

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf88t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	17	19	23	I/O I	TTL Analog	Bidirectional I/O pin. Analog input channel 0.
RA1/AN1 RA1 AN1	18	20	24	I/O I	TTL Analog	Bidirectional I/O pin. Analog input channel 1.
RA2/AN2/CVREF/VREF- RA2 AN2 CVREF VREF- (4)	1	1	26	I/O I O I	TTL Analog Analog	Bidirectional I/O pin. Analog input channel 2. Comparator VREF output. A/D reference voltage (Low) input.
RA3/AN3/VREF+/C1OUT RA3 AN3 VREF+ ⁽⁴⁾ C1OUT	2	2	27	I/O I I O	TTL Analog Analog	Bidirectional I/O pin. Analog input channel 3. A/D reference voltage (High) input. Comparator 1 output.
RA4/AN4/T0CKI/C2OUT RA4 AN4 ⁽⁴⁾ T0CKI C2OUT	3	3	28	I/O I I O	ST Analog ST	Bidirectional I/O pin. Analog input channel 4. Clock input to the TMR0 timer/counter. Comparator 2 output.
RA5/MCLR/VPP RA5 MCLR VPP	4	4	1	I I P	ST ST	Input pin. Master Clear (Reset). Input/programming voltage input. This pin is an active-low Reset to the device. Programming voltage input.
RA6/OSC2/CLKO RA6 OSC2	15	17	20	I/O O	ST -	Bidirectional I/O pin. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	40	10	24	0	_	In RC mode, this pin outputs CLKO signal which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA7/OSC1/CLKI RA7 OSC1 CLKI	16	18	21	I/O I I	ST ST/CMOS ⁽³⁾ –	Bidirectional I/O pin. Oscillator crystal input. External clock source input.
Legend: I = Input		0 = 0	utput		I/O = Input/O	Output P = Power

TABLE 1-2: PIC16F87/88 PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

5: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

A	File Address	A	File ddress		File Address	A	Fi Addı
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	18
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION_REG	18
PCL	02h	PCL	82h	PCL	102h	PCL	18
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	18
FSR	04h	FSR	84h	FSR	104h	FSR	18
PORTA	05h	TRISA	85h	WDTCON	105h		18
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	18
	07h		87h		107h		1
	08h		88h	-	108h		1
	09h		89h		109h		1
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	1
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	1
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	1
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	1
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	1
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	1
T1CON	10h	OSCTUNE	90h		110h		1
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h	General		General	
CCP1CON	17h		97h	Purpose		Purpose	
RCSTA	18h	TXSTA	98h	Register		Register	
TXREG	19h	SPBRG	99h	16 Bytes		16 Bytes	
RCREG	1Ah		9Ah				
	1Bh	ANSEL	9Bh				
	1Ch	CMCON	9Ch				
	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		11Fh		1
	20h	Osusal	A0h	0	120h		1.
		General		General		General	
General		Register		Register		Register	
Purpose		80 Bytes		80 Bytes		80 Bytes	
Register			EFh		16Fh		1
96 Bytes			FUN		170h		1
		accesses		accesses		accesses	
		/Un-/Fn		/UN-/FN		/011-/71	
	7Fh		FFh	Ponk 0	17Fh	Popk 2	1
Bank 0		Bank 1		Dalik Z		Dalik 3	

Note 1: This register is reserved, maintain this register clear.

BLOCK DIAGRAM OF RB6/AN5⁽³⁾/PGC/T1OSO/T1CKI PIN FIGURE 5-14:

NOTES:

9.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit, CCP1IF, is set.

FIGURE 9-2: COMPARE MODE OPERATION BLOCK DIAGRAM

9.2.1 CCP PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the TRISB<x> bit.

- Note 1: Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the data latch.
 - 2: The TRISB bit (0 or 3) is dependent upon the setting of configuration bit 12 (CCPMX).

