

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f021asj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Revision History
List of Figures
List of Tables
Overview1Features1Part Selection Guide2Block Diagram3CPU and Peripheral Overview410-Bit Analog-to-Digital Converter4Low-Power Operational Amplifier4Internal Precision Oscillator5Temperature Sensor5
Analog Comparator5External Crystal Oscillator5Low Voltage Detector5On-Chip Debugger5Universal Asynchronous Receiver/Transmitter5Timers5General-Purpose Input/Output6Direct LED Drive6Flash Controller6
Non-Volatile Data Storage 6 Interrupt Controller 6 Reset Controller 6
Pin Description8Available Packages8Pin Configurations8Signal Descriptions10Pin Characteristics12
Address Space15Register File15Program Memory15Data Memory17Flash Information Area17
Register Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page
Timer 1				
F08	Timer 1 High Byte	T1H	00	<u>90</u>
F09	Timer 1 Low Byte	T1L	01	<u>90</u>
F0A	Timer 1 Reload High Byte	T1RH	FF	<u>91</u>
Timer 1 (cont'd)				
F0B	Timer 1 Reload Low Byte	T1RL	FF	<u>91</u>
F0C	Timer 1 PWM High Byte	T1PWMH	00	<u>92</u>
F0D	Timer 1 PWM Low Byte	T1PWML	00	<u>92</u>
F0E	Timer 1 Control 0	T1CTL0	00	<u>85</u>
F0F	Timer 1 Control 1	T1CTL1	00	<u>86</u>
F10–F6F	Reserved	—	XX	
UART				
F40	UART Transmit/Receive Data registers	TXD, RXD	XX	<u>115</u>
F41	UART Status 0 Register	U0STAT0	00	<u>114</u>
F42	UART Control 0 Register	U0CTL0	00	<u>110</u>
F43	UART Control 1 Register	U0CTL1	00	<u>110</u>
F44	UART Status 1 Register	U0STAT1	00	<u>115</u>
F45	UART Address Compare Register	U0ADDR	00	<u>116</u>
F46	UART Baud Rate High Byte Register	U0BRH	FF	<u>117</u>
F47	UART Baud Rate Low Byte Register	U0BRL	FF	<u>117</u>
Analog-to-Digita	al Converter (ADC)			
F70	ADC Control 0	ADCCTL0	00	<u>134</u>
F71	ADC Control 1	ADCCTL1	80	<u>136</u>
F72	ADC Data High Byte	ADCD_H	XX	<u>137</u>
F73	ADC Data Low Byte	ADCD_L	XX	137
F74–F7F	Reserved		XX	
Low Power Con	trol			
F80	Power Control 0	PWRCTL0	80	<u>34</u>
F81	Reserved	—	XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	<u>53</u>
F83	LED Drive Level High Byte	LEDLVLH	00	<u>53</u>
F84	LED Drive Level Low Byte	LEDLVLL	00	<u>54</u>

Table 7. Register File Address Map (Continued)

1. XX = Undefined.

2. Refer to the eZ8 CPU Core User Manual (UM0128).

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page
F85	Reserved	—	XX	
Oscillator Contr	ol			
F86	Oscillator Control	OSCCTL	A0	<u>196</u>
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	<u>141</u>
F91–FBF	Reserved	—	XX	
Interrupt Contro	oller			
FC0	Interrupt Request 0	IRQ0	00	<u>60</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>63</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>63</u>
FC3	Interrupt Request 1	IRQ1	00	<u>61</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>65</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>65</u>
FC6	Interrupt Request 2	IRQ2	00	<u>62</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>66</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>67</u>
FC9–FCC	Reserved	—	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>68</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>68</u>
FCF	Interrupt Control	IRQCTL	00	<u>69</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>44</u>
FD1	Port A Control	PACTL	00	<u>46</u>
FD2	Port A Input Data	PAIN	XX	<u>46</u>
FD3	Port A Output Data	PAOUT	00	<u>46</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>44</u>
FD5	Port B Control	PBCTL	00	<u>46</u>
FD6	Port B Input Data	PBIN	XX	<u>46</u>
FD7	Port B Output Data	PBOUT	00	<u>46</u>
GPIO Port C				
FD8	Port C Address	PCADDR	00	44

Table 7. Register File Address Map (Continued)

