

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf87t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont'd)

Table of Contents

		_
1.0	Device Overview	5
2.0	Memory Organization	11
3.0	Data EEPROM and Flash Program Memory	27
4.0	Oscillator Configurations	35
5.0	I/O Ports	51
6.0	Timer0 Module	67
7.0	Timer1 Module	71
8.0	Timer2 Module	79
9.0	Capture/Compare/PWM (CCP) Module	81
10.0	Synchronous Serial Port (SSP) Module	87
11.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	97
12.0	Analog-to-Digital Converter (A/D) Module	. 113
13.0	Comparator Module	. 121
14.0	Comparator Voltage Reference Module	. 127
15.0	Special Features of the CPU	. 129
16.0	Instruction Set Summary	. 149
17.0	Development Support	. 157
18.0	Electrical Characteristics	. 161
19.0	DC and AC Characteristics Graphs and Tables	. 191
20.0	Packaging Information	. 205
Appe	ndix A: Revision History	. 215
Appe	ndix B: Device Differences	. 215
INDE	X	. 217
The M	Aicrochip Web Site	. 225
Custo	omer Change Notification Service	. 225
Custo	omer Support	. 225
Read	er Response	. 226
PIC1	6F87/88 Product Identification System	. 227

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

EXAMPLE 3-4:	ERASING A FLASH PROGRAM MEMORY	ROW

1			
	BANKSEL	EEADRH	; Select Bank of EEADRH
	MOVF	ADDRH, W	;
	MOVWF	EEADRH	; MS Byte of Program Address to Erase
	MOVF	ADDRL, W	i
	MOVWF	EEADR	; LS Byte of Program Address to Erase
ERASE ROW			
_	BANKSEL	EECON1	; Select Bank of EECON1
	BSF	EECON1, EEPGD	; Point to PROGRAM memory
	BSF	EECON1, WREN	; Enable Write to memory
	BSF	EECON1, FREE	; Enable Row Erase operation
;			· • •
-	BCF	INTCON, GIE	; Disable interrupts (if using)
	MOVLW	55h	
	MOVWF	EECON2	; Write 55h
	MOVLW	AAh	
	MOVWF	EECON2	: Write AAh
	BSF	EECON1, WR	; Start Erase (CPU stall)
	NOP		: Any instructions here are ignored as processor
			; halts to begin Erase sequence
	NOP		; processor will stop here and wait for Erase complete
	1101		· after Frase processor continues with 3rd instruction
	BCF	FFCON1 FFFF	· Disable Row Frage operation
	BCF	FECON1 WDEN	· Disable writes
	DCF	INTONI, WREN	, Disable willes
	BSF	INTCON, GIE	; Enable interrupts (if using)
	MOVWF BSF NOP NOP BCF BCF BSF	EECON1, WR EECON1, FREE EECON1, WREN INTCON, GIE	, ; Write AAh ; Start Erase (CPU stall) ; Any instructions here are ignored as processor ; halts to begin Erase sequence ; processor will stop here and wait for Erase complete ; after Erase processor continues with 3rd instruction ; Disable Row Erase operation ; Disable writes ; Enable interrupts (if using)

4.7.3.2 Returning to Primary Oscillator with a Reset

A Reset will clear SCS<1:0> back to '00'. The sequence for starting the primary oscillator following a Reset is the same for all forms of Reset, including POR. There is no transition sequence from the alternate system clock to the primary system clock on a Reset condition. Instead, the device will reset the state of the OSCCON register and default to the primary system clock. The sequence of events that takes place after this will depend upon the value of the FOSC bits in the Configuration register. If the external oscillator is configured as a crystal (HS, XT or LP), the CPU will be held in the Q1 state until 1024 clock cycles have transpired on the primary clock. This is necessary because the crystal oscillator has been powered down until the time of the transition.

During the oscillator start-up time, instruction execution and/or peripheral operation is suspended.

Note:	If Two-Speed Clock Start	up mode is					
	enabled, the INTRC will act	as the system					
	clock until the OST timer has timed out.						

If the primary system clock is either RC, EC or INTRC, the CPU will begin operating on the first Q1 cycle following the wake-up event. This means that there is no oscillator start-up time required because the primary clock is already stable; however, there is a delay between the wake-up event and the following Q2. An internal delay timer of 5-10 μ s will suspend operation after the Reset to allow the CPU to become ready for code execution. The CPU and peripheral clock will be held in the first Q1.