9.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

9.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

9.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated that may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 9-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	e on ther sets
0Bh,8Bh 10BH,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1		ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1	_	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
86h	TRISB	PORT	PORTB Data Direction Register								1111	1111	1111
0Eh	TMR1L	Holdin	g Registe	er for the Le	east Signific	ant Byte of	the 16-bit	TMR1 Reg	gister	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holdin	g Registe	r for the M	ost Signific	ant Byte of t	the 16-bit 7	MR1 Reg	ister	xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	-000	0000	-uuu	uuuu
15h	CCPR1L	Captu	Capture/Compare/PWM Register 1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Captu	Capture/Compare/PWM Register 1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

The maximum PWM resolution (bits) for a given PWM frequency is given by the following formula.

EQUATION 9-3:

Resolution =
$$\frac{\log(\frac{\text{FOSC}}{\text{FPWM}})}{\log(2)}$$

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<x> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 9-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

bits

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	e on ther sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000	0000	-000	0000
8Ch	PIE1		ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000	0000	-000	0000
86h	TRISB	PORT	PORTB Data Direction Register									1111	1111
11h	TMR2	Timer2	Module Reg	gister						0000	0000	0000	0000
92h	PR2	Timer2	Period Regi	ster						1111	1111	1111	1111
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Captur	Capture/Compare/PWM Register 1 (LSB)								xxxx	uuuu	uuuu
16h	CCPR1H	Captur	Capture/Compare/PWM Register 1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

^{5.} Configure the CCP1 module for PWM operation.

Note: The TRISB bit (0 or 3) is dependant upon the setting of configuration bit 12 (CCPMX).

10.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

10.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

An overview of I²C operations and additional information on the SSP module can be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

Refer to Application Note AN578, "Use of the SSP Module in the I^2C^{TM} Multi-Master Environment" (DS00578).

10.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RB2/SDO/RX/DT
- Serial Data In (SDI)
 RB1/SDI/SDA
- Serial Clock (SCK)
 RB4/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)
 RB5/SS/TX/CK

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and the SSPSTAT register (SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)
 - Note: Before enabling the module in SPI Slave mode, the state of the clock line (SCK) must match the polarity selected for the Idle state. The clock line can be observed by reading the SCK pin. The polarity of the Idle state is determined by the CKP bit (SSPCON<4>).

11.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is one of the two serial I/O modules. (AUSART is also known as a Serial Communications Interface or SCI.) The AUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The AUSART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>) and bits TRISB<5,2> have to be set in order to configure pins, RB5/SS/TX/CK and RB2/SDO/RX/DT, as the Addressable Universal Synchronous Asynchronous Receiver Transmitter.

The AUSART module also has a multi-processor communication capability, using 9-bit address detection.

REGISTER 11-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0				
	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D				
	bit 7							bit 0				
bit 7	CSRC: Cloc	k Source Se	elect bit									
	<u>Asynchronou</u> Don't care.	<u>us mode:</u>										
	<u>Synchronous</u> 1 = Master n 0 = Slave mo	<u>s mode:</u> node (clock ode (clock fr	generated in om external	nternally fror I source)	n BRG)							
bit 6	TX9 : 9-bit Tr	ansmit Enat	ole bit	,								
	1 = Selects 9 0 = Selects 8	9-bit transmi 3-bit transmi	ssion ssion									
bit 5	TXEN: Tran	smit Enable	bit									
	1 = Transmit 0 = Transmit	enabled disabled										
	Note: S	SREN/CREM	l overrides	TXEN in Syr	nc mode.							
bit 4	SYNC: AUS	ART Mode	Select bit									
	1 = Synchro 0 = Asynchro	nous mode onous mode										
bit 3	Unimpleme	nted: Read	as '0'									
bit 2	BRGH: High	Baud Rate	Select bit									
	<u>Asynchronou</u> 1 = High spe 0 = Low spe	<u>us mode:</u> ed ed										
	<u>Synchronous</u> Unused in th	<u>Synchronous mode:</u> Unused in this mode.										
bit 1	TRMT: Trans	smit Shift Re	gister Statu	s bit								
	1 = TSR em 0 = TSR full	pty										
bit 0	TX9D: 9th bi	it of Transmi	it Data, can	be Parity bit								
	Legend											
	R - Readabl	le hit	M = M/ri	itahle hit	– Inimal	emented hi	t read as "	'n				
	-n = Value at	POR	(1) = Rit	is set	0' = Bit is c	leared	x = Bit is ur	, nknown				
			- Dit	10 001		- Culou						

