



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | PIC                                                                     |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 10MHz                                                                   |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                       |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                   |
| Number of I/O              | 16                                                                      |
| Program Memory Size        | 7KB (4K x 14)                                                           |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | 256 x 8                                                                 |
| RAM Size                   | 368 x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                               |
| Data Converters            | -                                                                       |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Through Hole                                                            |
| Package / Case             | 18-DIP (0.300", 7.62mm)                                                 |
| Supplier Device Package    | 18-PDIP                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf87-i-p |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register (FSR).

| FIGURE 2-2: | PIC16F87 REGISTER FILE MAP |      |  |  |
|-------------|----------------------------|------|--|--|
|             | File                       | Filo |  |  |

|                   | File<br>Address | /                           | File<br>Address | /                 | File<br>Address | ŀ                       | +ile<br>Address |
|-------------------|-----------------|-----------------------------|-----------------|-------------------|-----------------|-------------------------|-----------------|
| Indirect addr (*) | 00h             | Indirect addr (*)           | 90h             | Indirect addr (*) | 100h            | Indirect addr (*)       | 180h            |
| TMRO              | 001h            |                             | 000<br>91 h     | TMR0              | 100h            |                         | 181h            |
| PCI               | 02h             |                             | 82h             | PCI               | 102h            | PCI                     | 182h            |
| STATUS            | 03h             |                             | 0211<br>83h     | STATUS            | 103h            | STATUS                  | 183h            |
| FSR               | 04h             | FSP                         | 84h             | ESR               | 104h            | FSR                     | 18/h            |
|                   | 05h             |                             | 95h             | WDTCON            | 105h            | 1 OK                    | 185h            |
| PORTB             | 06h             | TRISE                       | 86h             | PORTB             | 106h            | TRISB                   | 186h            |
| TOKTE             | 07h             | TRISD                       | 97h             | TOKIB             | 100h            | TRIOD                   | 187h            |
|                   | 08h             |                             | 0711<br>996     |                   | 108h            |                         | 188h            |
|                   | 09h             |                             | 80h             |                   | 109h            |                         | 189h            |
| PCLATH            | 0Ah             |                             | 84h             | PCLATH            | 10Ah            | PCI ATH                 | 18AF            |
|                   | 0Rh             |                             |                 | INTCON            | 10Rh            |                         | 18RF            |
|                   | 0Ch             |                             |                 | FEDATA            | 10Ch            | EECON1                  | 1804            |
|                   |                 |                             |                 | FEADR             | 100h            | EECON2                  | 1001            |
|                   | 0Eh             |                             |                 |                   | 10Eh            | Beconved(1)             |                 |
|                   |                 |                             | 0E11<br>0Eh     |                   | 10Eh            | Reserved <sup>(1)</sup> |                 |
|                   | 10h             |                             | 00h             | EEADKII           | 110h            | Reserved                | 100             |
|                   | 11h             | OSCIONE                     | 90N<br>01h      |                   | 11011           |                         | 1901            |
|                   | 12h             | DD2                         | 910<br>02b      |                   |                 |                         |                 |
|                   | 13h             |                             | 9211<br>02h     |                   |                 |                         |                 |
|                   | 1/h             | SSPSTAT                     | 930<br>04b      |                   |                 |                         |                 |
|                   | 15h             |                             | 9411<br>05h     |                   |                 |                         |                 |
|                   | 16h             |                             | 950<br>06b      |                   |                 |                         |                 |
|                   | 17h             |                             | 9011<br>07h     | General           |                 | General                 |                 |
|                   | 18h             | TYOTA                       | 9711<br>09h     | Purpose           |                 | Purpose                 |                 |
| TYPEC             | 10h             | SDRDC                       | 9011<br>00h     | 16 Bytes          |                 | 16 Bytes                |                 |
| PCREG             | 14h             | GFBRG                       | 9911<br>0.4 h   | 10 Dytoo          |                 |                         |                 |
| ROREO             | 1Rb             |                             | 9AN<br>ODh      |                   |                 |                         |                 |
|                   | 1Ch             | CMCON                       | 900             |                   |                 |                         |                 |
|                   | 10h             | CVRCON                      | 9011<br>0Dh     |                   |                 |                         |                 |
|                   | 1Eh             | OVICON                      | 9DH<br>0Eh      |                   |                 |                         |                 |
|                   | 1Eh             |                             |                 |                   |                 |                         | 1056            |
|                   | 20h             |                             | 961             |                   | 11Fh<br>120h    |                         | 190             |
|                   | 2011            | General                     | A0h             | General           | 12011           | General                 | TAU             |
|                   |                 | Purpose                     |                 | Purpose           |                 | Purpose                 |                 |
| General           |                 | Register                    |                 | Register          |                 | Register                |                 |
| Purpose           |                 | 80 Bytes                    |                 | 80 Bytes          |                 | 80 Bytes                |                 |
| Register          |                 |                             | EFh<br>F0h      |                   | 16Fh<br>170h    |                         | 1EFh<br>1F0h    |
| 96 Bytes          |                 | accesses                    | 1 011           | accesses          | 11.011          | accesses                |                 |
|                   |                 | /Un-/Fh                     |                 | 70h-7Fh           |                 | 70h-7Fh                 |                 |
|                   |                 |                             |                 |                   | 4754            |                         | 4               |
| Bank 0            | I 7Fh           | Bank 1                      | FFh             | Bank 2            | 1750            | Bank 3                  | 1 1 1 1 1 1     |
|                   | lomontod        | data momoru lass            | tions rea       | ad as 'o'         |                 |                         |                 |
| * Note            | nhysical r      | uala memory 1008<br>Paister | 10115, 192      | $uas \cup$ .      |                 |                         |                 |
| ote 1: This r     | egister is r    | eserved, maintain           | this regis      | ster clear.       |                 |                         |                 |
|                   | 5               | ,                           | 314             | ·                 |                 |                         |                 |

