



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 10MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 16                                                                       |
| Program Memory Size        | 7KB (4K x 14)                                                            |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | 256 x 8                                                                  |
| RAM Size                   | 368 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                |
| Data Converters            | -                                                                        |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                           |
| Supplier Device Package    | 18-SOIC                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf87-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register which is a readable and writable register. The upper bits (PC<12:8>) are not readable but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-4 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS



#### 2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note, *AN556, "Implementing a Table Read*".

#### 2.3.2 STACK

The PIC16F87/88 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
  - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

## 2.4 Program Memory Paging

All PIC16F87/88 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

| Note: | The contents of the PCLATH register are    |  |  |  |  |  |  |  |  |
|-------|--------------------------------------------|--|--|--|--|--|--|--|--|
|       | unchanged after a RETURN or RETFIE         |  |  |  |  |  |  |  |  |
|       | instruction is executed. The user must     |  |  |  |  |  |  |  |  |
|       | rewrite the contents of the PCLATH regis-  |  |  |  |  |  |  |  |  |
|       | ter for any subsequent subroutine calls or |  |  |  |  |  |  |  |  |
|       | GOTO instructions.                         |  |  |  |  |  |  |  |  |

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

#### EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

|         | ORG 0x500<br>BCF PCLATH, 4<br>BSF PCLATH, 3<br>CALL SUB1 P1 | ;Select page 1<br>;(800h-FFFh)<br>:Call subroutine in          |  |  |  |  |
|---------|-------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
|         | : –                                                         | ;page 1 (800h-FFFh)                                            |  |  |  |  |
| SUB1 P1 | :<br>ORG 0x900                                              | ;page 1 (800h-FFFh)                                            |  |  |  |  |
| 5051_11 | :                                                           | ;called subroutine<br>;page 1 (800h-FFFh)                      |  |  |  |  |
|         | :<br>RETURN                                                 | <pre>;return to ;Call subroutine ;in page 0 ;(000h-7FFh)</pre> |  |  |  |  |

#### 4.5.1 INTRC MODES

Using the internal oscillator as the clock source can eliminate the need for up to two external oscillator pins, after which it can be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

#### 4.5.2 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory but can be adjusted in the application. This is done by writing to the OSCTUNE register (Register 4-1). The tuning sensitivity is constant throughout the tuning range. The OSCTUNE register has a tuning range of  $\pm 12.5\%$ .

When the OSCTUNE register is modified, the INTOSC and INTRC frequencies will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately 8 \* 32  $\mu$ s = 256  $\mu$ s); the INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred. Operation of features that depend on the 31.25 kHz INTRC clock source frequency, such as the WDT, Fail-Safe Clock Monitor and peripherals, will also be affected by the change in frequency.

| REGISTER 4-1: | <b>OSCTUNE: OSCILLATOR TUNING REGISTER (</b> | ADDRESS 90h) | ) |
|---------------|----------------------------------------------|--------------|---|
|---------------|----------------------------------------------|--------------|---|

|         | COCHOILE                                                                                                     |             |                 |       |       |       | ,     |       |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------|-------------|-----------------|-------|-------|-------|-------|-------|--|--|--|--|
|         | U-0                                                                                                          | U-0         | R/W-0           | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |  |  |
|         | —                                                                                                            | —           | TUN5            | TUN4  | TUN3  | TUN2  | TUN1  | TUN0  |  |  |  |  |
|         | bit 7                                                                                                        |             |                 |       |       |       |       | bit 0 |  |  |  |  |
| oit 7-6 | Unimplem                                                                                                     | ented: Read | <b>d as</b> '0' |       |       |       |       |       |  |  |  |  |
| oit 5-0 | TUN<5:0>:                                                                                                    | Frequency   | Tuning bits     |       |       |       |       |       |  |  |  |  |
|         | 011111 =                                                                                                     | Maximum fre | equency         |       |       |       |       |       |  |  |  |  |
|         | 011110 =                                                                                                     |             |                 |       |       |       |       |       |  |  |  |  |
|         | •                                                                                                            |             |                 |       |       |       |       |       |  |  |  |  |
|         | •                                                                                                            |             |                 |       |       |       |       |       |  |  |  |  |
|         | •                                                                                                            |             |                 |       |       |       |       |       |  |  |  |  |
|         | 000001 =<br>000000 = Center frequency. Oscillator module is running at the calibrated frequency.<br>111111 = |             |                 |       |       |       |       |       |  |  |  |  |
|         | •                                                                                                            |             |                 |       |       |       |       |       |  |  |  |  |
|         | •                                                                                                            |             |                 |       |       |       |       |       |  |  |  |  |
|         | •                                                                                                            |             |                 |       |       |       |       |       |  |  |  |  |
|         | 100000 <b>=  </b>                                                                                            | Minimum fre | quency          |       |       |       |       |       |  |  |  |  |
|         |                                                                                                              |             |                 |       |       |       |       |       |  |  |  |  |

| Legend:           |                  |                                              |                    |  |  |
|-------------------|------------------|----------------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | table bit U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared                         | x = Bit is unknown |  |  |