11.2.2 AUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 11-4. The data is received on the RB2/SDO/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing Error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values: therefore, it is essential for the user to read the RCSTA register, before reading the RCREG register, in order not to lose the old FERR and RX9D information.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	AUSART	⁻ Transmit	Data Reg	ister					0000 0000	0000 0000
8Ch	PIE1	—	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

RB2/SDO/RX/DT pin	bit 0 bit 1 bit 2 bit 6 bit 7
RB5/SS/TX/CK pin	
Write to TXREG Reg	
TXIF bit	<u></u>
TRMT bit	
TXEN bit	\ \ .

REGISTER 12-3: ADCON1: A/DCONTROL REGISTER 1 (ADDRESS 9Fh) PIC16F88 DEVICES ONLY

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
ADFM	ADCS2	VCFG1	VCFG0	—	_	—	—
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Clock Divide by 2 Select bit

1 = A/D clock source is divided by 2 when system clock is used

0 = Disabled

bit 5-4 VCFG<1:0>: A/D Voltage Reference Configuration bits

Logic State	VREF+	VREF-		
0 0	AVdd	AVss		
01	AVDD	Vref-		
10	VREF+	AVss		
11	VREF+	Vref-		

Note: The ANSEL bits for AN3 and AN2 inputs must be configured as analog inputs for the VREF+ and VREF- external pins to be used.

bit 3-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

13.2 Comparator Operation

A single comparator is shown in Figure 13-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 13-2 represent the uncertainty due to input offsets and response time.

13.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 13-2).

13.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same, or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

13.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 14.0 "Comparator Voltage Reference Module" contains a detailed description of the Comparator Voltage Reference module that provides this signal. The internal reference signal is used when comparators are in mode CM<2:0> = 010 (Figure 13-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

13.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 18.0 "Electrical Characteristics").

13.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When enabled, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 13-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as '0'. Pins configured as digital inputs will convert an analog input, according to the Schmitt Trigger input specification.
 - 2: Analog levels, on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

|--|

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

15.2 Reset

The PIC16F87/88 differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 15-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR or wake-up from Sleep, the CPU requires approximately 5-10 μ s to become ready for code execution. This delay runs in parallel with any other timers. See Table 15-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 15-1.

FIGURE 15-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

15.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge-triggered, either rising if bit INTEDG (OPTION_REG<6>) is set, or falling if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit, INT0IF (INTCON<1>), is set. This interrupt can be disabled by clearing enable bit INT0IE (INTCON<4>). Flag bit INT0IF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from Sleep, if bit INT0IE was set prior to going into Sleep. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector, following wake-up. See **Section 15.13 "Power-Down Mode (Sleep)**" for details on Sleep mode.

15.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>), see Section 6.0 "Timer0 Module".

15.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>), see Section 3.2 "EECON1 and EECON2 Registers".

15.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W, STATUS registers).

Since the upper 16 bytes of each bank are common in the PIC16F87/88 devices, temporary holding registers W_TEMP, STATUS_TEMP and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 15-1 can be used.

