

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f88t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	l/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT/CCP1 ⁽⁵⁾	6	7	7			
RB0				I/O	TTL	Bidirectional I/O pin.
INT				I	ST ⁽¹⁾	External interrupt pin.
CCP1				I/O	ST	Capture input, Compare output, PWM output.
RB1/SDI/SDA	7	8	8			
RB1 SDI				I/O I	TTL ST	Bidirectional I/O pin. SPI data in.
SDA				1/0	ST	$I^2 C^{TM}$ data.
RB2/SDO/RX/DT	8	9	9	1/0	01	
RB2	0	9	9	I/O	TTL	Bidirectional I/O pin.
SDO				0	ST	SPI data out.
RX				I		AUSART asynchronous receive.
DT				I/O		AUSART synchronous detect.
RB3/PGM/CCP1 ⁽⁵⁾	9	10	10			
RB3				I/O	TTL	Bidirectional I/O pin.
PGM				I/O	ST	Low-Voltage ICSP™ Programming enable pin.
CCP1				I	ST	Capture input, Compare output, PWM output.
RB4/SCK/SCL	10	11	12			
RB4 SCK				1/0 1/0	TTL ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI.
SCL				1/0	ST	Synchronous serial clock input/output for SP1.
RB5/SS/TX/CK	11	12	13	•	01	Cynonionous senarolook inpartor r C.
RB5	1 11	12	15	I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
SS				1/0	TTL	Slave select for SPI in Slave mode.
TX				0		AUSART asynchronous transmit.
СК				I/O		AUSART synchronous clock.
RB6/AN5/PGC/T1OSO/	12	13	15			
T1CKI						
				I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
AN5 ⁽⁴⁾ PGC				I I/O	ST ⁽²⁾	Analog input channel 5. In-Circuit Debugger and programming clock pin.
T10S0				0	ST	Timer1 oscillator output.
T1CKI				I	ST	Timer1 external clock input.
RB7/AN6/PGD/T1OSI	13	14	16			
RB7		17	10	I/O	TTL	Bidirectional I/O pin. Interrupt-on-change pin.
AN6 ⁽⁴⁾				I		Analog input channel 6.
PGD				I	ST ⁽²⁾	In-Circuit Debugger and ICSP programming data pi
T1OSI				Ι	ST	Timer1 oscillator input.
Vss	5	5, 6	3, 5	Р	-	Ground reference for logic and I/O pins.
VDD	14	15, 16	17, 19	Р	-	Positive supply for logic and I/O pins.

TABLE 1-2:	PIC16F87/88 PINOUT DESCRIPTION ((CONTINUED)

- = Not used TTL = TTL Input ST = Schmitt Trigger Input
 Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

5: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bit for the EEPROM write operation interrupt.

REGISTER 2-6:	PIE2: PEF	RIPHERAL	INTERRUP	T ENABLE	REGISTE	R 2 (ADD	RESS 8DI	ו)
	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
	OSFIE	CMIE	—	EEIE	—	—		_
	bit 7							bit 0
bit 7	OSFIE: Os	cillator Fail In	terrupt Enab	le bit				
	1 = Enable 0 = Disable							
bit 6	CMIE: Corr	CMIE: Comparator Interrupt Enable bit						
	1 = Enabled							
	0 = Disable							
bit 5	Unimplem	ented: Read	as '0'					
bit 4	EEIE: EEP	ROM Write C	peration Inte	errupt Enable	bit			
	1 = Enable 0 = Disable							
bit 3-0	Unimplem	ented: Read	as '0'					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unimp	olemented	bit, read as	'0'
	-n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	cleared	x = Bit is u	nknown

4.6.3 CLOCK TRANSITION AND WDT

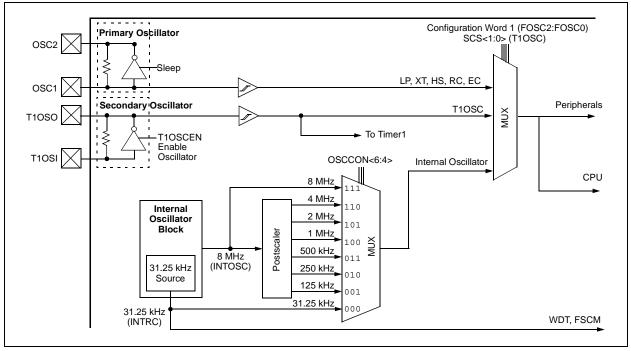
When clock switching is performed, the Watchdog Timer is disabled because the Watchdog ripple counter is used as the Oscillator Start-up Timer.