#### FIGURE 4-9: TIMING FOR TRANSITION BETWEEN SEC\_RUN/RC\_RUN AND PRIMARY CLOCK

| TABLE 5-2: | SUMMARY OF REGISTERS ASSOCIATED WITH PORTA |
|------------|--------------------------------------------|
|            |                                            |

| Address | Name                 | Bit 7  | Bit 6  | Bit 5                 | Bit 4 | Bit 3     | Bit 2     | Bit 1   | Bit 0 | Value on<br>POR, BOR                                 | Value on<br>all other<br>Resets              |
|---------|----------------------|--------|--------|-----------------------|-------|-----------|-----------|---------|-------|------------------------------------------------------|----------------------------------------------|
| 05h     | PORTA                | RA7    | RA6    | RA5                   | RA4   | RA3       | RA2       | RA1     | RA0   | xxxx 0000 <sup>(1)</sup><br>xxx0 0000 <sup>(2)</sup> | uuuu 0000 <b>(1)</b><br>uuu0 0000 <b>(2)</b> |
| 85h     | TRISA                | TRISA7 | TRISA6 | TRISA5 <sup>(3)</sup> | PORTA | Data Dire | ection Re | egister |       | 1111 1111                                            | 1111 1111                                    |
| 9Fh     | ADCON1               | ADFM   | ADCS2  | VCFG1                 | VCFG0 |           | _         | _       | _     | 0000                                                 | 0000                                         |
| 9Bh     | ANSEL <sup>(4)</sup> | _      | ANS6   | ANS5                  | ANS4  | ANS3      | ANS2      | ANS1    | ANS0  | -111 1111                                            | -111 1111                                    |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

**Note 1:** This value applies only to the PIC16F87.

2: This value applies only to the PIC16F88.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

4: PIC16F88 device only.

#### FIGURE 5-1: BLOCK DIAGRAM OF RA0/AN0:RA1/AN1 PINS







| TABLE 5-3: PO | <b>RTB FUNCTIONS</b> |
|---------------|----------------------|
|---------------|----------------------|

| Name                                        | Bit#  | Buffer                | Function                                                                                                                                                                                                        |
|---------------------------------------------|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RB0/INT/CCP1 <sup>(7)</sup>                 | bit 0 | TTL/ST <sup>(1)</sup> | Input/output pin or external interrupt input.<br>Capture input/Compare output/PWM output pin.<br>Internal software programmable weak pull-up.                                                                   |
| RB1/SDI/SDA                                 | bit 1 | TTL/ST <sup>(5)</sup> | Input/output pin, SPI data input pin or I <sup>2</sup> C™ data I/O pin.<br>Internal software programmable weak pull-up.                                                                                         |
| RB2/SDO/RX/DT                               | bit 2 | TTL/ST <sup>(4)</sup> | Input/output pin, SPI data output pin.<br>AUSART asynchronous receive or synchronous data.<br>Internal software programmable weak pull-up.                                                                      |
| RB3/PGM/CCP1 <sup>(3,7)</sup>               | bit 3 | TTL/ST <sup>(2)</sup> | Input/output pin, programming in LVP mode or Capture input/Compare output/PWM output pin. Internal software programmable weak pull-up.                                                                          |
| RB4/SCK/SCL                                 | bit 4 | TTL/ST <sup>(5)</sup> | Input/output pin or SPI and I <sup>2</sup> C clock pin (with interrupt-on-change).<br>Internal software programmable weak pull-up.                                                                              |
| RB5/SS/TX/CK                                | bit 5 | TTL                   | Input/output pin or SPI slave select pin (with interrupt-on-change).<br>AUSART asynchronous transmit or synchronous clock.<br>Internal software programmable weak pull-up.                                      |
| RB6/AN5 <sup>(6)</sup> /PGC/<br>T1OSO/T1CKI | bit 6 | TTL/ST <sup>(2)</sup> | Input/output pin, analog input <sup>(6)</sup> , serial programming clock<br>(with interrupt-on-change), Timer1 oscillator output pin or Timer1 clock<br>input pin. Internal software programmable weak pull-up. |
| RB7/AN6 <sup>(6)</sup> /PGD/<br>T1OSI       | bit 7 | TTL/ST <sup>(2)</sup> | Input/output pin, analog input <sup>(6)</sup> , serial programming data (with interrupt-on-change) or Timer1 oscillator input pin.<br>Internal software programmable weak pull-up.                              |