The sequence of events is as follows:

- 1. A device Reset is asserted from one of many sources (WDT, BOR, MCLR, etc.).
- 2. The device resets and the CPU start-up timer is enabled if in Sleep mode. The device is held in Reset until the CPU start-up time-out is complete.
- 3. If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active waiting for 1024 clocks of the primary system clock. While waiting for the OST, the device will be held in Reset. The OST and CPU start-up timers run in parallel.
- After both the CPU start-up and OST timers have timed out, the device will wait for one additional clock cycle and instruction execution will begin.

FIGURE 4-10: PRIMARY SYSTEM CLOCK AFTER RESET (HS, XT, LP)

7.6 Timer1 Oscillator

A crystal oscillator circuit is built between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 32.768 kHz. It will continue to run during all power-managed modes. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 7-3. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper oscillator start-up.

Note: The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC pins used for programming and debugging. When using the Timer1 oscillator, In-Circuit Serial Programming[™] (ICSP[™]) may not function correctly (high voltage or low voltage), or the In-Circuit Debugger (ICD) may not communicate with the controller. As a result of using either ICSP or ICD, the Timer1 crystal may be damaged. If ICSP or ICD operations are required, the crystal should be disconnected from the circuit (disconnect either lead) or installed after programming. The oscillator loading capacitors may remain in-circuit during ICSP or ICD operation.

FIGURE 7-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	LP 32 kHz		33 pF

- **Note 1:** Microchip suggests this value as a starting point in validating the oscillator circuit.
 - **2:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

7.7 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 7-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator, a grounded guard ring around the oscillator circuit, as shown in Figure 7-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

10.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISB<4,1> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

Either or both of the following conditions will cause the SSP module not to give this ACK pulse:

- a) The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- b) The Overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 10-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit, BF, is cleared by reading the SSPBUF register while bit, SSPOV, is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, are shown in timing parameter #100 and parameter #101.

10.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The Buffer Full bit, BF, is set.
- c) An \overline{ACK} pulse is generated.
- d) SSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) – on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit Address mode is as follows, with steps 7-9 for slave transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

10.3.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit, BF (SSPSTAT<0>), is set or bit, SSPOV (SSPCON<6>), is set.

An SSP interrupt is generated for each data transfer byte. Flag bit, SSPIF (PIR1<3>), must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

10.3.1.3 Transmission

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RB4/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then, pin RB4/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 10-7).

11.2 AUSART Asynchronous Mode

In this mode, the AUSART uses standard Non-Returnto-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated, 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The AUSART transmits and receives the LSb first. The transmitter and receiver are functionally independent, but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The AUSART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

11.2.1 AUSART ASYNCHRONOUS TRANSMITTER

The AUSART transmitter block diagram is shown in Figure 11-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit, TXIF (PIR1<4>), is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory, so it is not available to the user.
2:	Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the Baud Rate Generator (BRG) has produced a shift clock (Figure 11-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 11-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RB5/SS/TX/CK pin will revert to high-impedance.

In order to select 9-bit transmission, transmit bit, TX9 (TXSTA<6>), should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 11-1: AUSART TRANSMIT BLOCK DIAGRAM

11.3.2 AUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RB2/SDO/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence.

After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/ clearing enable bit RCIE (PIE1<5>).

Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set.

receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register, before reading RCREG, in order not to lose the old RX9D information.

When setting up a synchronous master reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	AUSAR	AUSART Receive Data Register							0000 0000	0000 0000
8Ch	PIE1	—	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	ate Genera	ator Regist	er					0000 0000	0000 0000

TABLE 11-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

11.4.2 AUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a synchronous slave reception, follow these steps:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 11-13: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	x000 000x
1Ah	RCREG	AUSART	AUSART Receive Data Register							0000 0000	0000 0000
8Ch	PIE1	—	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Genera	tor Regist	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

13.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2 register) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it ('0'). Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE2 register) and the PEIE bit (INTCON register) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR2 register) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

TABLE 15-3: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	սսսս սսսս
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	սսսս սսսս
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu (3)
FSR	xxxx xxxx	սսսս սսսս	սսսս սսսս
PORTA (PIC16F87) PORTA (PIC16F88)	xxxx 0000 xxx0 0000	uuuu 0000 uuu0 0000	սսսս սսսս սսսս սսսս
PORTB (PIC16F87) PORTB (PIC16F87)	xxxx xxxx 00xx xxxx	uuuu uuuu 00uu uuuu	นนนน นนนน นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	-000 0000	-000 0000	-uuu uuuu (1)
PIR2	00-0	00-0	uu-u (1)
TMR1L	xxxx xxxx	սսսս սսսս	սսսս սսսս
TMR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	-000 0000	-uuu uuuu	-uuu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	00 0000	00 0000	uu uuuu
RCSTA	0000 000x	0000 000x	սսսս սսսս

TABLE 15-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, read as `0', q = value depends on condition$

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 15-3 for Reset value for specific condition.