Once the clock transition is complete (i.e., new oscillator selection switch has occurred), the Watchdog counter is re-enabled with the counter reset. This allows the user to synchronize the Watchdog Timer to the start of execution at the new clock frequency.

Note:	The OST is only used when switching to
	XT, HS and LP Oscillator modes.

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

U-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0
-	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	IOFS	SCS1	SCS0
bit 7							bit 0


- bit 7 Unimplemented: Read as '0'
- bit 6-4 IRCF<2:0>: Internal RC Oscillator Frequency Select bits
 - 000 = 31.25 kHz
 - 001 = 125 kHz
 - 010 = 250 kHz
 - 011 = 500 kHz
 - 100 = 1 MHz
 - 101 = 2 MHz
 - 110 = 4 MHz
 - 111 = 8 MHz

bit 3 **OSTS:** Oscillator Start-up Time-out Status bit⁽¹⁾

- 1 = Device is running from the primary system clock
- 0 = Device is running from T1OSC or INTRC as a secondary system clock
 - Note 1: Bit resets to '0' with Two-Speed Start-up mode and LP, XT or HS selected as the oscillator mode.
- bit 2 **IOFS:** INTOSC Frequency Stable bit
 - 1 = Frequency is stable
 - 0 = Frequency is not stable
- bit 1-0 SCS<1:0>: Oscillator Mode Select bits
 - 00 = Oscillator mode defined by FOSC<2:0>
 - 01 = T1OSC is used for system clock
 - 10 = Internal RC is used for system clock
 - 11 = Reserved

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.6.4 MODIFYING THE IRCF BITS

The IRCF bits can be modified at any time regardless of which clock source is currently being used as the system clock. The internal oscillator allows users to change the frequency during run time. This is achieved by modifying the IRCF bits in the OSCCON register. The sequence of events that occur after the IRCF bits are modified is dependent upon the initial value of the IRCF bits before they are modified. If the INTRC (31.25 kHz, IRCF < 2:0 > = 000) is running and the IRCF bits are modified to any other value than '000', a 4 ms (approx.) clock switch delay is turned on. Code execution continues at a higher than expected frequency while the new frequency stabilizes. Time sensitive code should wait for the IOFS bit in the OSCCON register to become set before continuing. This bit can be monitored to ensure that the frequency is stable before using the system clock in time critical applications.

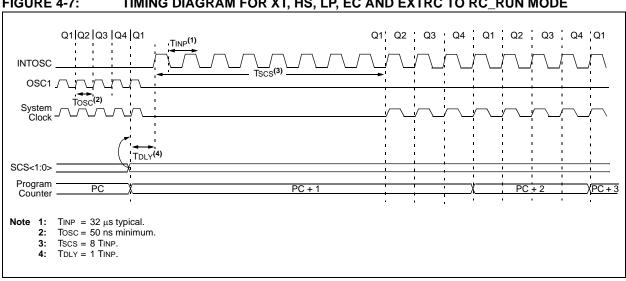
If the IRCF bits are modified while the internal oscillator is running at any other frequency than INTRC (31.25 kHz, IRCF<2:0> \neq 000), there is no need for a 4 ms (approx.) clock switch delay. The new INTOSC frequency will be stable immediately after the **eight** falling edges. The IOFS bit will remain set after clock switching occurs.

Note:	Caution must be taken when modifying the
	IRCF bits using BCF or BSF instructions. It
	is possible to modify the IRCF bits to a
	frequency that may be out of the VDD spec-
	ification range; for example, VDD = 2.0V
	and IRCF = 111 (8 MHz).

4.6.5 CLOCK TRANSITION SEQUENCE

Following are three different sequences for switching the internal RC oscillator frequency.

- Clock before switch: 31.25 kHz (IRCF<2:0> = 000)
- 1. IRCF bits are modified to an INTOSC/INTOSC postscaler frequency.
- The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
- 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
- The IOFS bit is clear to indicate that the clock is unstable and a 4 ms (approx.) delay is started. Time dependent code should wait for IOFS to become set.
- 5. Switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
- 1. IRCF bits are modified to INTRC (IRCF<2:0> = 000).
- 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
- 3. The clock switching circuitry then waits for eight falling edges of requested clock, after which it switches CLKO to this new clock source.
- 4. Oscillator switchover is complete.