**Legend:** TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

- 3: Low-Voltage ICSP<sup>™</sup> Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 18-pin mid-range devices.
- 4: This buffer is a Schmitt Trigger input when configured for CCP or SSP mode.
- **5**: This buffer is a Schmitt Trigger input when configured for SPI or  $I^2C$  mode.
- 6: PIC16F88 only.
- 7: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

| Address   | Name                 | Bit 7 | Bit 6                         | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>POR, BOR                                 | Value on<br>all other<br>Resets                      |
|-----------|----------------------|-------|-------------------------------|-------|-------|-------|-------|-------|-------|------------------------------------------------------|------------------------------------------------------|
| 06h, 106h | PORTB                | RB7   | RB6                           | RB5   | RB4   | RB3   | RB2   | RB1   | RB0   | xxxx xxxx <sup>(1)</sup><br>00xx xxxx <sup>(2)</sup> | uuuu uuuu <sup>(1)</sup><br>00uu uuuu <sup>(2)</sup> |
| 86h, 186h | TRISB                | PORTB | PORTB Data Direction Register |       |       |       |       |       |       |                                                      | 1111 1111                                            |
| 81h, 181h | OPTION_REG           | RBPU  | INTEDG                        | TOCS  | T0SE  | PSA   | PS2   | PS1   | PS0   | 1111 1111                                            | 1111 1111                                            |
| 9Bh       | ANSEL <sup>(2)</sup> |       | ANS6                          | ANS5  | ANS4  | ANS3  | ANS2  | ANS1  | ANS0  | -111 1111                                            | -111 1111                                            |

#### TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTB.

**Note 1:** This value applies only to the PIC16F87.

**2:** This value applies only to the PIC16F88.

## FIGURE 5-13: BLOCK DIAGRAM OF RB5/SS/TX/CK PIN



#### 10.3.2 MASTER MODE OPERATION

Master mode operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset, or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I<sup>2</sup>C bus may be taken when the P bit is set, or the bus is Idle and both the S and P bits are clear.

In Master mode operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISB<4,1> bit(s). The output level is always low, irrespective of the value(s) in PORTB<4,1>. So, when transmitting data, a '1' data bit must have the TRISB<1> bit set (input) and a '0' data bit must have the TRISB<1> bit cleared (output). The same scenario is true for the SCL line with the TRISB<4> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I<sup>2</sup>C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- · Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode operation can be done with either the Slave mode Idle (SSPM3:SSPM0 = 1011), or with the Slave mode active. When both Master mode operation and Slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on Master mode operation, see Application Note AN554, "Software Implementation of  $l^2 C^{TM}$  Bus Master".

#### 10.3.3 MULTI-MASTER MODE OPERATION

In Multi-Master mode operation, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset, or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I<sup>2</sup>C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is Idle and both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master mode operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISB<4,1>). There are two stages where this arbitration can be lost:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave device continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

For more information on Multi-Master mode operation, see Application Note AN578, "Use of the SSP Module in the of  $l^2 C^{TM}$  Multi-Master Environment".

|                        | ······  |                    |                     |                            |           |          |            |        |        |                      |                                 |
|------------------------|---------|--------------------|---------------------|----------------------------|-----------|----------|------------|--------|--------|----------------------|---------------------------------|
| Address                | Name    | Bit 7              | Bit 6               | Bit 5                      | Bit 4     | Bit 3    | Bit 2      | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
| 0Bh, 8Bh,<br>10Bh,18Bh | INTCON  | GIE                | PEIE                | TMR0IE                     | INT0IE    | RBIE     | TMR0IF     | INTOIF | RBIF   | 0000 000x            | 0000 000u                       |
| 0Ch                    | PIR1    | _                  | ADIF <sup>(1)</sup> | RCIF                       | TXIF      | SSPIF    | CCP1IF     | TMR2IF | TMR1IF | -000 0000            | -000 0000                       |
| 8Ch                    | PIE1    | —                  | ADIE <sup>(1)</sup> | RCIE                       | TXIE      | SSPIE    | CCP1IE     | TMR2IE | TMR1IE | -000 0000            | -000 0000                       |
| 13h                    | SSPBUF  | Synchron           | ous Seria           | I Port Rece                | ive Buffe | /Transmi | t Register |        |        | xxxx xxxx            | uuuu uuuu                       |
| 93h                    | SSPADD  | Synchron           | ous Seria           | l Port (l <sup>2</sup> C r | mode) Ad  | dress Re | gister     |        |        | 0000 0000            | 0000 0000                       |
| 14h                    | SSPCON  | WCOL               | SSPOV               | SSPEN                      | CKP       | SSPM3    | SSPM2      | SSPM1  | SSPM0  | 0000 0000            | 0000 0000                       |
| 94h                    | SSPSTAT | SMP <sup>(2)</sup> | CKE <sup>(2)</sup>  | D/A                        | Р         | S        | R/W        | UA     | BF     | 0000 0000            | 0000 0000                       |
| 86h                    | TRISB   | PORTB D            | ata Direc           | tion Registe               | er        |          |            |        |        | 1111 1111            | 1111 1111                       |