#### 2.2.2.2 OPTION\_REG Register

The OPTION\_REG register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer. Although the prescaler can be assigned to either the WDT or Timer0, but not both, a new divide counter is implemented in the WDT circuit to give multiple WDT time-out selections. This allows TMR0 and WDT to each have their own scaler. Refer to Section 15.12 "Watchdog Timer (WDT)" for further details.

### REGISTER 2-2: OPTION\_REG: OPTION CONTROL REGISTER (ADDRESS 81h, 181h)

|         | R/W-1                   | R/W-1                                                          | R/W-1            | R/W-1       | R/W-1     | R/W-1  | R/W-1 | R/W-1 |  |  |  |  |  |
|---------|-------------------------|----------------------------------------------------------------|------------------|-------------|-----------|--------|-------|-------|--|--|--|--|--|
|         | RBPU                    | INTEDG                                                         | TOCS             | T0SE        | PSA       | PS2    | PS1   | PS0   |  |  |  |  |  |
|         | bit 7                   | ·                                                              |                  |             |           |        |       | bit 0 |  |  |  |  |  |
|         |                         |                                                                |                  |             |           |        |       |       |  |  |  |  |  |
| bit 7   | RBPU: PO                | RTB Pull-up E                                                  | nable bit        |             |           |        |       |       |  |  |  |  |  |
|         | 1 = PORTI               | B pull-ups are                                                 | disabled         |             |           |        |       |       |  |  |  |  |  |
|         | 0 = PORTI               | 0 = PORTB pull-ups are enabled by individual port latch values |                  |             |           |        |       |       |  |  |  |  |  |
| bit 6   | INTEDG: Ir              | nterrupt Edge                                                  | Select bit       |             |           |        |       |       |  |  |  |  |  |
|         | 1 = Interru             | pt on rising ed                                                | ge of RB0/       | INT pin     |           |        |       |       |  |  |  |  |  |
|         | 0 = Interru             | pt on falling ed                                               | dge of RB0,      | /INT pin    |           |        |       |       |  |  |  |  |  |
| bit 5   | TOCS: TMF               | R0 Clock Sour                                                  | ce Select b      | it          |           |        |       |       |  |  |  |  |  |
|         | 1 = Transit             | ion on RA4/T                                                   | OCKI/C2OL        | IT pin      |           |        |       |       |  |  |  |  |  |
|         | 0 = Interna             | al instruction c                                               | ycle clock (     | CĽKO)       |           |        |       |       |  |  |  |  |  |
| bit 4   | TOSE: TMF               | R0 Source Edg                                                  | e Select bi      | t           |           |        |       |       |  |  |  |  |  |
|         | 1 = Increm              | ent on high-to                                                 | -<br>low transit | ion on RA4/ |           | JT pin |       |       |  |  |  |  |  |
|         | 0 = Increm              | ent on low-to-                                                 | high transit     | ion on RA4/ | FOCKI/C2O | JT pin |       |       |  |  |  |  |  |
| bit 3   | PSA: Preso              | caler Assignm                                                  | ent bit          |             |           |        |       |       |  |  |  |  |  |
|         | 1 = Presca              | aler is assigned                                               | d to the WE      | т           |           |        |       |       |  |  |  |  |  |
|         | 0 = Presca              | aler is assigned                                               | d to the Tim     | ner0 module |           |        |       |       |  |  |  |  |  |
| bit 2-0 | <b>PS&lt;2:0&gt;:</b> F | Prescaler Rate                                                 | Select bits      | i           |           |        |       |       |  |  |  |  |  |
|         | Bit Value               | TMR0 Rate                                                      | WDT Ra           | te          |           |        |       |       |  |  |  |  |  |
|         | 000                     | 1:2                                                            | 1:1              |             |           |        |       |       |  |  |  |  |  |
|         | 001                     | 1:4                                                            | 1:2              |             |           |        |       |       |  |  |  |  |  |
|         | 010                     | 1:8                                                            | 1:4              |             |           |        |       |       |  |  |  |  |  |
|         | 011                     | 1 : 16                                                         | 1:8              |             |           |        |       |       |  |  |  |  |  |
|         | 100                     | 1:32                                                           | 1 : 16           |             |           |        |       |       |  |  |  |  |  |
|         | 101                     | 1:64                                                           | 1:32             |             |           |        |       |       |  |  |  |  |  |
|         | 110                     | 1 : 128                                                        | 1:64             |             |           |        |       |       |  |  |  |  |  |
|         | 111                     | 1:256                                                          | 1 : 128          |             |           |        |       |       |  |  |  |  |  |

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | l bit, read as '0' |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |



#### FIGURE 4-9: TIMING FOR TRANSITION BETWEEN SEC\_RUN/RC\_RUN AND PRIMARY CLOCK



## FIGURE 5-5: BLOCK DIAGRAM OF RA5/MCLR/VPP PIN







### 10.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<4,1> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge ( $\overline{ACK}$ ) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

Either or both of the following conditions will cause the SSP module not to give this ACK pulse:

- a) The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- b) The Overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 10-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit, BF, is cleared by reading the SSPBUF register while bit, SSPOV, is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the  $I^2C$  specification, as well as the requirement of the SSP module, are shown in timing parameter #100 and parameter #101.

### 10.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The Buffer Full bit, BF, is set.
- c) An  $\overline{ACK}$  pulse is generated.
- d) SSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) – on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit Address mode is as follows, with steps 7-9 for slave transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

### 10.3.1.2 Reception

When the  $R/\overline{W}$  bit of the address byte is clear and an address match occurs, the  $R/\overline{W}$  bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit, BF (SSPSTAT<0>), is set or bit, SSPOV (SSPCON<6>), is set.

An SSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

### 10.3.1.3 Transmission

When the  $R/\overline{W}$  bit of the incoming address byte is set and an address match occurs, the  $R/\overline{W}$  bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RB4/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then, pin RB4/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 10-7).

#### REGISTER 12-3: ADCON1: A/DCONTROL REGISTER 1 (ADDRESS 9Fh) PIC16F88 DEVICES ONLY

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0   |
|-------|-------|-------|-------|-----|-----|-----|-------|
| ADFM  | ADCS2 | VCFG1 | VCFG0 | —   | _   | —   | —     |
| bit 7 |       |       |       |     |     |     | bit 0 |

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Clock Divide by 2 Select bit

1 = A/D clock source is divided by 2 when system clock is used

0 = Disabled

#### bit 5-4 VCFG<1:0>: A/D Voltage Reference Configuration bits

| Logic State | VREF+ | VREF- |
|-------------|-------|-------|
| 0 0         | AVdd  | AVss  |
| 01          | AVDD  | Vref- |
| 10          | VREF+ | AVss  |
| 11          | VREF+ | Vref- |

**Note:** The ANSEL bits for AN3 and AN2 inputs must be configured as analog inputs for the VREF+ and VREF- external pins to be used.

#### bit 3-0 Unimplemented: Read as '0'

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

## 12.4 Configuring Analog Port Pins

The ADCON1, ANSEL, TRISA and TRISB registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
  - 2: Analog levels on any pin that is defined as a digital input (including the RA4:RA0 and RB7:RB6 pins), may cause the input buffer to consume current out of the device specification.

### 12.5 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 12-3, after the GO/DONE bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

| Note: | The GO/DONE bit should NOT be set in        |
|-------|---------------------------------------------|
|       | the same instruction that turns on the A/D. |

#### 12.5.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16 bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 12-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

### FIGURE 12-3: A/D CONVERSION TAD CYCLES



#### FIGURE 12-4: A/D RESULT JUSTIFICATION



#### TABLE 15-3: RESET CONDITION FOR SPECIAL REGISTERS

| Condition                          | Program<br>Counter    | STATUS<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 000h                  | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 000h                  | 000u uuuu          | uu               |
| MCLR Reset during Sleep            | 000h                  | 0001 Ouuu          | uu               |
| WDT Reset                          | 000h                  | 0000 luuu          | uu               |
| WDT Wake-up                        | PC + 1                | uuu0 0uuu          | uu               |
| Brown-out Reset                    | 000h                  | 0001 luuu          | u0               |
| Interrupt Wake-up from Sleep       | PC + 1 <sup>(1)</sup> | uuul Ouuu          | uu               |