4.7 **Power-Managed Modes**

4.7.1 RC RUN MODE

When SCS bits are configured to run from the INTRC, a clock transition is generated if the system clock is not already using the INTRC. The event will clear the OSTS bit, switch the system clock from the primary system clock (if SCS < 1:0 > = 0.0) determined by the value contained in the configuration bits, or from the T1OSC (if SCS<1:0> = 01) to the INTRC clock option and shut down the primary system clock to conserve power. Clock switching will not occur if the primary system clock is already configured as INTRC.

If the system clock does not come from the INTRC (31.25 kHz) when the SCS bits are changed and the IRCF bits in the OSCCON register are configured for a frequency other than INTRC, the frequency may not be stable immediately. The IOFS bit (OSCCON<2>) will be set when the INTOSC or postscaler frequency is stable, after 4 ms (approx.).

After a clock switch has been executed, the OSTS bit is cleared, indicating a low-power mode and the device does not run from the primary system clock. The internal Q clocks are held in the Q1 state until eight falling edge clocks are counted on the INTRC oscillator. After the eight clock periods have transpired, the clock input to the Q clocks is released and operation resumes (see Figure 4-7).

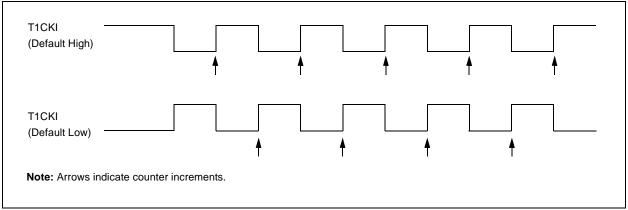
FIGURE 4-7: TIMING DIAGRAM FOR XT, HS, LP, EC AND EXTRC TO RC_RUN MODE

7.2 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

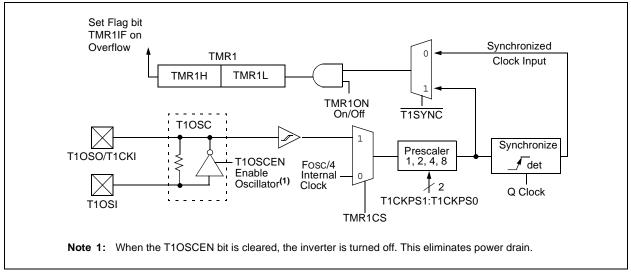
7.3 Timer1 Counter Operation

Timer1 may operate in Asynchronous or Synchronous mode, depending on the setting of the TMR1CS bit.


When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

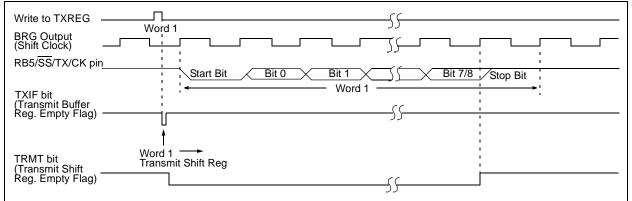
7.4 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RB7/PGD/T1OSI when bit T1OSCEN is set, or on pin RB6/PGC/T1OSO/T1CKI when bit T1OSCEN is cleared.

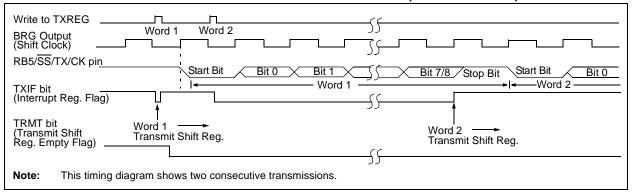

If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during Sleep mode, Timer1 will not increment even if the external clock is present since the synchronization circuit is shut off. The prescaler, however, will continue to increment.

