mode
			5	_	_	ms	LP Oscillator mode
		Oscillator Period	250	—	—	ns	RC Oscillator mode
		(Note 1)	250	—	10,000	ns	XT Oscillator mode
			50	—	250	ns	HS Oscillator mode
			5	_		ms	LP Oscillator mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	500	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	ms	LP oscillator
			15		—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—		25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—		15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

© 2002-2013 Microchip Technology Inc.

Е

3, 29
3, 29
3, 29
3, 29
3, 29
3, 29
163
6
52
38

F

Flash Program Memory Associated Registers EEADR Register EEADRH Register	36 29
EEADR Register	29
0	
EEADRH Register	. 29
EECON1 Register	29
EECON2 Register	. 29
EEDATA Register	29
EEDATH Register	
Erasing	32
Reading	32
Writing	34
FSR Register 16, 17	

G

General Purpose Register File	
-------------------------------	--

I

I/O Po	orts	
F	PORTA	53
F	PORTB	
7	TRISB Register	
I ² C	J. J	
1	Addressing	
	Associated Registers	
1	Master Mode	
ſ	Mode	94
ſ	Mode Selection	
1	Multi-Master Mode	
F	Reception	
5	SCL and SDA Pins	
5	Slave Mode	
٦	Transmission	
ID Lo	cations	. 131, 149
In-Cir	cuit Debugger	149
In-Cir	cuit Serial Programming	131
In-Cir	cuit Serial Programming (ICSP)	149
INDF	Register	16, 17, 28
Indire	ct Addressing	
Instru	ction Set	151
[Descriptions	153
(General Format	151
F	Read-Modify-Write Operations	151
5	Summary Table	152
	ADDLW	153
	ADDWF	153
	ANDLW	153
1	ANDWF	153
E	BCF	153
E	BSF	153

BTFSC	154
BTFSS	154
CALL	
CLRF	154
CLRW	154
CLRWDT	-
COMF	155
DECF	155
DECFSZ	
GOTO	155
INCF	155
-	
INCFSZ	155
IORLW	156
IORWF	156
MOVF	156
MOVLW	156
MOVWF	156
NOP	156
RETFIE	157
RETLW	157
RETURN	157
RLF	157
RRF	157
SLEEP	157
SUBLW	158
SUBWF	150
SWAPF	158
XORLW	158
XORWF	
	100
INT Interrupt (RB0/INT). See Interrupt Sources.	
INTCON Register	
GIE Bit	21
INTOIE Bit	
INTOIF Bit	. 21
PEIE Bit	21
RBIE Bit	. 21
RBIF Bit	. 21
TMR0IE Bit	21
Internal Oscillator Block	
INTRC Modes	. 40
Internet Address	226
Interrupt Sources 131,	
AUSART Receive/Transmit Complete	. 99
RB0/INT Pin, External	142
TMR0 Overflow	
	142
Interrupts	
RB7:RB4 Port Change	. 59
Interrupts, Context Saving During	
Interrupts, Enable Bits	
A/D Converter Interrupt Enable (ADIE Bit)	. 22
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit)	. 22 . 22
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit)	. 22 . 22 . 22
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit)	. 22 . 22 . 22
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit)	. 22 . 22 . 22 . 22
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit)	. 22 . 22 . 22 . 22 . 22 . 24
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bit	. 22 . 22 . 22 . 22 . 22 . 24
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit)	. 22 . 22 . 22 . 22 . 22 . 24
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bit) 24	. 22 . 22 . 22 . 22 . 24 t) .
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)	. 22 . 22 . 22 . 22 . 24 t) . 140
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)	. 22 . 22 . 22 . 22 . 24 t) . 140 142
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)	. 22 . 22 . 22 . 22 . 24 t) . 140 142
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit)	. 22 . 22 . 22 . 24 t) . 140 142 . 24
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) Oscillator Fail Interrupt Enable (OSFIE Bit) Peripheral Interrupt Enable (PEIE Bit)	. 22 . 22 . 22 . 24 t) . 140 142 . 24 . 21
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) Oscillator Fail Interrupt Enable (OSFIE Bit) Peripheral Interrupt Enable (PEIE Bit)	. 22 . 22 . 22 . 24 t) . 140 142 . 24 . 21 . 21
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) Oscillator Fail Interrupt Enable (OSFIE Bit) Peripheral Interrupt Enable (PEIE Bit) Port Change Interrupt Enable (RBIE Bit)	. 22 . 22 . 22 . 22 . 24 t) . 140 142 . 24 . 21 . 21 . 21
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) Oscillator Fail Interrupt Enable (OSFIE Bit) Peripheral Interrupt Enable (PEIE Bit) Port Change Interrupt Enable (RBIE Bit) RB0/INT Enable (INTOIE Bit)	. 22 . 22 . 22 . 22 . 24 t) . 140 142 . 24 . 21 . 21 . 21
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) Oscillator Fail Interrupt Enable (OSFIE Bit) Peripheral Interrupt Enable (PEIE Bit) Port Change Interrupt Enable (RBIE Bit) RB0/INT Enable (INTOIE Bit) Synchronous Serial Port (SSP) Interrupt Enable (SS	. 22 . 22 . 22 . 22 . 24 t) . 140 142 . 24 . 21 . 21 . 21 . 21 . 21
A/D Converter Interrupt Enable (ADIE Bit) AUSART Receive Interrupt Enable (RCIE Bit) AUSART Transmit Interrupt Enable (TXIE Bit) CCP1 Interrupt Enable (CCP1IE Bit) Comparator Interrupt Enable (CMIE Bit) EEPROM Write Operation Interrupt Enable (EEIE Bi 24 Global Interrupt Enable (GIE Bit)21, Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) Oscillator Fail Interrupt Enable (OSFIE Bit) Peripheral Interrupt Enable (PEIE Bit) Port Change Interrupt Enable (RBIE Bit) RB0/INT Enable (INTOIE Bit)	. 22 . 22 . 22 . 24 t) . 140 142 . 24 . 21 . 21 . 21 . 21 . 21 . 21

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769416

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.