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

**Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

| Register                             | Power-on Reset,<br>Brown-out Reset | MCLR Reset,<br>WDT Reset | Wake-up via WDT or<br>Interrupt |
|--------------------------------------|------------------------------------|--------------------------|---------------------------------|
| W                                    | xxxx xxxx                          | uuuu uuuu                | սսսս սսսս                       |
| INDF                                 | N/A                                | N/A                      | N/A                             |
| TMR0                                 | XXXX XXXX                          | uuuu uuuu                | սսսս սսսս                       |
| PCL                                  | 0000h                              | 0000h                    | PC + 1 <sup>(2)</sup>           |
| STATUS                               | 0001 1xxx                          | 000q quuu <sup>(3)</sup> | uuuq quuu <b>(3)</b>            |
| FSR                                  | xxxx xxxx                          | սսսս սսսս                | սսսս սսսս                       |
| PORTA (PIC16F87)<br>PORTA (PIC16F88) | xxxx 0000<br>xxx0 0000             | uuuu 0000<br>uuu0 0000   | uuuu uuuu<br>uuuu uuuu          |
| PORTB (PIC16F87)<br>PORTB (PIC16F87) | xxxx xxxx<br>00xx xxxx             | uuuu uuuu<br>00uu uuuu   | นนนน นนนน<br>นนนน นนนน          |
| PCLATH                               | 0 0000                             | 0 0000                   | u uuuu                          |
| INTCON                               | 0000 000x                          | 0000 000u                | uuuu uuuu <b>(1)</b>            |
| PIR1                                 | -000 0000                          | -000 0000                | -uuu uuuu <b>(1)</b>            |
| PIR2                                 | 00-0                               | 00-0                     | uu-u <b>(1)</b>                 |
| TMR1L                                | xxxx xxxx                          | սսսս սսսս                | սսսս սսսս                       |
| TMR1H                                | xxxx xxxx                          | uuuu uuuu                | uuuu uuuu                       |
| T1CON                                | -000 0000                          | -uuu uuuu                | -uuu uuuu                       |
| TMR2                                 | 0000 0000                          | 0000 0000                | uuuu uuuu                       |
| T2CON                                | -000 0000                          | -000 0000                | -uuu uuuu                       |
| SSPBUF                               | xxxx xxxx                          | uuuu uuuu                | uuuu uuuu                       |
| SSPCON                               | 0000 0000                          | 0000 0000                | uuuu uuuu                       |
| CCPR1L                               | XXXX XXXX                          | uuuu uuuu                | uuuu uuuu                       |
| CCPR1H                               | xxxx xxxx                          | uuuu uuuu                | սսսս սսսս                       |
| CCP1CON                              | 00 0000                            | 00 0000                  | uu uuuu                         |
| RCSTA                                | 0000 000x                          | 0000 000x                | սսսս սսսս                       |

#### TABLE 15-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, read as `0', q = value depends on condition$ 

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

**2:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

**3:** See Table 15-3 for Reset value for specific condition.

| REGISTER 15-3: | WDTCON: WATCHDOG CONTROL REGISTER (ADDRESS 105h) |                |                 |                |        |        |        |                       |  |
|----------------|--------------------------------------------------|----------------|-----------------|----------------|--------|--------|--------|-----------------------|--|
|                | U-0                                              | U-0            | U-0             | R/W-0          | R/W-1  | R/W-0  | R/W-0  | R/W-0                 |  |
|                | —                                                | —              | —               | WDTPS3         | WDTPS2 | WDTPS1 | WDTPS0 | SWDTEN <sup>(1)</sup> |  |
|                | bit 7                                            |                |                 |                |        |        |        | bit 0                 |  |
|                |                                                  |                |                 |                |        |        |        |                       |  |
| bit 7-5        | Unimplem                                         | nented: Rea    | <b>d as</b> '0' |                |        |        |        |                       |  |
| bit 4-1        | WDTPS<3                                          | :0>: Watcho    | dog Timer Pe    | eriod Select b | oits   |        |        |                       |  |
|                | Bit Pr<br>Value                                  | escale<br>Rate |                 |                |        |        |        |                       |  |
|                | 0000 - '                                         | 1.30           |                 |                |        |        |        |                       |  |

| value |   | Rate    |
|-------|---|---------|
| 0000  | = | 1:32    |
| 0001  | = | 1:64    |
| 0010  | = | 1:128   |
| 0011  | = | 1:256   |
| 0100  | = | 1:512   |
| 0101  | = | 1:1024  |
| 0110  | = | 1:2048  |
| 0111  | = | 1:4096  |
| 1000  | = | 1:8192  |
| 1001  | = | 1:16394 |
| 1010  | = | 1:32768 |
| 1011  | = | 1:65536 |
|       |   |         |

- bit 0 **SWDTEN:** Software Enable/Disable for Watchdog Timer bit<sup>(1)</sup>
  - 1 = WDT is turned on
  - 0 = WDT is turned off
    - **Note 1:** If WDTEN configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTEN configuration bit = 0, then it is possible to turn WDT on/off with this control bit.

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

TABLE 15-6: SUMMARY OF WATCHDOG TIMER REGISTERS

| Address  | Name               | Bit 7 | Bit 6  | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|----------|--------------------|-------|--------|-------|--------|--------|--------|--------|--------|
| 81h,181h | OPTION_REG         | RBPU  | INTEDG | T0CS  | T0SE   | PSA    | PS2    | PS1    | PS0    |
| 2007h    | Configuration bits | LVP   | BOREN  | MCLRE | FOSC2  | PWRTEN | WDTEN  | FOSC1  | FOSC0  |
| 105h     | WDTCON             |       | _      |       | WDTPS3 | WDTPS2 | WSTPS1 | WDTPS0 | SWDTEN |

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 15-1 for operation of these bits.

#### 15.12.4.2 FSCM and the Watchdog Timer

When a clock failure is detected, SCS<1:0> will be forced to '10' which will reset the WDT (if enabled).

#### 15.12.4.3 POR or Wake From Sleep

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary system clock is EC, RC or INTRC modes, monitoring can begin immediately following these events.

For Oscillator modes involving a crystal or resonator (HS, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FSCM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the system clock and functions until the primary clock is stable (the OST timer has timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on port or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

15.12.4.4 Example Fail-Safe Conditions

1. CONDITIONS:

The device is clocked from a crystal, crystal operation fails and then Sleep mode is entered. OSTS = 0

SCS = 00

OSFIF = 1

USER ACTION:

Sleep mode will exit the fail-safe condition. Therefore, if the user code did not handle the detected fail-safe prior to the SLEEP command, then upon wake-up, the device will try to start the crystal that failed and a fail-safe condition will not be detected. Monitoring the OSTS bit will determine if the crystal is operating. The user should not enter Sleep mode without handling the fail-safe condition first. 2. CONDITIONS:

After a POR (Power-on Reset), the device is running in Two-Speed Start-up mode. The crystal fails before the OST has expired. If a crystal fails during the OST period, a fail-safe condition will not be detected (OSFIF will not get set).

OSTS = 0 SCS = 00 OSFIF = 0

USER ACTION:

Check the OSTS bit. If it's clear and the OST should have expired at this point, then the user can assume the crystal has failed. The user should change the SCS bit to cause a clock switch which will also release the 10-bit ripple counter for WDT operation (if enabled).

3. CONDITIONS:

The device is clocked from a crystal during normal operation and it fails.

OSTS = 0 SCS = 00 OSFIF = 1

USER ACTION:

Clear the OSFIF bit. Configure the SCS bits for a clock switch and the fail-safe condition will be cleared. Later, if the user decides to, the crystal can be retried for operation. If this is done, the OSTS bit should be monitored to determine if the crystal operates.

### 15.13 Power-Down Mode (Sleep)

Power-Down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are high-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

| ADDLW            | Add Literal and W                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ADDLW k                                                                                                   |
| Operands:        | $0 \le k \le 255$                                                                                                          |
| Operation:       | $(W) + k \to (W)$                                                                                                          |
| Status Affected: | C, DC, Z                                                                                                                   |
| Description:     | The contents of the W register<br>are added to the eight-bit literal 'k'<br>and the result is placed in the W<br>register. |

| ANDWF            | AND W with f                                                                                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] ANDWF f,d                                                                                                                                         |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                           |
| Operation:       | (W) .AND. (f) $\rightarrow$ (destination)                                                                                                                 |
| Status Affected: | Z                                                                                                                                                         |
| Description:     | AND the W register with register<br>'f'. If 'd' = 0, the result is stored in<br>the W register. If 'd' = 1, the result<br>is stored back in register 'f'. |

| ADDWF            | Add W and f                                                                                                                                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] ADDWF f,d                                                                                                                                                            |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                              |
| Operation:       | (W) + (f) $\rightarrow$ (destination)                                                                                                                                        |
| Status Affected: | C, DC, Z                                                                                                                                                                     |
| Description:     | Add the contents of the W register<br>with register 'f'. If 'd' = 0, the result<br>is stored in the W register. If<br>'d' = 1, the result is stored back in<br>register 'f'. |

| BCF              | Bit Clear f                                                         |
|------------------|---------------------------------------------------------------------|
| Syntax:          | [label]BCF f,b                                                      |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |
| Operation:       | $0 \rightarrow (f < b >)$                                           |
| Status Affected: | None                                                                |
| Description:     | Bit 'b' in register 'f' is cleared.                                 |

| ANDLW            | AND Literal with W                                                                                                     |
|------------------|------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ANDLW k                                                                                               |
| Operands:        | $0 \leq k \leq 255$                                                                                                    |
| Operation:       | (W) .AND. (k) $\rightarrow$ (W)                                                                                        |
| Status Affected: | Z                                                                                                                      |
| Description:     | The contents of W register are<br>AND'ed with the eight-bit literal<br>'k'. The result is placed in the W<br>register. |

| BSF              | Bit Set f                                                           |
|------------------|---------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] BSF f,b                                            |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |
| Operation:       | $1 \rightarrow (f < b >)$                                           |
| Status Affected: | None                                                                |
| Description:     | Bit 'b' in register 'f' is set.                                     |

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] BTFSS f,b                                                                                                                                                                              |
| Operands:        | $0 \le f \le 127$<br>$0 \le b < 7$                                                                                                                                                                      |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                 |
| Status Affected: | None                                                                                                                                                                                                    |
| Description:     | If bit 'b' in register 'f' = 0, the next<br>instruction is executed.<br>If bit 'b' = 1, then the next<br>instruction is discarded and a NOP<br>is executed instead, making this a<br>2 TCY instruction. |

| CLRF             | Clear f                                                                |  |
|------------------|------------------------------------------------------------------------|--|
| Syntax:          | [ <i>label</i> ] CLRF f                                                |  |
| Operands:        | $0 \leq f \leq 127$                                                    |  |
| Operation:       | $\begin{array}{l} 00h \rightarrow (f), \\ 1 \rightarrow Z \end{array}$ |  |
| Status Affected: | Z                                                                      |  |
| Description:     | The contents of register 'f' are cleared and the Z bit is set.         |  |

| BTFSC            | Bit Test, Skip if Clear                                                                                                                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] BTFSC f,b                                                                                                                                                                                                  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$                                                                                                                                                  |
| Operation:       | skip if (f <b>) = 0</b>                                                                                                                                                                                              |
| Status Affected: | None                                                                                                                                                                                                                 |
| Description:     | If bit 'b' in register 'f' = 1, the next<br>instruction is executed.<br>If bit 'b', in register 'f', = 0, the next<br>instruction is discarded and a NOP<br>is executed instead, making this a<br>2 TCY instruction. |

| CLRW             | Clear W                                                                |
|------------------|------------------------------------------------------------------------|
| Syntax:          | [label] CLRW                                                           |
| Operands:        | None                                                                   |
| Operation:       | $\begin{array}{l} 00h \rightarrow (W), \\ 1 \rightarrow Z \end{array}$ |
| Status Affected: | Z                                                                      |
| Description:     | W register is cleared. Zero bit (Z) is set.                            |

| CALL             | Call Subroutine                                                                                                                                                                                             | CLRWDT           | Clear Watchdog Timer                                                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] CALL k                                                                                                                                                                                     | Syntax:          | [label] CLRWDT                                                                                                                 |
| Operands:        | $0 \le k \le 2047$                                                                                                                                                                                          | Operands:        | None                                                                                                                           |
| Operation:       | (PC) + 1 $\rightarrow$ TOS,<br>k $\rightarrow$ PC<10:0>,<br>(PCLATH<4:3>) $\rightarrow$ PC<12:11>                                                                                                           | Operation:       | $00h \rightarrow WDT, 0 \rightarrow WDT prescaler, 1 \rightarrow TO, $                                                         |
| Status Affected: | None                                                                                                                                                                                                        |                  | $1 \rightarrow PD$                                                                                                             |
| Description:     | Call subroutine. First, return                                                                                                                                                                              | Status Affected: | TO, PD                                                                                                                         |
|                  | address (PC + 1) is pushed onto<br>the stack. The eleven-bit<br>immediate address is loaded into<br>PC bits <10:0>. The upper bits of<br>the PC are loaded from PCLATH.<br>CALL is a two-cycle instruction. | Description:     | CLRWDT instruction resets the<br>Watchdog Timer. It also resets the<br>prescaler of the WDT. Status bits<br>TO and PD are set. |

| RETFIE           | Return from Interrupt  | RLF              | Rotate Left f through Carry                                                                                                                                                                                                  |
|------------------|------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] RETFIE       | Syntax:          | [ <i>label</i> ] RLF f,d                                                                                                                                                                                                     |
| Operands:        | None                   | Operands:        | $0 \leq f \leq 127$                                                                                                                                                                                                          |
| Operation:       | $TOS \rightarrow PC$ , |                  | d ∈ [0,1]                                                                                                                                                                                                                    |
|                  | $1 \rightarrow GIE$    | Operation:       | See description below                                                                                                                                                                                                        |
| Status Affected: | None                   | Status Affected: | С                                                                                                                                                                                                                            |
|                  |                        | Description:     | The contents of register 'f' are<br>rotated one bit to the left through<br>the Carry flag. If 'd' = 0, the result<br>is placed in the W register. If<br>'d' = 1, the result is stored back in<br>register 'f'.<br>Register f |

| RETLW            | Return with Literal in W                                                                                                                                                            | RRF              | Rotate Right f through Carry                                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] RETLW k                                                                                                                                                            | Syntax:          | [ <i>label</i> ] RRF f,d                                                                                                                                                                                        |
| Operands:        | $0 \leq k \leq 255$                                                                                                                                                                 | Operands:        | $0 \le f \le 127$                                                                                                                                                                                               |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow$ PC                                                                                                                                        | Operation:       | $a \in [0, 1]$<br>See description below                                                                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                | Status Affected: | С                                                                                                                                                                                                               |
| Description:     | The W register is loaded with the<br>eight-bit literal 'k'. The program<br>counter is loaded from the top of<br>the stack (the return address).<br>This is a two-cycle instruction. | Description:     | The contents of register 'f' are<br>rotated one bit to the right through<br>the Carry flag. If 'd' = 0, the result<br>is placed in the W register. If<br>'d' = 1, the result is placed back in<br>register 'f'. |
|                  |                                                                                                                                                                                     |                  |                                                                                                                                                                                                                 |

| → C → | Register f |  |
|-------|------------|--|
|       |            |  |

| RETURN           | Return from Subroutine                    | SLEEP            | Sleep                                                                                                                                                                                                      |
|------------------|-------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] RETURN                            | Syntax:          | [label] SLEEP                                                                                                                                                                                              |
| Operands:        | None                                      | Operands:        | None                                                                                                                                                                                                       |
| Operation:       | $TOS \to PC$                              | Operation:       | 00h $\rightarrow$ WDT,                                                                                                                                                                                     |
| Status Affected: | None                                      |                  | $0 \rightarrow WDT$ prescaler,                                                                                                                                                                             |
| Description:     | Return from subroutine. The stack         |                  | $0 \rightarrow PD$                                                                                                                                                                                         |
|                  | is POPed and the top of the stack         | Status Affected: | TO, PD                                                                                                                                                                                                     |
|                  | counter. This is a two-cycle instruction. | Description:     | The Power-Down status bit, PD,<br>is cleared. Time-out status bit,<br>TO, is set. Watchdog Timer and<br>its prescaler are cleared.<br>The processor is put into Sleep<br>mode with the oscillator stopped. |





| TABI F 18-7. | CAPTURE/COMPARE/PWM REQUIREMENTS ( | CCP1) |  |
|--------------|------------------------------------|-------|--|
|              |                                    |       |  |

| Param<br>No. | Symbol | Characteristic  |                | Min                   | Тур†                   | Max | Units | Conditions |                                    |
|--------------|--------|-----------------|----------------|-----------------------|------------------------|-----|-------|------------|------------------------------------|
| 50*          | TccL   | CCP1            | No Prescaler   |                       | 0.5 Tcy + 20           | —   | —     | ns         |                                    |
|              |        | Input Low Time  | With Prescaler | PIC16 <b>F</b> 87/88  | 10                     | —   | _     | ns         |                                    |
|              |        |                 |                | PIC16 <b>LF</b> 87/88 | 20                     |     | _     | ns         |                                    |
| 51*          | ТссН   | CCP1            | No Prescaler   |                       | 0.5 TCY + 20           | _   | _     | ns         |                                    |
|              |        | Input High Time | With Prescaler | PIC16 <b>F</b> 87/88  | 10                     |     | —     | ns         |                                    |
|              |        |                 |                | PIC16 <b>LF</b> 87/88 | 20                     |     | _     | ns         |                                    |
| 52*          | TccP   | CCP1 Input Peri | bd             |                       | <u>3 Tcy + 40</u><br>N | —   | _     | ns         | N = prescale<br>value (1, 4 or 16) |
| 53*          | TccR   | CCP1 Output Ris | se Time        | PIC16 <b>F</b> 87/88  | —                      | 10  | 25    | ns         |                                    |
|              |        |                 |                | PIC16 <b>LF</b> 87/88 | —                      | 25  | 50    | ns         |                                    |
| 54*          | TccF   | CCP1 Output Fa  | ll Time        | PIC16 <b>F</b> 87/88  | —                      | 10  | 25    | ns         |                                    |
|              |        |                 |                | PIC16 <b>LF</b> 87/88 | —                      | 25  | 45    | ns         |                                    |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.











FIGURE 19-21: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD = 3V, -40°C TO +125°C)





## INDEX

| 1 | 1 | ι. |
|---|---|----|
|   | - | ۱  |
|   |   | •  |

| A/D                                                   |          |
|-------------------------------------------------------|----------|
| Acquisition Requirements1<br>ADIF Bit                 | 19<br>18 |
| Analog-to-Digital Converter1                          | 15       |
| Associated Registers12                                | 22       |
| Calculating Acquisition Time1                         | 19       |
| Configuring Analog Port Pins                          | 21       |
| Configuring the Interrupt1                            | 18       |
| Configuring the Module                                | 18       |
| Conversion Clock                                      | 20       |
| Conversions                                           | 21       |
| Converter Characteristics                             | 90       |
| Delavs                                                | 19       |
| Effects of a Reset                                    | 22       |
| GO/DONE Bit                                           | 18       |
| Internal Sampling Switch (Rss) Impedance              | 19       |
| Operation During Sleen                                | 22       |
| Operation in Power-Managed Modes 12                   | 20       |
| Result Registers                                      | 21       |
| Source Impedance                                      | 10       |
| Time Delays                                           | 10       |
| Lising the CCP Trigger 1'                             | 22       |
| Absolute Maximum Patings                              | 62       |
|                                                       | 05<br>05 |
| ADCONO Register 16.1                                  | 15       |
| ADCONI Register 17, 1                                 | 15       |
| Addressable Universal Synchronous Asynchronous Receiv | 10       |
| Transmittar Soc ALISART                               | CI       |
| ADDESH Degister 16.1                                  | 15       |
| ADRESH ADRESI Provision Poir                          | 10       |
| ADRESH, ADRESE Register Fair                          | 10       |
| ADRESE Register                                       | 10       |
| AndLe Register                                        | 10       |
| ANISES (Implementing a Table Boad)                    | 70       |
| AN536 (Implementing a Table Read)                     | 21       |
| ANS/8 (Use of the SSP Module in the FC Multi-Mast     |          |
| ANGOZ (Dower up Trouble Shooting)                     | 09<br>25 |
| ANOU7 (Power-up Trouble Shooling)                     | 30       |
| Assembler 11                                          | 60       |
| MPASM Assembler                                       | 00       |
| Asynchronous Reception                                | ~~       |
| Associated Registers                                  | 09       |
| Asynchronous Transmission                             | ~-       |
| Associated Registers                                  | 05       |
|                                                       | 99       |
| Address Detect Enable (ADDEN Bit)                     | 00       |
| Asynchronous Mode                                     | 04       |
| Asynchronous Receive (9-bit Mode)10                   | υ8       |
| Asynchronous Receive with Address Detect. See Asy     | 'n-      |
| chronous Receive (9-Bit Mode).                        |          |
| Asynchronous Receiver10                               | 06       |
| Asynchronous Reception10                              | υ7       |
| Asynchronous Transmitter10                            | υ4       |
|                                                       |          |

| Baud Rate Generator (BRG)<br>Baud Rate Formula | 101<br>101     |
|------------------------------------------------|----------------|
| Baud Rates, Asynchronous Mode (BRGH =          | = 0) 102       |
| Baud Rates Asynchronous Mode (BRGH =           | = 1) 102       |
| High Baud Rate Select (BRGH Bit)               | - 1) 102<br>QQ |
| INTRC Baud Rates Asynchronous Mode (I          | BRGH =         |
| 0)                                             | 103            |
| INTRC Baud Rates Asynchronous Mode (I          | BRGH =         |
| 1)                                             | 103            |
| INTRC Operation                                | 101            |
| Low-Power Mode Operation                       | 101            |
| Sampling                                       | 101            |
| Clock Source Select (CSRC Bit)                 |                |
| Continuous Receive Enable (CREN Bit)           | 100            |
| Framing Error (FERR Bit)                       | 100            |
| Mode Select (SYNC Bit)                         | 99             |
| Receive Data, 9th bit (RX9D Bit)               | 100            |
| Receive Enable, 9-bit (RX9 Bit)                | 100            |
| Serial Port Enable (SPEN Bit)                  | 99, 100        |
| Single Receive Enable (SREN Bit)               | 100            |
| Synchronous Master Mode                        | 110            |
| Synchronous Master Reception                   | 112            |
| Synchronous Master Transmission                | 110            |
| Synchronous Slave Mode                         | 113            |
| Synchronous Slave Reception                    | 114            |
| Synchronous Slave Transmit                     | 113            |
| Transmit Data, 9th Bit (TX9D)                  | 99             |
| Transmit Enable (TXEN Bit)                     | 99             |
| Transmit Enable, Nine-bit (TX9 Bit)            | 99             |
| Transmit Shift Register Status (TRMT Bit)      | 99             |

## В

## THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

## CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

## **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769416

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.