15.12 Watchdog Timer (WDT)

For PIC16F87/88 devices, the WDT has been modified from previous PIC16 devices. The new WDT is code and functionally backward compatible with previous PIC16 WDT modules and allows the user to have a scaler value for the WDT and TMR0 at the same time. In addition, the WDT time-out value can be extended to 268 seconds, using the prescaler with the postscaler when PSA is set to '1'.

15.12.1 WDT OSCILLATOR

The WDT derives its time base from the 31.25 kHz INTRC. The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 16.38 ms, which is compatible with the time base generated with previous PIC16 microcontroller versions.

Note: When the OST is invoked, the WDT is held in Reset because the WDT ripple counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled). A new prescaler has been added to the path between the internal RC and the multiplexors used to select the path for the WDT. This prescaler is 16 bits and can be programmed to divide the internal RC by 32 to 65536, giving the time base used for the WDT a nominal range of 1 ms to 2.097s.

15.12.2 WDT CONTROL

The WDTEN bit is located in Configuration Word 1 and when this bit is set, the WDT runs continuously.

The SWDTEN bit is in the WDTCON register. When the WDTEN bit in the Configuration Word 1 register is set, the SWDTEN bit has no effect. If WDTEN is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.

The PSA and PS<2:0> bits (OPTION_REG register) have the same function as in previous versions of the PIC16 family of microcontrollers.

FIGURE 15-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 15-5: PRESCALER/POSTSCALER BIT STATUS

Conditions	Prescaler	Postscaler (PSA = 1)	
WDTEN = 0			
CLRWDT command	Cleared	Cleared	
Oscillator fail detected	Cleared	Cleared	
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, ECIO			
Exit Sleep + System Clock = XT, HS, LP	Cleared at end of OST	Cleared at end of OST	

^{© 2002-2013} Microchip Technology Inc.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' = 0, the next instruction is executed. If bit 'b' = 1, then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f), \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' = 1, the next instruction is executed. If bit 'b', in register 'f', = 0, the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W), \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC) + 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT, 0 \rightarrow WDT prescaler, 1 \rightarrow TO, $
Status Affected:	None		$1 \rightarrow PD$
Description:	Call subroutine. First, return	Status Affected:	TO, PD
	address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

18.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and \overline{MCLR})	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.3 to +14V
Total power dissipation (Note 1)	1W
Maximum current out of Vss pin	200 mA
Maximum current into VDD pin	200 mA
Input clamp current, Ιικ (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Іок (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	100 mA
Maximum current sourced by PORTA	100 mA
Maximum current sunk by PORTB	100 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\Sigma$ IOH} + Σ {(VD	$D - VOH) \times IOH + \Sigma(VOL \times IOL)$
 Voltage spikes at the MCLR pin may cause latch-up. A series resistor of great to pull MCLR to VDD, rather than tying the pin directly to VDD. 	iter than 1 k Ω should be used

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

PIC16LF (Indus	87/88 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC16F8 (Indus	7/88 strial, Extended)	Standa Operati	rd Oper ng temp	ating Co erature	proditions (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended		
Param No.	Device	Тур	Max	Units	Conditions		
D022	Module Differential Curre	nts (∆lw	от, ∆Іво	R, ∆ i lvd	, Δ IOSCB, Δ IAD)		
(∆IWDT)	Watchdog Timer	1.5	3.8	μA	-40°C		
		2.2	3.8	μΑ	+25°C	VDD = 2.0V	
		2.7	4.0	μA	+85°C		
		2.3	4.6	μA	-40°C		
		2.7	4.6	μA	+25°C	VDD = 3.0V	
		3.1	4.8	μA	+85°C		
		3.0	10.0	μA	-40°C		
		3.3	10.0	μΑ	+25°C		
		3.9	13.0	μΑ	+85°C	VDD = 5.0V	
	Extended devices	5.0	21.0	μΑ	+125°C		
D022A (∆IBOR)	Brown-out Reset	40	60	μΑ	-40°C to +85°C	VDD = 5.0V	
D025	Timer1 Oscillator	1.7	2.3	μΑ	-40°C		
(∆IOSCB)		1.8	2.3	μΑ	+25°C	VDD = 2.0V	
		2.0	2.3	μΑ	+85°C		
		2.2	3.8	μΑ	-40°C		
		2.6	3.8	μΑ	+25°C	VDD = 3.0V	32 kHz on Timer1
		2.9	3.8	μΑ	+85°C		
		3.0	6.0	μΑ	-40°C		
		3.2	6.0	μΑ	+25°C	VDD = 5.0V	
		3.4	7.0	μΑ	+85°C		
D026	A/D Converter	0.001	2.0	μΑ	-40°C to +85°C	VDD = 2.0V	
(∆IAD)		0.001	2.0	μΑ	-40°C to +85°C	VDD = 3.0V	A/D on Sleep not converting
		0.003	2.0	μA	-40°C to +85°C	VDD = 5.0V	
	Extended devices	4.0	8.0	μΑ	-40°C to +125°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1	7.50 BSC		
Overall Length	D		11.55 BSC	
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	c	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
- BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