TABLE 10-3: REGISTERS ASSOCIATED WITH I<sup>2</sup>C<sup>™</sup> OPERATION

**Legend:** x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

**2:** Maintain these bits clear in  $I^2C^{TM}$  mode.

#### 11.1 AUSART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the AUSART. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 11-1 shows the formula for computation of the baud rate for different AUSART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 11-1. From this, the error in baud rate can be determined.

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

#### TABLE 11-1: BAUD RATE FORMULA

#### 11.1.1 AUSART AND INTRC OPERATION

The PIC16F87/88 has an 8 MHz INTRC that can be used as the system clock, thereby eliminating the need for external components to provide the clock source. When the INTRC provides the system clock, the AUS-ART module will also use the INTRC as its system clock. Table 11-1 shows some of the INTRC frequencies that can be used to generate the AUSART module's baud rate.

#### 11.1.2 LOW-POWER MODE OPERATION

The system clock is used to generate the desired baud rate; however, when a low-power mode is entered, the low-power clock source may be operating at a different frequency than in full power execution. In Sleep mode, no clocks are present. This may require the value in SPBRG to be adjusted.

#### 11.1.3 SAMPLING

The data on the RB2/SDO/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

| SYNC | BRGH = 0 (Low Speed)                        | BRGH = 1 (High Speed)          |
|------|---------------------------------------------|--------------------------------|
| 0    | (Asynchronous) Baud Rate = Fosc/(64(X + 1)) | Baud Rate = $FOSC/(16(X + 1))$ |
| 1    | (Synchronous) Baud Rate = Fosc/(4(X + 1))   | N/A                            |

**Legend:** X = value in SPBRG (0 to 255)

#### TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

| Address | Name  | Bit 7                              | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2     | Bit 1     | Bit 0 | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|-------|------------------------------------|-------|-------|-------|-------|-----------|-----------|-------|-----------------------|---------------------------------|
| 98h     | TXSTA | CSRC                               | TX9   | TXEN  | SYNC  | _     | BRGH      | TRMT      | TX9D  | 0000 -010             | 0000 -010                       |
| 18h     | RCSTA | SPEN                               | RX9   | SREN  | CREN  | ADDEN | FERR      | OERR      | RX9D  | 0000 000x             | x000 000x                       |
| 99h     | SPBRG | SPBRG Baud Rate Generator Register |       |       |       |       | 0000 0000 | 0000 0000 |       |                       |                                 |

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

#### REGISTER 12-3: ADCON1: A/DCONTROL REGISTER 1 (ADDRESS 9Fh) PIC16F88 DEVICES ONLY

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0   |
|-------|-------|-------|-------|-----|-----|-----|-------|
| ADFM  | ADCS2 | VCFG1 | VCFG0 | —   | _   | —   | —     |
| bit 7 |       |       |       |     |     |     | bit 0 |

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Clock Divide by 2 Select bit

1 = A/D clock source is divided by 2 when system clock is used

0 = Disabled

#### bit 5-4 VCFG<1:0>: A/D Voltage Reference Configuration bits

| Logic State | VREF+ | VREF- |  |
|-------------|-------|-------|--|
| 0 0         | AVdd  | AVss  |  |
| 01          | AVDD  | Vref- |  |
| 10          | VREF+ | AVss  |  |
| 11          | VREF+ | Vref- |  |

**Note:** The ANSEL bits for AN3 and AN2 inputs must be configured as analog inputs for the VREF+ and VREF- external pins to be used.

#### bit 3-0 Unimplemented: Read as '0'

| Legend:           |                  |                      |                    |
|-------------------|------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### 12.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 12-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-2. The maximum recommended impedance for analog sources is 10 k $\Omega$ . As the impedance is decreased, the

# acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the "*PIC*<sup>®</sup> *Mid-Range MCU Family Reference Manual*" (DS33023).

#### EQUATION 12-1: ACQUISITION TIME

| TACQ       | = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient                                                                                                                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tc<br>Tacq | = TAMP + TC + TCOFF<br>= $2 \mu s + TC + [(Temperature -25^{\circ}C)(0.05 \mu s/^{\circ}C)]$<br>= CHOLD (RIC + RSS + RS) In(1/2047)<br>= -120 pF (1 k $\Omega$ + 7 k $\Omega$ + 10 k $\Omega$ ) In(0.0004885)<br>= 16.47 $\mu s$<br>= $2 \mu s + 16.47 \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$<br>= 19.72 $\mu s$ |
|            |                                                                                                                                                                                                                                                                                                                                        |

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k $\Omega$ . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.