REGISTER 10-2:	SSPCON:	SYNCHR	ONOUS SER	IAL PORT	CONTROL	REGISTE	R (ADDRE	SS 14h)
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0
bit 7	WCOL: W	rite Collisior	Detect bit					
			e the SSPBUF	- register fai	led because	the SSP m	odule is bu	sy
	(must	be cleared	in software)	C C				
	0 = No col		a b b c					
bit 6	In SPI mod		rflow Indicator	Dit				
			eived while the	SSPBUF re	aister is still	holdina the	previous da	ata. In case
	of ove	rflow, the d	ata in SSPSR	is lost. Ove	rflow can or	ly occur in	Slave mode	e. The user
			PBUF, even if					
			w bit is not se SPBUF regist		i new recep	uon (and tra	ansmission)	is initiated
	0 = No over	erflow	0					
	In I ² C mod					r		00001/-
	•		while the SSI	•		• .	•	
	0 = No over							
bit 5	SSPEN: S	ynchronous	Serial Port Er	nable bit ⁽¹⁾				
	In SPI mod							
			t and configure rt and configur				t pins	
	In I ² C mod	-	it and coningui	es triese pir	13 a3 1/0 p01	t pins		
	1 = Enable	es the serial	port and confi				rial port pin	5
		-	rt and configur			-		
	Note 1:	In both mo output.	odes, when en	abled, these	e pins must l	be properly	configured	as input or
bit 4		k Polarity S	elect bit					
	In SPI mod		on falling edge	, receive or	ricina odao	Idlo ototo f	or clock is c	high loval
			on rising edge					
	<u>In I²C Slav</u>	<u>e mode:</u>						
	SCK release							
	1 = Enable 0 = Holds (lock stretch). (Used to ens	sure data set	up time.)		
bit 3-0	SSPM<3:0	>: Synchro	nous Serial Po	ort Mode Se	lect bits	. ,		
			ode, clock = O					
			ode, clock = O ode, clock = O					
			ode, clock = O ode, clock = Tl		2			
	0100 = SP	I Slave mo	de, clock = SC	K pin. SS pi	in control en			
			de, clock = SC le, 7-bit addre		n control dis	abled. SS c	an be used	as I/O pin.
			de, 7-bit addres					
	$1011 = I^2C$	Firmware	Controlled Ma	ster mode (
			le, 7-bit addres					
			le, 10-bit addr L00, 1101 = R		n anu stop i			
		,,	.,					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'


Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

When setting up an asynchronous transmission, follow these steps:


- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.

- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 11-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

0000 x0	000u
00 -000	0000
0000 xC	000x
00 0000	0000
00 -000	0000
10 0000	-010
00 0000	0000
	DOX 0000 DOO 0000 DOO -000 DOO 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.
 Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

13.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with I/O port pins RA0 through RA3, while the outputs are multiplexed to pins RA3 and RA4. The on-chip Voltage Reference (Section 14.0 "Comparator Voltage Reference Module") can also be an input to the comparators.

The CMCON register (Register 13-1) controls the comparator input and output multiplexors. A block diagram of the various comparator configurations is shown in Figure 13-1.

REGISTER 13-1:	CMCON: COMPARATOR MODULE CONTROL REGISTER (ADDRESS 9Ch)
----------------	---

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	
	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	
	bit 7				•			bit 0	
bit 7	C2OUT: Con When C2INV	-	Output bit						
	1 = C2 VIN+ 0 = C2 VIN+	> C2 VIN-							
	<u>When C2INV</u> 1 = C2 VIN+	< C2 VIN-							
	0 = C2 VIN+								
bit 6	C1OUT: Con	•	output bit						
	<u>When C1INV</u> 1 = C1 VIN+ 0 = C1 VIN+	> C1 VIN-							
	<u>When C1INV</u> 1 = C1 VIN+ 0 = C1 VIN+	<u>/ = 1:</u> < C1 Vin-							
bit 5	C2INV: Com	C2INV: Comparator 2 Output Inversion bit							
	1 = C2 outpu 0 = C2 outpu	it inverted	-						
bit 4	C1INV: Com	parator 1 Ou	utput Invers	ion bit					
	1 = C1 outpu 0 = C1 outpu		ed						
bit 3	CIS: Compare <u>When CM2:C</u> 1 = C1 VIN- c 0 = C1 VIN- c	CMO = 001:	RA3						
	0 = C1 VIN- 0	connects to I connects to I connects to I	RA2 RA0						
bit 2-0		connects to I							
DIL 2-0	CM<2:0>: C								
	Legend:								
	R = Readabl	e bit	W = Wr	itable bit	U = Unimpl	emented b	it, read as '	0'	
	1						— · · ·		

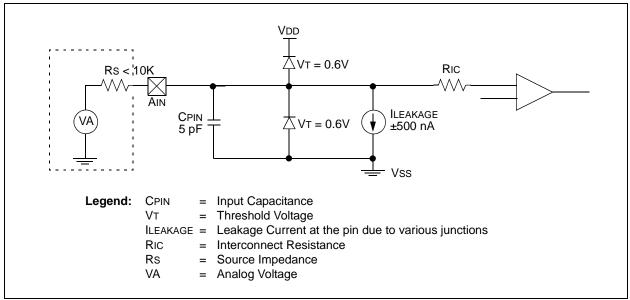
'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

13.7 Comparator Operation During Sleep


When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators, CM<2:0> = 111, before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

13.8 Effects of a Reset

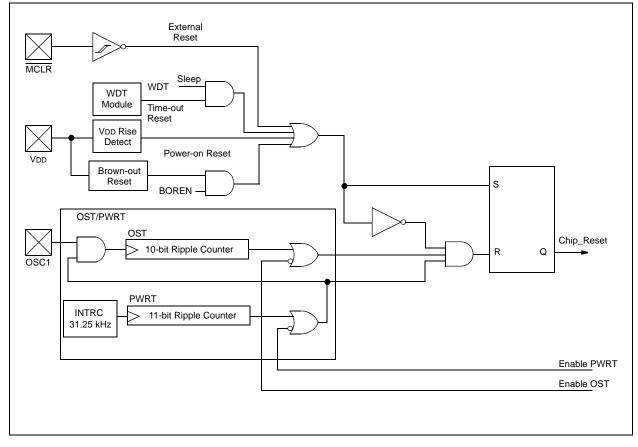
A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Off mode, CM<2:0> = 111.

13.9 Analog Input Connection Considerations

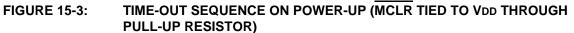
A simplified circuit for an analog input is shown in Figure 13-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

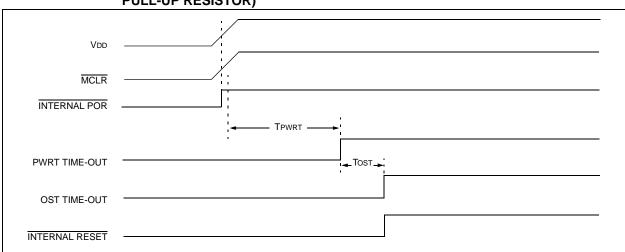
FIGURE 13-4: ANALOG INPUT MODEL

PIC16F87/88


15.2 Reset

The PIC16F87/88 differentiates between various kinds of Reset:


- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT wake-up during Sleep
- Brown-out Reset (BOR)


Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 15-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR or wake-up from Sleep, the CPU requires approximately 5-10 μ s to become ready for code execution. This delay runs in parallel with any other timers. See Table 15-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 15-1.

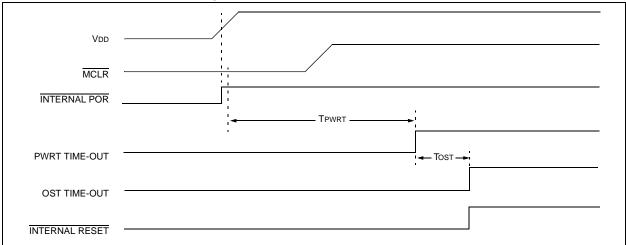


FIGURE 15-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

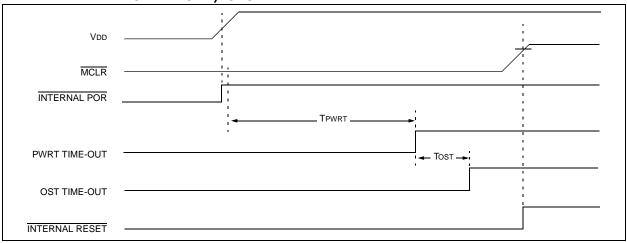


FIGURE 15-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK): CASE 2

PIC16F87/88

SUBLW	Subtract W from Literal	XORLW	Exclusive OR Literal with W			
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[label] XORLW k			
Operands:	$0 \le k \le 255$	Operands:	$0 \leq k \leq 255$			
Operation:	$k - (W) \rightarrow (W)$	Operation:	(W) .XOR. $k \rightarrow (W)$			
Status Affected:	C, DC, Z	Status Affected:	Z			
Description:	The W register is subtracted (two's complement method) from the eight-bit literal 'k'. The result is placed in the W register.	Description:	The contents of the W registern are XOR'ed with the eight-bit literal 'k'. The result is placed the W register.			

SUBWF	Subtract W from f	XORWF	Exclusive OR W with f		
Syntax:	[label] SUBWF f,d	Syntax:	[<i>label</i>] XORWF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) – (W) \rightarrow (destination)	Operation:	(W) .XOR. (f) \rightarrow (destination)		
Status Affected:	C, DC, Z	Status Affected:	Z		
Description:	Subtract (two's complement method) W register from register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.	Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'.		

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' = 0, the result is placed in W register. If 'd' = 1, the result is placed in register 'f'.

DS30487D-page 156

18.2 DC Characteristics: Power-Down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

PIC16LF8 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC16F87 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units	Conditions			
	Supply Current (IDD) ^(2,3)							
	All devices	1.8	2.3	mA	-40°C			
		1.6	2.2	mA	+25°C	VDD = 4.0V		
		1.3	2.2	mA	+85°C			
	All devices	3.0	4.2	mA	-40°C		Fosc = 20 MHz (HS Oscillator)	
		2.5	4.0	mA	+25°C	VDD = 5.0V		
		2.5	4.0	mA	+85°C	vuu = 5.0v		
	Extended devices	3.0	5.0	mA	+85°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

PIC16LF87/88 (Industrial)			rd Oper			ss otherwise state $A \le +85^{\circ}C$ for indus		
PIC16F87/88 (Industrial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Тур	Max	Units		Condi	tions		
	Supply Current (IDD) ^(2,3)							
	PIC16LF87/88	8	20	μA	-40°C			
		7	15	μA	+25°C	VDD = 2.0V		
		7	15	μΑ	+85°C			
	PIC16LF87/88	16	30	μΑ	-40°C			
		14	25	μΑ	+25°C	VDD = 3.0V	Fosc = 31.25 kHz (RC RUN mode,	
		14	25	μA	+85°C		Internal RC Oscillator)	
	All devices	32	40	μΑ	-40°C		, ,	
		29	35	μΑ	+25°C			
		29	35	μA	+85°C	VDD = 0.0V		
	Extended devices	35	45	μΑ	+125°C			
	PIC16LF87/88	132	160	μΑ	-40°C	_		
		126	155	μΑ	+25°C	VDD = 2.0V		
		126	155	μA	+85°C			
	PIC16LF87/88	260	310	μΑ	-40°C			
		230	300	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC RUN mode,	
		230	300	μΑ	+85°C		Internal RC Oscillator)	
	All devices	560	690	μΑ	-40°C			
		500	650	μΑ	+25°C	VDD = 5.0V		
		500 570	650	μΑ	+85°C	VDD - 0.0V		
	Extended devices		710	μA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

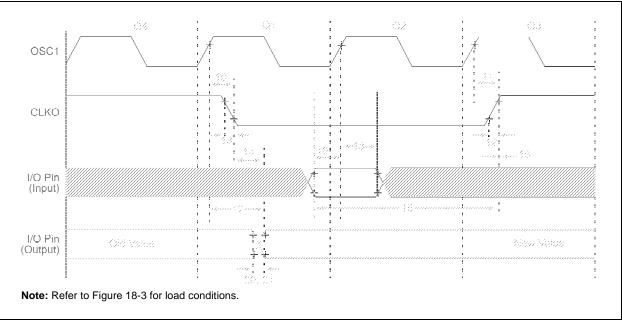
18.4

DC Characteristics: PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

	ARACT	ERISTICS	Operating temp Operating volta	perature age VDD	-40° -40° range as	$C \le TA \le C \le TA \le C \le TA \le C$ descrit	ss otherwise stated) ≤ +85°C for industrial ≤ +125°C for extended bed in DC Specification, pply Voltage".
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKO (RC oscillator configuration)	_	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C
	Vон	Output High Voltage	•				
D090		I/O ports (Note 3)	VDD - 0.7	-	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +125°С
D092		OSC2/CLKO (RC oscillator configuration)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +125°С
		Capacitive Loading Specs on	Output Pins				
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	-	50	pF	
D102	Св	SCL, SDA in I ² C™ mode	—	—	400	pF	
		Data EEPROM Memory	•				
D120	ED	Endurance	100K 10K	1M 100K	_	E/W E/W	-40°C to 85°C +85°C to +125°C
D121	Vdrw	VDD for Read/Write	Vmin	-	5.5	V	Using EECON to read/write, VMIN = min. operating voltage
D122	TDEW	Erase/Write Cycle Time	—	4	8	ms	
		Program Flash Memory					
D130	Eр	Endurance	10K 1K	100K 10K	_	E/W E/W	-40°C to 85°C +85°C to +125°C
D131	Vpr	VDD for Read	Vmin	—	5.5	V	
D132A		VDD for Erase/Write	Vmin	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage
D133	TPE	Erase Cycle Time	—	2	4	ms	
D134	TPW	Write Cycle Time	—	2	4	ms	

* These parameters are characterized but not tested.