RB5/SS/TX/CK Pin	66
RB6/AN5/PGC/T1OSO/T1CKI Pin	67
RB7/AN6/PGD/T1OSI Pin	68
Simplified PWM	86
SSP in I ² C Mode	94
SSP in SPI Mode	92
System Clock	43
Timer0/WDT Prescaler	69
Timer1	75
Timer2	81
Watchdog Timer (WDT)	143
BOR. See Brown-out Reset.	
BRGH Bit	101
Brown-out Reset (BOR)131, 134, 13	35, 137
BOR Status (BOR Bit)	

С

C Compilers	
MPLAB C18	160
Capture/Compare/PWM (CCP)	83
Capture Mode	84
CCP Pin Configuration	84
Software Interrupt	84
Timer1 Mode Selection	84
Capture, Compare and Timer1 Associated Registers	85
CCP Prescaler	84
CCP Timer Resources	83
CCP1IF	84
CCPR1	84
CCPR1H:CCPR1L	84
Compare Mode	85
CCP Pin Configuration	85
Software Interrupt Mode	85
Special Event Trigger	85
Special Event Trigger Output of CCP1	85
Timer1 Mode Selection	85
PWM and Timer2 Associated Registers	87
PWM Mode	86
Example Frequencies/Resolutions	87
Operation Setup	87
CCP1CON Register	16
CCP1M0 Bit	83
CCP1M1 Bit	83
CCP1M2 Bit	83
CCP1M3 Bit	83
CCP1X Bit	83
CCP1Y Bit	83
CCPR1H Register16	, 83
CCPR1L Register16	, 83
Clock Sources	41
Selection Using OSCCON Register	41
Clock Switching	41
Transition and the Watchdog Timer	42
Transition Sequence	43
CMCON Register	17
Code Examples	
Call of a Subroutine in Page 1 from Page 0	27
Changing Between Capture Prescalers	84
Changing Prescaler Assignment From WDT to Time	r0.
71	
Erasing a Flash Program Memory Row	33
Implementing a Real-Time Clock Using a Timer1 Ir	iter-
rupt Service	79
Indirect Addressing	28
Initializing PORTA	53
Reading a 16-Bit Free Running Timer	76
Reading Data EEPROM	31

Reading Flash Program Memory Saving STATUS, W and PCLATH Registers i	32 n RAM
142	
Writing a 16-Bit Free Running Timer	
Writing to Data EEPROM	
Writing to Flash Program Memory	35
Code Protection	131, 149
Comparator Module	123
Analog Input Connection Considerations	127
Associated Registers	128
Configuration	124
Effects of a Reset	127
External Reference Signal	125
Internal Reference Signal	125
Interrupts	126
Operation	125
Operation During Sleep	127
Outputs	125
Reference	125
Response Time	
Comparator Specifications	
Comparator Voltage Reference	129
Associated Registers	130
Computed GOTO	27
Configuration Bits	131
Crystal and Ceramic Resonators	37
Customer Change Notification Service	
Customer Untification Service	
Customer Support	
CURCON Register	220 17
	17

D

Data EEPROM Memory	
Associated Registers	
EEADR Register	
EEADRH Register	
EECON1 Register	29
EECON2 Register	29
EEDATA Register	
EEDATH Register	29
Operation During Code-Protect	
Protection Against Spurious Writes	
Reading	31
Write Complete Flag (EEIF Bit)	
Writing	31
Data Memory	
Special Function Registers	16
DC and AC Characteristics	
Graphs and Tables	193
DC Characteristics	
Internal RC Accuracy	174
PIC16F87/88, PIC16LF87/88	175
Power-Down and Supply Current	166
Supply Voltage	165
Development Support	159
Device Differences	217
Device Overview	7
Direct Addressing	

NOTES: