

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	16 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f011asj020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Program Memory Address (Hex)	Function
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-03FF	Program Memory
Note: *See Table 32 on page 56 for a list of	the interrupt vectors.

Data Memory

The Z8 Encore! XP F082A Series does not use the eZ8 CPU's 64 KB Data Memory address space.

Flash Information Area

Table 6 describes the Z8 Encore! XP F082A Series Flash Information Area. This 128B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Table 6. Z8 Encore! XP F082A Series Flash Memory Information Area Map

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog Option Bits/Calibration Data
FE40–FE53	Part Number 20-character ASCII alphanumeric code Left-justified and filled with FFH
FE54–FE5F	Reserved
FE60–FE7F	Zilog Calibration Data
FE80–FFFF	Reserved

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page
F85	Reserved	—	XX	
Oscillator Contr	ol			
F86	Oscillator Control	OSCCTL	A0	<u>196</u>
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	<u>141</u>
F91–FBF	Reserved	—	XX	
Interrupt Contro	oller			
FC0	Interrupt Request 0	IRQ0	00	<u>60</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>63</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>63</u>
FC3	Interrupt Request 1	IRQ1	00	<u>61</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>65</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>65</u>
FC6	Interrupt Request 2	IRQ2	00	<u>62</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>66</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>67</u>
FC9–FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>68</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>68</u>
FCF	Interrupt Control	IRQCTL	00	<u>69</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>44</u>
FD1	Port A Control	PACTL	00	<u>46</u>
FD2	Port A Input Data	PAIN	XX	<u>46</u>
FD3	Port A Output Data	PAOUT	00	<u>46</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>44</u>
FD5	Port B Control	PBCTL	00	<u>46</u>
FD6	Port B Input Data	PBIN	XX	<u>46</u>
FD7	Port B Output Data	PBOUT	00	<u>46</u>
GPIO Port C				
FD8	Port C Address	PCADDR	00	44
Notes:				

Table 7. Register File Address Map (Continued)

1. XX = Undefined.

2. Refer to the eZ8 CPU Core User Manual (UM0128).

without initiating an interrupt (if enabled for that pin).

Stop Mode Recovery Using the External RESET Pin

When the Z8 Encore! XP F082A Series device is in STOP Mode and the external **RESET** pin is driven Low, a system reset occurs. Because of a glitch filter operating on the **RESET** pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See the <u>Electrical Characteristics</u> chapter on page 226 for details.

Low Voltage Detection

In addition to the Voltage Brown-Out (VBO) Reset described above, it is also possible to generate an interrupt when the supply voltage drops below a user-selected value. For details about configuring the Low Voltage Detection (LVD) and the threshold levels available, see the <u>Trim Option Bits at Address 0003H (TLVD) Register</u> on page 166. The LVD function is available on the 8-pin product versions only.

When the supply voltage drops below the LVD threshold, the LVD bit of the Reset Status (RSTSTAT) Register is set to one. This bit remains one until the low-voltage condition goes away. Reading or writing this bit does not clear it. The LVD circuit can also generate an interrupt when so enabled, see the <u>GPIO Mode Interrupt Controller</u> chapter on page 55. The LVD bit is not latched; therefore, enabling the interrupt is the only way to guarantee detection of a transient low voltage event.

The LVD functionality depends on circuitry shared with the VBO block; therefore, disabling the VBO also disables the LVD.

Reset Register Definitions

The following sections define the Reset registers.

Reset Status Register

The read-only Reset Status (RSTSTAT) Register, shown in Table 11, indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0. This register shares its address with the write-only Watchdog Timer Control Register.

Table 12 lists the bit settings for Reset and Stop Mode Recovery events.

Port A–D Control Registers

The Port A–D Control registers set the GPIO port operation. The value in the corresponding Port A–D Address Register determines which subregister is read from or written to by a Port A–D Control Register transaction; see Table 20.

Bit	7	6	5	4	3	2	1	0	
Field	PCTL								
RESET		00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
Address			FI	D1H, FD5H,	FD9H, FDD	Н			

Table 20. Port A–D Control Registers (PxCTL)

Bit	Description
[7:0]	Port Control
PCTLx	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Data Direction Subregisters

The Port A–D Data Direction subregister is accessed through the Port A–D Control Register by writing 01H to the Port A–D Address Register; see Table 21.

Bit	7	6	5	4	3	2	1	0		
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0		
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	If 01H ir	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register								

Table 21. Port A–D Data Direction Subregisters (PxDD)

Bit	Description
[7:0]	Data Direction
DDx	These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting.
	1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register.
	The output driver is tristated.
Note:	x indicates the specific GPIO port pin number (7–0).

LED Drive Enable Register

The LED Drive Enable Register, shown in Table 31, activates the controlled current drive. The Alternate Function Register has no control over the LED function; therefore, setting the Alternate Function Register to select the LED function is not required. LEDEN bits [7:0] correspond to Port C bits [7:0], respectively.

Bit	7	6	5	4	3	2	1	0
Field		LEDEN[7:0]						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F8	2H			

Table 31		Drive	Enable	
Table ST.	LEV	Dire	Ellable	(LEDEN)

Bit Description

[7:0] LED Drive Enable

LEDENx These bits determine which Port C pins are connected to an internal current sink.

0 = Tristate the Port C pin.

1 = Enable controlled current sink on the Port C pin.

Note: *x* indicates the specific GPIO port pin number (7–0).

LED Drive Level High Register

The LED Drive Level registers contain two control bits for each Port C pin, as shown in Table 32. These two bits select between four programmable drive levels. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0			
Field		LEDLVLH[7:0]									
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address	F83H										
Bit	Descrip	Description									
[7:0] LEDLVLHx	LED Level High Bit {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin. 00 = 3mA										

Tabla '	22 I EI	סעויים ר		Linh	Dogistor	٨
i abie .	32. LEI	JUIIVe	Levei	піціі	Redister	

01 = 7mA 10 = 13mA

11 = 20 mA

Note: x indicates the specific GPIO port pin number (7–0).

Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer)
	003AH	Primary Oscillator Fail Trap (not an interrupt)
	003CH	Watchdog Oscillator Fail Trap (not an interrupt)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A Pin 7, selectable rising or falling input edge or LVD (see Reset, Stop Mode Recovery and Low Voltage Detection)
	001AH	Port A Pin 6, selectable rising or falling input edge or Comparator Output
	001CH	Port A Pin 5, selectable rising or falling input edge
	001EH	Port A Pin 4, selectable rising or falling input edge
	0020H	Port A Pin 3, selectable rising or falling input edge
	0022H	Port A Pin 2, selectable rising or falling input edge
	0024H	Port A Pin 1, selectable rising or falling input edge
	0026H	Port A Pin 0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C Pin 3, both input edges
	0032H	Port C Pin 2, both input edges
	0034H	Port C Pin 1, both input edges
Lowest	0036H	Port C Pin 0, both input edges
	0038H	Reserved

Table 34. Trap and Interrupt Vectors in Order of Priority

Bit	Description (Continued)
[6:5] TICONFIG	 Timer Interrupt Configuration This field configures timer interrupt definition. 0x = Timer Interrupt occurs on all defined Reload, Compare and Input Events. 10 = Timer Interrupt only on defined Input Capture/Deassertion Events. 11 = Timer Interrupt only on defined Reload/Compare Events.
[4]	Reserved This bit is reserved and must be programmed to 0.
[3:1] PWMD	PWM Delay Value This field is a programmable delay to control the number of system clock cycles delay before the Timer Output and the Timer Output Complement are forced to their active state. 000 = No delay. 001 = 2 cycles delay. 010 = 4 cycles delay. 011 = 8 cycles delay. 100 = 16 cycles delay. 101 = 32 cycles delay. 101 = 64 cycles delay. 111 = 128 cycles delay.
[0] INPCAP	 Input Capture Event This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture Event. 0 = Previous timer interrupt is not a result of Timer Input Capture Event. 1 = Previous timer interrupt is a result of Timer Input Capture Event.

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers, shown in Table 51, enable and disable the timers, set the prescaler value and determine the timer operating mode.

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL	PRES			TMODE		
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F07H, F0FH							

Table 51. Timer 0–1	Control Register	1 (TxCTL1)
---------------------	-------------------------	------------

Bit	Description	

- Timer Enable [7] TEN
- 0 = Timer is disabled.
 - 1 = Timer enabled to count.

into the Watchdog Timer Reload registers results in a one-second time-out at room temperature and 3.3V supply voltage. Time-outs other than one second may be obtained by scaling the calibration values up or down as required.

Note: The Watchdog Timer accuracy still degrades as temperature and supply voltage vary. See <u>Table 137</u> on page 235 for details.

Watchdog Timer Control Register Definitions

This section defines the features of the following Watchdog Timer Control registers.

Watchdog Timer Control Register (WDTCTL): see page 96

Watchdog Timer Reload Upper Byte Register (WDTU): see page 97

Watchdog Timer Reload High Byte Register (WDTH): see page 97

Watchdog Timer Reload Low Byte Register (WDTL): see page 98

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) Register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL Register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL Register address produce no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the reload registers. This register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0
Field	WDTUNLK							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	FF0H							
Note: X = Undefined.								

ы	Description
[7:0]	Watchdog Timer Unlock
WDTUNLK	The software must write the correct unlocking sequence to this register before it is allowed
	to modify the contents of the Watchdog Timer reload registers.

Description

Dit

- Set or clear the CTSE bit to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin
- 6. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data Register is empty (indicated by a 1). If empty, continue to <u>Step 7</u>. If the Transmit Data Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data Register becomes available to receive new data.
- 7. Write the UART Control 1 Register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data Register. The transmitter automatically transfers the data to the Transmit Shift Register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR Mode is enabled.
- 11. To transmit additional bytes, return to <u>Step 5</u>.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data Register to accept new data for transmission. Observe the following steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode functions, if MULTIPROCESSOR Mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR Mode.
- 7. Write to the UART Control 0 Register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled and select either even or odd parity

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the following:

- 1. Checks the UART Status 0 Register to determine the source of the interrupt error, break, or received data.
- 2. Reads the data from the UART Receive Data Register if the interrupt was because of data available. If operating in MULTIPROCESSOR (9-bit) Mode, further actions may be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].
- 3. Clears the UART Receiver interrupt in the applicable Interrupt Request Register.
- 4. Executes the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 Register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART features a MULTIPROCESSOR (9-bit) Mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTIPROCESSOR Mode (also referred to as *9-bit Mode*), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as displayed in Figure 13. The character format is:

Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format

Bit	Description (Continued)
[5:4] OSC_SEL[1:0]	 Oscillator Mode Selection 00 = On-chip oscillator configured for use with external RC networks (<4MHz). 01 = Minimum power for use with very low frequency crystals (32kHz to 1.0MHz). 10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz to 5.0MHz). 11 = Maximum power for use with high frequency crystals (5.0MHz to 20.0MHz). This setting is the default for unprogrammed (erased) Flash.
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = Voltage Brown-Out Protection can be disabled in STOP Mode to reduce total power consumption. For the block to be disabled, the power control register bit must also be written (see the <u>Power Control Register Definitions</u> section on page 33). 1 = Voltage Brown-Out Protection is always enabled including during STOP Mode. This setting is the default for unprogrammed (erased) Flash.
[2] FRP	 Flash Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.
[1]	Reserved This bit is reserved and must be programmed to 1.
[0] FWP	Flash Write Protect This Option Bit provides Flash Program Memory protection: 0 = Programming and erasure disabled for all of Flash Program Memory. Programming, Page Erase and Mass Erase through User Code is disabled. Mass Erase is available using the On-Chip Debugger. 1 = Programming, Page Erase and Mass Erase are enabled for all of Flash program memory.

163

Note: The stabilization time varies depending on the crystal, resonator or feedback network used. See Table 115 for transconductance values to compute oscillator stabilization times.

Figure 27 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20MHz. Recommended 20MHz crystal specifications are provided in Table 114. Printed circuit board layouts must add no more than 4pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C1 and C2 to decrease loading.

Figure 27. Recommended 20 MHz Crystal Oscillator Configuration

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	—	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	—	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
ТСМХ	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 121. Bit Manipulation Instructions

Table 122. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto- Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Table 123. CPU Control Instructions

Mnemonic	Operands	Instruction
ATM		Atomic Execution
CCF		Complement Carry Flag
DI	_	Disable Interrupts
EI	_	Enable Interrupts
HALT	_	Halt Mode
NOP		No Operation

	_
ົງງ	n
	υ

Assembly		Add Mo	ress ode	Oncode(s)			Fla	ags			Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	S	S
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
		r	lr	23	-						2	4
		R	R	24	-						3	3
		R	IR	25	-						3	4
		R	IM	26	-						3	3
		IR	IM	27	-						3	4
SUBX dst, src	$dst \leftarrow dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29	-						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	-	_	2	2
		IR		F1	-						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	-	*	*	0	_	_	2	3
		r	Ir	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	_	*	*	0	_	_	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	-	*	*	0	_	-	2	3
		r	Ir	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4

Table 128. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 30. Figures 31 and 32 display the eZ8 CPU instructions. Table 129 lists Opcode Map abbreviations.

Figure 30. Opcode Map Cell Description

		V _{DD} = 2.7 V to 3.6 V				
Symbol	Parameter	Typical ¹	Maximum Std Temp ²	Maximum Ext Temp ³	Units	Conditions
I _{DD} Stop	Supply Current in STOP Mode	0.1			μA	No peripherals enabled. All pins driven to V_{DD} or $V_{SS}.$
I _{DD} Halt	Supply Current in	35	55	65	μA	32kHz.
	HALT Mode (with	520			μA	5.5MHz.
	abled)	2.1	2.85	2.85	mA	20MHz.
I _{DD}	Supply Current in	2.8			mA	32kHz.
	ACTIVE Mode	4.5	5.2	5.2	mA	5.5MHz.
	disabled)	5.5	6.5	6.5	mA	10MHz.
		7.9	11.5	11.5	mA	20MHz.
I _{DD} WDT	Watchdog Timer Supply Current	0.9	1.0	1.1	μA	
I _{DD}	Crystal Oscillator	40			μA	32kHz.
XTAL	Supply Current	230			μA	4MHz.
		760			μA	20MHz.
I _{DD} IPO	Internal Precision Oscillator Supply Current	350	500	550	μA	
I _{DD} VBO	Voltage Brown-Out and Low-Voltage	50			μA	For 20-/28-pin devices (VBO only); See Note 4.
	Detect Supply Cur-					For 8-pin devices; See Note 4.
I _{DD}	Analog to Digital	2.8	3.1	3.2	mA	32kHz.
ADC	Converter Supply	3.1	3.6	3.7	mA	5.5MHz.
	External Refer-	3.3	3.7	3.8	mA	10MHz.
	ence)	3.7	4.2	4.3	mA	20MHz.

Table 132. Power Consumption

Notes:

1. Typical conditions are defined as V_{DD} = 3.3 V and +30°C.

2. Standard temperature is defined as $\overline{T}_A = 0^{\circ}C$ to +70°C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

3. Extended temperature is defined as $T_A = -40^{\circ}$ C to +105°C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

		V _{DD} T _A : (unless	= 3.0 V to = 0°C to +7 otherwise	3.6 V 70°C e stated)			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
	Resolution	10		_	bits		
	Differential Nonlinearity (DNL)	-1.0	_	1.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω	
	Integral Nonlinearity (INL)	-3.0	_	3.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω	
	Offset Error with Calibra- tion		<u>+</u> 1		LSB ³		
	Absolute Accuracy with Calibration		<u>+</u> 3		LSB ³		
V _{REF}	Internal Reference Volt- age	1.0 2.0	1.1 2.2	1.2 2.4	V	REFSEL=01 REFSEL=10	
V _{REF}	Internal Reference Varia- tion with Temperature		<u>+</u> 1.0		%	Temperature variation with $V_{DD} = 3.0$	
V _{REF}	Internal Reference Volt- age Variation with V _{DD}		<u>+</u> 0.5		%	Supply voltage varia- tion with $T_A = 30^{\circ}C$	
R _{RE-} FOUT	Reference Buffer Output Impedance		850		W	When the internal ref- erence is buffered and driven out to the VREF pin (REFOUT = 1)	
	Single-Shot Conversion Time	_	5129	_	Sys- tem clock cycles	All measurements but temperature sensor	
			10258			Temperature sensor measurement	

Table 139. Analog-to-Digital Converter Electrical Characteristics and Timing

Notes:

1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.

2. Devices are factory calibrated at V_{DD} = 3.3V and T_A = +30°C, so the ADC is maximally accurate under these conditions.

3. LSBs are defined assuming 10-bit resolution.

4. This is the maximum recommended resistance seen by the ADC input pin.

5. The input impedance is inversely proportional to the system clock frequency.

		V _{DD} = 2.7 V to 3.6 V				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
T _{AERR}	Temperature Error		<u>+</u> 0.5	<u>+</u> 2	°C	Over the range +20°C to +30°C (as mea- sured by ADC). ¹
			<u>+</u> 1	<u>+</u> 5	°C	Over the range +0°C to +70°C (as mea- sured by ADC).
			<u>+</u> 2	<u>+</u> 7	°C	Over the range +0°C to +105°C (as mea- sured by ADC).
			<u>+</u> 7		°C	Over the range –40°C to +105°C (as mea- sured by ADC).
t _{WAKE}	Wakeup Time		80	100	μS	Time required for Tem- perature Sensor to stabilize after enabling.
Note: De	evices are factory calibrated at for r	maximal accu	racy betwe	en +20°C and	+30°C, s	so the sensor is maximally

Table 142. Temperature Sensor Electrical Characteristics

Note: Devices are factory calibrated at for maximal accuracy between +20°C and +30°C, so the sensor is maximally accurate in that range. User recalibration for a different temperature range is possible and increases accuracy near the new calibration point.

UART Timing

Figure 37 and Table 146 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the Transmit Data Register has been loaded with data prior to CTS assertion.

Figure 3	37. U	ART	Timing	With	CTS
----------	-------	-----	--------	------	-----

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
UART				
T ₁	CTS Fall to DE output delay	2 * X _{IN} period	2 * X _{IN} period + 1 bit time	
T ₂	DE assertion to TXD falling edge (start bit) delay	±	: 5	
T ₃	End of Stop Bit(s) to DE deassertion delay	±	: 5	

Tahla	1/6	IIART	Timina	With	CTS
lable	140.	UARI	runng	VVILII	613

compare with carry - extended addressing 208 complement 210 complement carry flag 209 condition code 206 continuous conversion (ADC) 127 **CONTINUOUS** mode 87 control register definition, UART 110 Control Registers 15, 18 **COUNTER modes 87** CP 208 **CPC 208 CPCX 208** CPU and peripheral overview 4 CPU control instructions 209 **CPX 208** Customer Feedback Form 265

D

DA 206, 208 data memory 17 DC characteristics 227 debugger, on-chip 180 **DEC 208** decimal adjust 208 decrement 208 decrement and jump non-zero 211 decrement word 208 **DECW 208** destination operand 207 device, port availability 36 DI 209 direct address 206 disable interrupts 209 DJNZ 211 dst 207

Ε

EI 209 electrical characteristics 226 ADC 236 flash memory and timing 234 GPIO input data sample timing 240 Watchdog Timer 235, 238 enable interrupt 209 ER 206 extended addressing register 206 external pin reset 26 eZ8 CPU features 4 eZ8 CPU instruction classes 207 eZ8 CPU instruction notation 206 eZ8 CPU instruction set 204 eZ8 CPU instruction summary 212

F

FCTL register 155, 161, 162 features, Z8 Encore! 1 first opcode map 224 FLAGS 207 flags register 207 flash controller 6 option bit address space 162 option bit configuration - reset 159 program memory address 0000H 162 program memory address 0001H 164 flash memory 146 arrangement 147 byte programming 151 code protection 149 configurations 146 control register definitions 153, 161 controller bypass 152 electrical characteristics and timing 234 flash control register 155, 161, 162 flash option bits 150 flash status register 155 flow chart 148 frequency high and low byte registers 157 mass erase 152 operation 147 operation timing 149 page erase 152 page select register 156, 157 FPS register 156, 157 FSTAT register 155