### 15.3 MCLR

PIC16F87/88 devices have a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both MCLR and excessive current beyond the device specification during the ESD event. The circuit, as shown in Figure 15-2, is suggested.

| Note: | For this reason, Microchip recommends |
|-------|---------------------------------------|
|       | that the MCLR pin no longer be tied   |
|       | directly to VDD.                      |

The RA5/MCLR/VPP pin can be configured for MCLR (default), or as an I/O pin (RA5). This is configured through the MCLRE bit in Configuration Word 1.





only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.

- 2:  $R < 40 \text{ k}\Omega$  is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
- 3:  $R1 = 1 \ k\Omega \ to \ 10 \ k\Omega \ will limit any current flow$  $ing into MCLR from external capacitor C (0.1 <math>\mu$ F), in the event of RA5/MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

#### 15.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V-1.7V). To take advantage of the POR, tie the MCLR pin to VDD, as described in Section 15.3 "MCLR". A maximum rise time for VDD is specified. See Section 18.0 "Electrical Characteristics" for details.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For more information, see Application Note, *AN607 "Power-up Trouble Shooting"* (DS00607).

### 15.5 Power-up Timer (PWRT)

The Power-up Timer (PWRT) of the PIC16F87/88 is a counter that uses the INTRC oscillator as the clock input. This yields a count of 72 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC and will vary from chip-to-chip due to temperature and process variation. See DC parameter #33 for details.

The PWRT is enabled by clearing configuration bit PWRTEN.

### 15.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

#### 15.7 Brown-out Reset (BOR)

The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100  $\mu$ s), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a Reset may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer (if enabled) will keep the device in Reset for TPWRT (parameter #33, about 72 ms). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. Unlike previous PIC16 devices, the PWRT is no longer automatically enabled when the Brown-out Reset circuit is enabled. The PWRTEN and BOREN configuration bits are independent of each other.



#### FIGURE 15-6: SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)

#### 15.10 Interrupts

The PIC16F87/88 has up to 12 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

| Note: | Individual | interr  | upt   | flag     | bits  | are    | set   |
|-------|------------|---------|-------|----------|-------|--------|-------|
|       | regardless | of      | the   | sta      | tus   | of     | their |
|       | correspond | ling ma | ask k | oit or t | the G | IE bit | t.    |

A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on Reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Register, PIR1. The corresponding interrupt enable bits are contained in Special Function Register, PIE1 and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is serviced, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit, PEIE bit or the GIE bit.

#### 15.12 Watchdog Timer (WDT)

For PIC16F87/88 devices, the WDT has been modified from previous PIC16 devices. The new WDT is code and functionally backward compatible with previous PIC16 WDT modules and allows the user to have a scaler value for the WDT and TMR0 at the same time. In addition, the WDT time-out value can be extended to 268 seconds, using the prescaler with the postscaler when PSA is set to '1'.

#### 15.12.1 WDT OSCILLATOR

The WDT derives its time base from the 31.25 kHz INTRC. The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 16.38 ms, which is compatible with the time base generated with previous PIC16 microcontroller versions.

Note: When the OST is invoked, the WDT is held in Reset because the WDT ripple counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled). A new prescaler has been added to the path between the internal RC and the multiplexors used to select the path for the WDT. This prescaler is 16 bits and can be programmed to divide the internal RC by 32 to 65536, giving the time base used for the WDT a nominal range of 1 ms to 2.097s.

#### 15.12.2 WDT CONTROL

The WDTEN bit is located in Configuration Word 1 and when this bit is set, the WDT runs continuously.

The SWDTEN bit is in the WDTCON register. When the WDTEN bit in the Configuration Word 1 register is set, the SWDTEN bit has no effect. If WDTEN is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.

The PSA and PS<2:0> bits (OPTION\_REG register) have the same function as in previous versions of the PIC16 family of microcontrollers.

#### FIGURE 15-8: WATCHDOG TIMER BLOCK DIAGRAM



#### TABLE 15-5: PRESCALER/POSTSCALER BIT STATUS

| Conditions                                            | Prescaler             | Postscaler (PSA = 1)  |  |
|-------------------------------------------------------|-----------------------|-----------------------|--|
| WDTEN = 0                                             |                       |                       |  |
| CLRWDT command                                        | Cleared               | Cleared               |  |
| Oscillator fail detected                              | Cleared               |                       |  |
| Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, ECIO |                       |                       |  |
| Exit Sleep + System Clock = XT, HS, LP                | Cleared at end of OST | Cleared at end of OST |  |

<sup>© 2002-2013</sup> Microchip Technology Inc.

### 16.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 16-1, while the various opcode fields are summarized in Table 16-1.

Table 16-2 lists the instructions recognized by the MPASM<sup>TM</sup> assembler. A complete description of each instruction is also available in the "*PIC*<sup>®</sup> *Mid-Range MCU Family Reference Manual*" (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods. For an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1  $\mu$ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.



All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

#### 16.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared.

## TABLE 16-1: OPCODE FIELD DESCRIPTIONS

| Field | Description                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f     | Register file address (0x00 to 0x7F)                                                                                                                                                 |
| W     | Working register (accumulator)                                                                                                                                                       |
| b     | Bit address within an 8-bit file register                                                                                                                                            |
| k     | Literal field, constant data or label                                                                                                                                                |
| x     | Don't care location (= $0$ or $1$ ).<br>The assembler will generate code with x = $0$ .<br>It is the recommended form of use for<br>compatibility with all Microchip software tools. |
| d     | Destination select; $d = 0$ : store result in W,<br>d = 1: store result in file register f.<br>Default is $d = 1$ .                                                                  |
| PC    | Program Counter                                                                                                                                                                      |
| ТО    | Time-out bit                                                                                                                                                                         |
| PD    | Power-Down bit                                                                                                                                                                       |

## FIGURE 16-1: GENERAL FORMAT FOR INSTRUCTIONS



| SUBLW            | Subtract W from Literal                                                                                                        | XORLW            | Exclusive OR Literal with W                                                                                                |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax:          | [ <i>label</i> ] SUBLW k                                                                                                       | Syntax:          | [ <i>label</i> ] XORLW k                                                                                                   |  |  |
| Operands:        | $0 \leq k \leq 255$                                                                                                            | Operands:        | $0 \le k \le 255$                                                                                                          |  |  |
| Operation:       | $k-(W)\to(W)$                                                                                                                  | Operation:       | (W) .XOR. $k \rightarrow (W)$                                                                                              |  |  |
| Status Affected: | C, DC, Z                                                                                                                       | Status Affected: | Z                                                                                                                          |  |  |
| Description:     | The W register is subtracted (two's complement method) from the eight-bit literal 'k'. The result is placed in the W register. | Description:     | The contents of the W register<br>are XOR'ed with the eight-bit<br>literal 'k'. The result is placed ir<br>the W register. |  |  |

| SUBWF            | Subtract W from f                                                                                                                                                                       | XORWF            | Exclusive OR W with f                                                                                                                                                     |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Syntax:          | [ <i>label</i> ] SUBWF f,d                                                                                                                                                              | Syntax:          | [ label ] XORWF f,d                                                                                                                                                       |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                       | Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                         |  |
| Operation:       | (f) – (W) $\rightarrow$ (destination)                                                                                                                                                   | Operation:       | (W) .XOR. (f) $\rightarrow$ (destination)                                                                                                                                 |  |
| Status Affected: | C, DC, Z                                                                                                                                                                                | Status Affected: | Z                                                                                                                                                                         |  |
| Description:     | Subtract (two's complement<br>method) W register from register 'f'.<br>If 'd' = 0, the result is stored in the<br>W register. If 'd' = 1, the result is<br>stored back in register 'f'. | Description:     | Exclusive OR the contents of the W register with register 'f'. If 'd' = 0, the result is stored in the W register. If 'd' = 1, the result is stored back in register 'f'. |  |

| SWAPF            | Swap Nibbles in f                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] SWAPF f,d                                                                                                                                            |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                  |
| Operation:       | $(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$                                                                           |
| Status Affected: | None                                                                                                                                                         |
| Description:     | The upper and lower nibbles of register 'f' are exchanged. If 'd' = 0, the result is placed in W register. If 'd' = 1, the result is placed in register 'f'. |