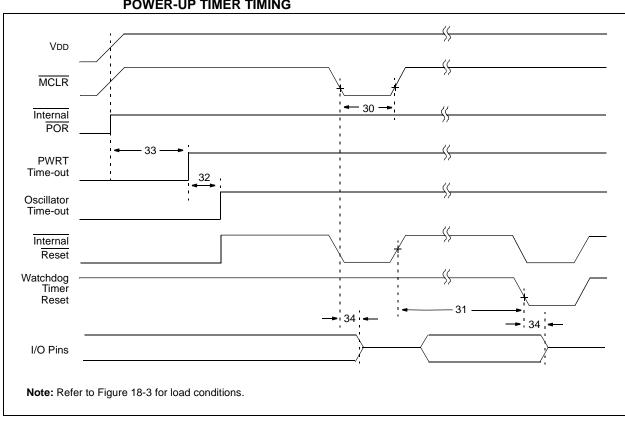
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F87/88 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

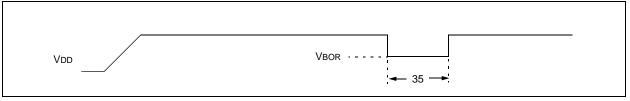
3: Negative current is defined as current sourced by the pin.

PIC16F87/88


Param No.	Symbol	Charac	Min	Тур†	Max	Units	Conditions	
10*	TosH2ckL	OSC1 ↑ to CLKO ↓		—	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12*	TckR	CLKO Rise Time		—	35	100	ns	(Note 1)
13*	TckF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TckL2ioV	CLKO ↓ to Port Out Valid		—	_	0.5 TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port In Valid before CLKC)↑	Tosc + 200	—	—	ns	(Note 1)
16*	TckH2iol	Port In Hold after CLKO ↑	0	_	—	ns	(Note 1)	
17*	TosH2ioV	OSC1 ↑ (Q1 cycle) to Por	_	100	255	ns		
18*	TosH2iol	OSC1 ↑ (Q2 cycle) to	PIC16 F 87/88	100	—	—	ns	
		Port Input Invalid (I/O in hold time)	PIC16 LF 87/88	200	—	—	ns	
19*	TioV2osH	Port Input Valid to OSC1	↑ (I/O in setup time)	0	_	—	ns	
20*	TIOR	Port Output Rise Time	PIC16 F 87/88	_	10	40	ns	
			PIC16 LF 87/88	—	_	145	ns	
21*	TIOF	Port Output Fall Time	PIC16 F 87/88	_	10	40	ns	
			PIC16 LF 87/88	—	_	145	ns	
22††*	TINP	INT Pin High or Low Time	Тсү	—	—	ns		
23††*	Trbp	RB7:RB4 Change INT Hig	gh or Low Time	Тсү	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


t These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKO output is 4 x Tosc.

FIGURE 18-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 18-7: BROWN-OUT RESET TIMING

TABLE 18-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (Low)	2	_	—	μS	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (16-bit prescaler = 0100 and no postscaler)	13.6	16	18.4	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	—	—	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	61.2	72	82.8	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	—	—	μS	$VDD \leq VBOR (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

PIC16F87/88 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX Temperature Package Pattern Range	 Examples: a) PIC16F87-I/P = Industrial temp., PDIP package, Extended VDD limits. b) PIC16F87-I/SO = Industrial temp., SOIC package, normal VDD limits.
Device	PIC16F87: Standard VDD range PIC16F87T: (Tape and Reel) PIC16LF87: Extended VDD range	
Temperature Range	$\begin{array}{rcl} - & = & 0^{\circ}\text{C to } +70^{\circ}\text{C} \\ \text{I} & = & -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ \text{E} & = & -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \end{array}$	
Package	P = PDIP $SO = SOIC$ $SS = SSOP$ $ML = QFN$	Note 1: F = CMOS Flash LF = Low-power CMOS Flash
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	2: T = in tape and reel – SOIC, SSOP packages only.