EXAMPLE 15-1:	SAVING STATUS, W AND PCLATH REGISTERS IN RAM
---------------	--

MOVWF SWAPF CLRF MOVWF MOVF MOVWF CLRF	W_TEMP STATUS, W STATUS STATUS_TEMP PCLATH, W PCLATH_TEMP PCLATH	<pre>;Copy W to TEMP register ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0 ;Save status to bank zero STATUS_TEMP register ;Only required if using page 1 ;Save PCLATH into W ;Page zero, regardless of current page</pre>
: :(ISR) :		;(Insert user code here)
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP, W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP, F	;Swap W_TEMP
SWAPF	W_TEMP, W	;Swap W_TEMP into W

18.2 DC Characteristics: Power-Down and Supply Current PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial) (Continued)

PIC16LF8 (Indus	37/88 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC16F87 (Indus	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Тур	Max	Units		Condi	tions			
	Supply Current (IDD) ^(2,3)									
	All devices	1.8	2.3	mA	-40°C					
		1.6	2.2	mA	+25°C	VDD = 4.0V				
		1.3	2.2	mA	+85°C					
	All devices	3.0	4.2	mA	-40°C		FOSC = 20 MHZ (HS Oscillator)			
		2.5	4.0	mA	+25°C					
		2.5	4.0	mA	+85°C	vuu = 5.0v				
	Extended devices	3.0	5.0	mA	+85°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.3 DC Characteristics: Internal RC Accuracy PIC16F87/88 (Industrial, Extended) PIC16LF87/88 (Industrial)

PIC16L (Indu	F87/88 ustrial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F (Indu	-87/88 ustrial, Extended)	Standard O Operating te	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Param Device Min Typ Max					Conditions					
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾										
	PIC16LF87/88	-2	±1	2	%	+25°C					
		-5	_	5	%	-10°C to +85°C	VDD = 2.7-3.3V				
		-10	—	10	%	-40°C to +85°C					
	PIC16F87/88	-2	±1	2	%	25°C					
		-5		5	%	-10°C to +85°C	VDD = 4.5-5.5V				
		-10	—	10	%	-40°C to +85°C					
	Extended devices	-15	—	15	%	-40°C to +125°C	VDD = 4.5-5.5V				
	INTRC Accuracy @ Freq = 3	1 kHz ⁽²⁾									
	PIC16LF87/88	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V				
	PIC16F87/88	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V				

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

FIGURE 18-13: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 18-14: A/D CONVERSION REQUIREMENTS	TABLE 18-14:	A/D CONVERSION REQUIREMENTS
--	--------------	------------------------------------

Param No.	Symbol	Characte	Min	Тур†	Max	Units	Conditions	
130	TAD	A/D Clock Period	PIC16F87/88	1.6	_	_	μS	Tosc based, VREF \geq 3.0V
			PIC16LF87/88	3.0	—	_	μs	Tosc based, VREF $\geq 2.0V$
			PIC16F87/88	2.0	4.0	6.0	μs	A/D RC mode
			PIC16LF87/88	3.0	6.0	9.0	μS	A/D RC mode
131	TCNV	Conversion Time (not including S/H time) (Note 1)				12	Tad	
132	TACQ	Acquisition Time		(Note 2)	40		μS	
				10*	_		μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D Clock Start		_	Tosc/2 §		_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES registers may be read on the following TCY cycle.

2: See Section 12.1 "A/D Acquisition Requirements" for minimum conditions.

TMR1L Register	
TMR1ON Bit	74
TMR2 Register	
TMR2ON Bit	
TOUTPS0 Bit	
TOUTPS1 Bit	82
TOUTPS2 Bit	
TOUTPS3 Bit	
TRISA Register	
TRISB Register	
Two-Speed Clock Start-up Mode	
Two-Speed Start-up	
TXREG Register	
TXSTA Register	
BRGH Bit	
CSRC Bit	
SYNC Bit	
TRMT Bit	
TX9 Bit	
TX9D Bit	
TXFN Bit	99

۷

Vdd Pin	
Voltage Reference Specifications	
Vss Pin	

W

Wake-up from Sleep	131, 148
Interrupts	137
MCLR Reset	
WDT Reset	137
Wake-up Using Interrupts	148
Watchdog Timer (WDT)	. 131, 143
Associated Registers	144
WDT Reset, Normal Operation	. 134, 137
WDT Reset, Sleep	. 134, 137
WCOL	91
WDTCON Register	
Write Collision Detect Bit, WCOL	
WWW Address	
WWW, On-Line Support	6