DS30487D-page 156

### 18.2 DC Characteristics: Power-Down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

| PIC16LF<br>(Indu | <b>Standa</b><br>Operati              | rd Oper | ating Co<br>erature | onditions (unles $-40^{\circ}C \le T_{e}$ | <b>So otherwise state</b> $A \le +85^{\circ}C$ for indust | d)<br>trial              |                                                                      |  |
|------------------|---------------------------------------|---------|---------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------|----------------------------------------------------------------------|--|
| PIC16F8<br>(Indu |                                       |         |                     |                                           |                                                           |                          |                                                                      |  |
| Param<br>No.     | Device                                | Тур     | Max                 | Units                                     | Conditions                                                |                          |                                                                      |  |
|                  | Supply Current (IDD) <sup>(2,3)</sup> |         |                     |                                           |                                                           |                          |                                                                      |  |
|                  | PIC16LF87/88                          | 8       | 20                  | μΑ                                        | -40°C                                                     |                          |                                                                      |  |
|                  |                                       | 7       | 15                  | μΑ                                        | +25°C                                                     | VDD = 2.0V               |                                                                      |  |
|                  |                                       | 7       | 15                  | μΑ                                        | +85°C                                                     |                          |                                                                      |  |
|                  | PIC16LF87/88                          | 16      | 30                  | μΑ                                        | -40°C                                                     |                          | Fosc = 31.25 kHz<br>( <b>RC_RUN</b> mode,<br>Internal RC Oscillator) |  |
|                  |                                       | 14      | 25                  | μA                                        | +25°C                                                     | VDD = 3.0V               |                                                                      |  |
|                  |                                       | 14      | 25                  | μΑ                                        | +85°C                                                     |                          |                                                                      |  |
|                  | All devices                           | 32      | 40                  | μΑ                                        | -40°C                                                     |                          |                                                                      |  |
|                  |                                       | 29      | 35                  | μA                                        | +25°C                                                     |                          |                                                                      |  |
|                  |                                       | 29      | 35                  | μA                                        | +85°C                                                     | VDD = 5.0V               |                                                                      |  |
|                  | Extended devices                      | 35      | 45                  | μΑ                                        | +125°C                                                    |                          |                                                                      |  |
|                  | PIC16LF87/88                          | 132     | 160                 | μA                                        | -40°C                                                     |                          | Fosc = 1 MHz                                                         |  |
|                  |                                       | 126     | 155                 | μA                                        | +25°C                                                     | VDD = 2.0V               |                                                                      |  |
|                  |                                       | 126     | 155                 | μΑ                                        | +85°C                                                     |                          |                                                                      |  |
|                  | PIC16LF87/88                          | 260     | 310                 | μA                                        | -40°C                                                     |                          |                                                                      |  |
|                  |                                       | 230     | 300                 | μA                                        | +25°C                                                     | VDD = 3.0V<br>VDD = 5.0V |                                                                      |  |
|                  |                                       | 230     | 300                 | μΑ                                        | +85°C                                                     |                          | Internal RC Oscillator)                                              |  |
|                  | All devices                           | 560     | 690                 | μΑ                                        | -40°C                                                     |                          |                                                                      |  |
|                  |                                       | 500     | 650                 | μΑ                                        | +25°C                                                     |                          |                                                                      |  |
|                  |                                       | 500     | 650                 | μΑ                                        | +85°C                                                     |                          |                                                                      |  |
|                  | Extended devices                      | 570     | 710                 | μΑ                                        | +125°C                                                    |                          |                                                                      |  |

Legend: Shading of rows is to assist in readability of the table.

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

## 18.5 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

| 1. TppS2pp             | S                                  | 3. Tcc:s⊤ | (I <sup>2</sup> C specifications only) |
|------------------------|------------------------------------|-----------|----------------------------------------|
| 2. TppS                |                                    | 4. Ts     | (I <sup>2</sup> C specifications only) |
| Т                      |                                    |           |                                        |
| F                      | Frequency                          | Т         | Time                                   |
| Lowercas               | e letters (pp) and their meanings: |           |                                        |
| рр                     |                                    |           |                                        |
| СС                     | CCP1                               | OSC       | OSC1                                   |
| ck                     | CLKO                               | rd        | RD                                     |
| CS                     | CS                                 | rw        | RD or WR                               |
| di                     | SDI                                | SC        | SCK                                    |
| do                     | SDO                                | SS        | SS                                     |
| dt                     | Data in                            | tO        | TOCKI                                  |
| io                     | I/O port                           | t1        | T1CKI                                  |
| mc                     | MCLR                               | wr        | WR                                     |
| Uppercas               | e letters and their meanings:      |           |                                        |
| S                      |                                    |           |                                        |
| F                      | Fall                               | Р         | Period                                 |
| н                      | High                               | R         | Rise                                   |
| I                      | Invalid (High-impedance)           | V         | Valid                                  |
| L                      | Low                                | Z         | High-impedance                         |
| I <sup>2</sup> C only  |                                    |           |                                        |
| AA                     | output access                      | High      | High                                   |
| BUF                    | Bus free                           | Low       | Low                                    |
| Tcc:st (I <sup>2</sup> | C specifications only)             |           |                                        |
| CC                     |                                    |           |                                        |
| HD                     | Hold                               | SU        | Setup                                  |
| ST                     |                                    |           |                                        |
| DAT                    | DATA input hold                    | STO       | Stop condition                         |
| STA                    | Start condition                    |           |                                        |

#### FIGURE 18-3: LOAD CONDITIONS



| Param.<br>No. | Symbol  | Characteristic                |              | Min         | Max  | Units | Conditions                                            |  |
|---------------|---------|-------------------------------|--------------|-------------|------|-------|-------------------------------------------------------|--|
| 100*          | Тнідн   | Clock High Time               | 100 kHz mode | 4.0         |      | μs    |                                                       |  |
|               |         |                               | 400 kHz mode | 0.6         |      | μS    |                                                       |  |
|               |         |                               | SSP Module   | 1.5 TCY     |      |       |                                                       |  |
| 101* TL       | TLOW    | Clock Low Time                | 100 kHz mode | 4.7         |      | μs    |                                                       |  |
|               |         |                               | 400 kHz mode | 1.3         | _    | μs    |                                                       |  |
|               |         |                               | SSP Module   | 1.5 TCY     | _    |       |                                                       |  |
| 102*          | TR      | SDA and SCL Rise<br>Time      | 100 kHz mode | —           | 1000 | ns    |                                                       |  |
|               |         |                               | 400 kHz mode | 20 + 0.1 Св | 300  | ns    | CB is specified to be from 10-400 pF                  |  |
| 103*          | TF      | SDA and SCL Fall<br>Time      | 100 kHz mode | —           | 300  | ns    |                                                       |  |
|               |         |                               | 400 kHz mode | 20 + 0.1 CB | 300  | ns    | CB is specified to be from 10-400 pF                  |  |
| 90* Ts        | TSU:STA | Start Condition<br>Setup Time | 100 kHz mode | 4.7         | _    | μs    | Only relevant for<br>Repeated Start<br>condition      |  |
|               |         |                               | 400 kHz mode | 0.6         |      | μs    |                                                       |  |
| 91* T         | THD:STA | Start Condition Hold<br>Time  | 100 kHz mode | 4.0         |      | μS    | After this period, the first clock pulse is generated |  |
|               |         |                               | 400 kHz mode | 0.6         |      | μs    |                                                       |  |
| 106* The      | THD:DAT | Data Input Hold<br>Time       | 100 kHz mode | 0           |      | ns    |                                                       |  |
|               |         |                               | 400 kHz mode | 0           | 0.9  | μS    |                                                       |  |
| 107* T        | TSU:DAT | Data Input Setup<br>Time      | 100 kHz mode | 250         |      | ns    | (Note 2)                                              |  |
|               |         |                               | 400 kHz mode | 100         | _    | ns    |                                                       |  |
| 92* T         | Tsu:sto | Stop Condition<br>Setup Time  | 100 kHz mode | 4.7         |      | μS    |                                                       |  |
|               |         |                               | 400 kHz mode | 0.6         |      | μS    |                                                       |  |
| 109*          | ΤΑΑ     | Output Valid from<br>Clock    | 100 kHz mode | —           | 3500 | ns    | (Note 1)                                              |  |
|               |         |                               | 400 kHz mode | —           |      | ns    |                                                       |  |
| 110*          | TBUF    | Bus Free Time                 | 100 kHz mode | 4.7         |      | μS    | Time the bus must be free                             |  |
|               |         |                               | 400 kHz mode | 1.3         | —    | μS    | before a new transmission<br>can start                |  |
|               | Св      | Bus Capacitive Loading        |              | —           | 400  | pF    |                                                       |  |

### TABLE 18-10: I<sup>2</sup>C<sup>™</sup> BUS DATA REQUIREMENTS

\* These parameters are characterized but not tested.

**Note 1:** As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I<sup>2</sup>C<sup>™</sup> bus device can be used in a Standard mode (100 kHz) I<sup>2</sup>C bus system, but the requirement, TsU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TsU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I<sup>2</sup>C bus specification), before the SCL line is released.

## 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units       | MILLIMETERS |      |      |  |
|------------------------|-------------|-------------|------|------|--|
| Dimens                 | sion Limits | MIN         | NOM  | MAX  |  |
| Number of Pins         | Ν           | 28          |      |      |  |
| Pitch                  | е           | 0.65 BSC    |      |      |  |
| Overall Height         | А           | 0.80        | 0.90 | 1.00 |  |
| Standoff               | A1          | 0.00        | 0.02 | 0.05 |  |
| Contact Thickness      | A3          | 0.20 REF    |      |      |  |
| Overall Width          | E           | 6.00 BSC    |      |      |  |
| Exposed Pad Width      | E2          | 3.65        | 3.70 | 4.20 |  |
| Overall Length         | D           | 6.00 BSC    |      |      |  |
| Exposed Pad Length     | D2          | 3.65        | 3.70 | 4.20 |  |
| Contact Width          | b           | 0.23        | 0.30 | 0.35 |  |
| Contact Length         | L           | 0.50        | 0.55 | 0.70 |  |
| Contact-to-Exposed Pad | K           | 0.20        | -    | -    |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B