1. XX = Undefined.

2. Refer to the eZ8 CPU Core User Manual (UM0128).

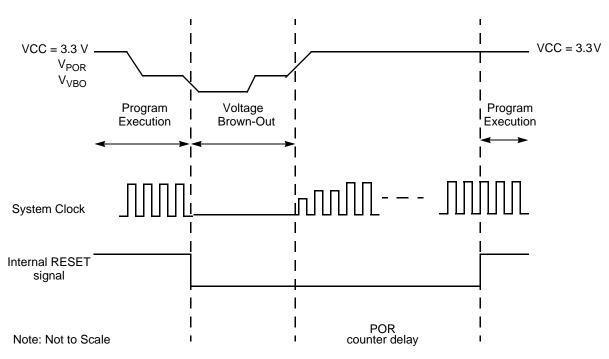


Figure 6. Voltage Brown-Out Reset Operation

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a Power-On Reset after recovering from a VBO condition.

Watchdog Timer Reset

If the device is operating in NORMAL or HALT Mode, the Watchdog Timer can initiate a System Reset at time-out if the WDT_RES Flash option bit is programmed to 1, i.e., the unprogrammed state of the WDT_RES Flash option bit. If the bit is programmed to 0, it configures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.

The WDT bit in the Reset Status (RSTSTAT) Register is set to signify that the reset was initiated by the Watchdog Timer.

External Reset Input

The $\overline{\text{RESET}}$ pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the $\overline{\text{RESET}}$ pin is asserted for a minimum of four system clock cycles, the device progresses through the System Reset sequence. Because of the possible asynchronicity of the system clock and reset signals, the required reset duration may be as short as three clock periods

without initiating an interrupt (if enabled for that pin).

Stop Mode Recovery Using the External RESET Pin

When the Z8 Encore! XP F082A Series device is in STOP Mode and the external **RESET** pin is driven Low, a system reset occurs. Because of a glitch filter operating on the **RESET** pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See the <u>Electrical Characteristics</u> chapter on page 226 for details.

Low Voltage Detection

In addition to the Voltage Brown-Out (VBO) Reset described above, it is also possible to generate an interrupt when the supply voltage drops below a user-selected value. For details about configuring the Low Voltage Detection (LVD) and the threshold levels available, see the <u>Trim Option Bits at Address 0003H (TLVD) Register</u> on page 166. The LVD function is available on the 8-pin product versions only.

When the supply voltage drops below the LVD threshold, the LVD bit of the Reset Status (RSTSTAT) Register is set to one. This bit remains one until the low-voltage condition goes away. Reading or writing this bit does not clear it. The LVD circuit can also generate an interrupt when so enabled, see the <u>GPIO Mode Interrupt Controller</u> chapter on page 55. The LVD bit is not latched; therefore, enabling the interrupt is the only way to guarantee detection of a transient low voltage event.

The LVD functionality depends on circuitry shared with the VBO block; therefore, disabling the VBO also disables the LVD.

Reset Register Definitions

The following sections define the Reset registers.

Reset Status Register

The read-only Reset Status (RSTSTAT) Register, shown in Table 11, indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0. This register shares its address with the write-only Watchdog Timer Control Register.

Table 12 lists the bit settings for Reset and Stop Mode Recovery events.

PA0 and PA6 contain two different timer functions, a timer input and a complementary timer output. Both of these functions require the same GPIO configuration, the selection between the two is based on the timer mode. See **the** <u>Timers</u> **chapter on page 70** for more details.

Caution: For pins with multiple alternate functions, Zilog recommends writing to the AFS1 and AFS2 subregisters before enabling the alternate function via the AF subregister. As a result, spurious transitions through unwanted alternate function modes will be prevented.

Direct LED Drive

The Port C pins provide a current sinked output capable of driving an LED without requiring an external resistor. The output sinks current at programmable levels of 3 mA, 7 mA, 13 mA and 20 mA. This mode is enabled through the LED control registers. The LED Drive Enable (LEDEN) Register turns on the drivers. The LED Drive Level (LEDLVLH and LEDLVLL) registers select the sink current.

For correct function, the LED anode must be connected to V_{DD} and the cathode to the GPIO pin. Using all Port C pins in LED drive mode with maximum current may result in excessive total current. See **the** <u>Electrical Characteristics</u> chapter on page 226 for the maximum total current for the applicable package.

Shared Reset Pin

On the 20- and 28-pin devices, the PD0 pin shares function with a bidirectional reset pin. Unlike all other I/O pins, this pin does not default to GPIO function on power-up. This pin acts as a bidirectional input/open-drain output reset until the software reconfigures it. The PD0 pin is an output-only open drain when in GPIO mode. There are no pull-up, High Drive, or Stop Mode Recovery source features associated with the PD0 pin.

On the 8-pin product versions, the reset pin is shared with PA2, but the pin is not limited to output-only when in GPIO mode.

Caution: If PA2 on the 8-pin product is reconfigured as an input, ensure that no external stimulus drives the pin low during any reset sequence. Since PA2 returns to its **RESET** alternate function during system resets, driving it Low holds the chip in a reset state until the pin is released.

Bit	Description (Continued)					
[4] U0RXI	UART 0 Receiver Interrupt Request 0 = No interrupt request is pending for the UART 0 receiver.					
	1 = An interrupt request from the UART 0 receiver is awaiting service.					
[3]	UART 0 Transmitter Interrupt Request					
U0TXI	0 = No interrupt request is pending for the UART 0 transmitter.					
	1 = An interrupt request from the UART 0 transmitter is awaiting service.					
[2:1]	Reserved					
	These bits are reserved and must be programmed to 00.					
[0]	ADC Interrupt Request					

0 = No interrupt request is pending for the analog-to-digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) Register, shown in Table 36, stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field	PA7VI	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC3H							

Table 36. Interrupt Request 1 Register (IRQ1)

Bit	Description					
[7] PA7VI	Port A Pin 7 or LVD Interrupt Request 0 = No interrupt request is pending for GPIO Port A or LVD.					
	1 = An interrupt request from GPIO Port A or LVD.					
[6] PA6CI	Port A Pin 6 or Comparator Interrupt Request 0 = No interrupt request is pending for GPIO Port A or Comparator. 1 = An interrupt request from GPIO Port A or Comparator.					
[5:0] PA5I	 Port A Pin x Interrupt Request 0 = No interrupt request is pending for GPIO Port A pin x. 1 = An interrupt request from GPIO Port A pin x is awaiting service. 					
Note: x ir	Note: x indicates the specific GPIO port pin number (0–5).					

ADCI

Table 39. IRQ0 Enable High Bit Register (IRQ0ENH)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Reserved	Reserved	ADCENH	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	FC1H								
Bit	Description								
[7]	Reserved This bit is reserved and must be programmed to 0.								
[6] T1ENH	Timer 1 Int	errupt Req	uest Enable	e High Bit					
[5] T0ENH	Timer 0 Interrupt Request Enable High Bit								
	UART 0 Receive Interrupt Request Enable High Bit								

U0RENH	
[3] UOTENH	UART 0 Transmit Interrupt Request Enable High Bit
[2:1]	Reserved These bits are reserved and must be programmed to 00.
[0] ADCENH	ADC Interrupt Request Enable High Bit

Bit	7	6	5	4	3	2	1	0
Field	Reserved	T1ENL	T0ENL	U0RENL	U0TENL	Reserved	Reserved	ADCENL
RESET	0	0	0	0	0	0	0	0
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W
Address	FC2H							

Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL)

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0.
[6] T1ENL	Timer 1 Interrupt Request Enable Low Bit
[5] T0ENL	Timer 0 Interrupt Request Enable Low Bit

The UART is now configured for interrupt-driven data reception. When the UART Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the following:

- 1. Checks the UART Status 0 Register to determine the source of the interrupt error, break, or received data.
- 2. Reads the data from the UART Receive Data Register if the interrupt was because of data available. If operating in MULTIPROCESSOR (9-bit) Mode, further actions may be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].
- 3. Clears the UART Receiver interrupt in the applicable Interrupt Request Register.
- 4. Executes the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 Register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART features a MULTIPROCESSOR (9-bit) Mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTIPROCESSOR Mode (also referred to as *9-bit Mode*), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as displayed in Figure 13. The character format is:

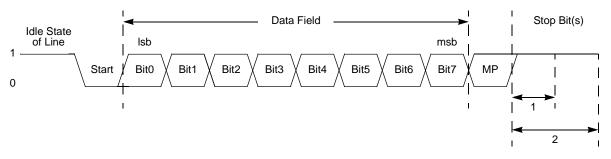


Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format

Z8 Encore! XP[®] F082A Series **Product Specification**

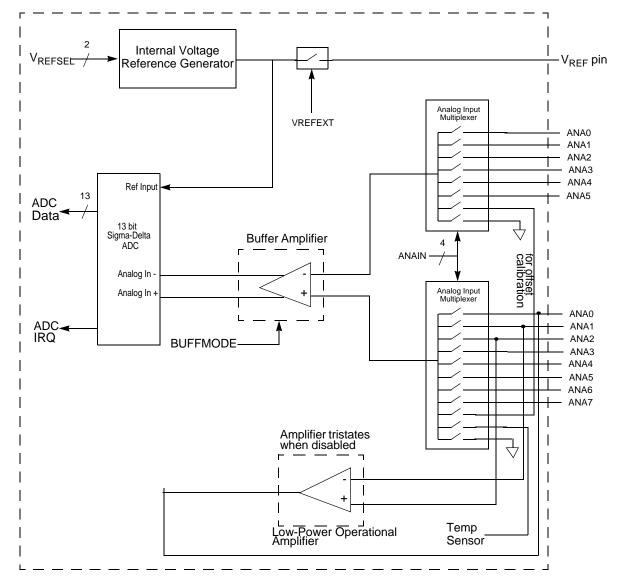


Figure 19. Analog-to-Digital Converter Block Diagram

Operation

In both SINGLE-ENDED and DIFFERENTIAL modes, the effective output of the ADC is an 11-bit, signed, two's complement digital value. In DIFFERENTIAL Mode, the ADC can output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-ENDED Mode, the output generally ranges from 0 to +1023, but offset errors can cause small negative values.

Z8 Encore! XP[®] F082A Series Product Specification

Compensation Steps:

1. Correct for Offset:

ADC MSB	ADC LSB
_	
Offset MSB	Offset LSB
=	
#1 MSB	#1 LSB

2. Compute the absolute value of the offset-corrected ADC value *if negative*; the gain correction factor is computed assuming positive numbers, with sign restoration afterward.

#2 MSB	#2 LSB
--------	--------

Also compute the absolute value of the gain correction word, if negative.

AGain MSB	AGain LSB
-----------	-----------

3. Multiply by the Gain Correction Word. If operating in DIFFERENTIAL Mode, there are two gain correction values: one for positive ADC values, another for negative ADC values. Use the appropriate Gain Correction Word based on the sign computed by byte #2.

#2 MSB	#2 LSB

AGain MSB	AGain LSB
-	

=

Bit	7	6	5	4	3	2	1	0
Field	REFSELH		Rese	erved	В	UFMODE[2:	0]	
RESET	1	0	0	0	0	0	0	0
R/W	R/W	/W R/W R/W R/W R/W R/W R/W R/W						
Address				F7	1H		•	
Bit	Dese	cription						
[7] REFSELH	In co the le REF 00= 01= 10=	 Voltage Reference Level Select High Bit In conjunction with the Low bit (REFSELL) in ADC Control Register 0, this determines the level of the internal voltage reference; the following details the effects of {REFSELH REFSELL}; this reference is independent of the Comparator reference. 00= Internal Reference Disabled, reference comes from external pin. 01= Internal Reference set to 1.0V. 10= Internal Reference set to 2.0V (default). 11= Reserved. 						
[6:3]		Reserved These bits are reserved and must be programmed to 0000.						
[2:0] BUFMODI	E[2:0] 000 001 010	Input Buffer Mode Select [2:0] 000 = Single-ended, unbuffered input. 001 = Single-ended, buffered input with unity gain. 010 = Reserved. 011 = Reserved.						

Table 74. ADC Control/Status Register 1 (ADCCTL1)

100 = Differential, unbuffered input.101 = Differential, buffered input with unity gain.

110 = Reserved. 111 = Reserved.

ADC Data High Byte Register

The ADC Data High Byte (ADCD_H) Register contains the upper eight bits of the ADC output. The output is an 13-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte Register is read-only. Reading the ADC Data High Byte Register latches data in the ADC Low Bits Register.

Bit	Description (Continued)
[1:0]	For 8-pin devices, the following voltages can be configured; for 20- and 28-pin devices, these
	bits are reserved.
	000000 = 0.00 V
	000001 = 0.05 V
	000010 = 0.10 V
	000011 = 0.15 V
	000100 = 0.20 V
	000101 = 0.25 V
	000110 = 0.30 V
	000111 = 0.35 V
	001000 = 0.40 V
	001001 = 0.45 V
	001010 = 0.50 V
	001011 = 0.55 V
	001100 = 0.60 V
	001101 = 0.65 V
	001110 = 0.70 V
	001111 = 0.75 V
	010000 = 0.80 V
	010001 = 0.85 V
	010010 = 0.90 V
	010011 = 0.95 V
	010100 = 1.00 V (Default)
	010101 = 1.05 V
	010110 = 1.10 V 010111 = 1.15 V
	01000 = 1.20 V
	011001 = 1.25 V
	011010 = 1.30 V
	011011 = 1.35 V
	011100 = 1.40 V
	011101 = 1.45 V
	011110 = 1.50 V
	011111 = 1.55 V
	100000 = 1.60 V
	100001 = 1.65 V
	100010 = 1.70 V
	100011 = 1.75 V
	100100 = 1.80 V

Flash Controller Behavior in DEBUG Mode

The following changes in behavior of the Flash Controller occur when the Flash Controller is accessed using the On-Chip Debugger:

- The Flash Write Protect option bit is ignored.
- The Flash Sector Protect Register is ignored for programming and erase operations.
- Programming operations are not limited to the page selected in the Page Select Register.
- Bits in the Flash Sector Protect Register can be written to one or zero.
- The second write of the Page Select Register to unlock the Flash Controller is not necessary.
- The Page Select Register can be written when the Flash Controller is unlocked.
- The Mass Erase command is enabled through the Flash Control Register.

Caution: For security reasons, the Flash controller allows only a single page to be opened for write/ erase. When writing multiple Flash pages, the flash controller must go through the unlock sequence again to select another page.

Flash Control Register Definitions

This section defines the features of the following Flash Control registers.

Flash Control Register: see page 153

Flash Status Register: see page 155

Flash Page Select Register: see page 156

Flash Sector Protect Register: see page 157

Flash Frequency High and Low Byte Registers: see page 157

Flash Control Register

The Flash Controller must be unlocked using the Flash Control (FCTL) Register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control Register unlocks the Flash Controller. When the Flash Controller is unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the appropriate enable command to the FCTL. Page Erase applies only to the active page selected in Flash Page Select Register. Mass Erase is enabled only through the On-Chip

ADC Calibration Data

Table 96. ADC Calibration Bits

Bit	7	6	5	4	3	2	1	0
Field				ADC	_CAL			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	Information Page Memory 0060H–007DH							
Noto: II -	I Inchanged h	W Reset R/M	/ - Road/Writ	۰ ۵				

Note: U = Unchanged by Reset. R/W = Read/Write.

Bit Description

[7:0] Analog-to-Digital Converter Calibration Values
 ADC_CAL Contains factory-calibrated values for ADC gain and offset compensation. Each of the ten supported modes has one byte of offset calibration and two bytes of gain calibration. These values are read by the software to compensate ADC measurements as described in the Software Compensation Procedure Using Factory Calibration Data section on page 129. The location of each calibration byte is provided in Table 97.

Info Page	Memory			
Address	Address	Compensation Usage	ADC Mode	Reference Type
60	FE60	Offset	Single-Ended Unbuffered	Internal 2.0 V
08	FE08	Gain High Byte	Single-Ended Unbuffered	Internal 2.0 V
09	FE09	Gain Low Byte	Single-Ended Unbuffered	Internal 2.0 V
63	FE63	Offset	Single-Ended Unbuffered	Internal 1.0 V
0A	FE0A	Gain High Byte	Single-Ended Unbuffered	Internal 1.0 V
0B	FE0B	Gain Low Byte	Single-Ended Unbuffered	Internal 1.0 V
66	FE66	Offset	Single-Ended Unbuffered	External 2.0 V
0C	FE0C	Gain High Byte	Single-Ended Unbuffered	External 2.0 V
0D	FE0D	Gain Low Byte	Single-Ended Unbuffered	External 2.0 V
69	FE69	Offset	Single-Ended 1x Buffered	Internal 2.0 V
0E	FE0E	Gain High Byte	Single-Ended 1x Buffered	Internal 2.0 V
0F	FE0F	Gain Low Byte	Single-Ended 1x Buffered	Internal 2.0 V
6C	FE6C	Offset	Single-Ended 1x Buffered	External 2.0 V
10	FE10	Gain High Byte	Single-Ended 1x Buffered	External 2.0 V
11	FE11	Gain Low Byte	Single-Ended 1x Buffered	External 2.0 V
6F	FE6F	Offset	Differential Unbuffered	Internal 2.0 V

Table 97. ADC Calibration Data Location

Temperature Sensor Calibration Data

Table 98. Temperature Sensor Calibration High Byte at 003A (TSCALH)

Bit	7	6	5	4	3	2	1	0
Field				TSC	ALH			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			Info	rmation Pag	e Memory 0	03A		
Note: U =	Unchanged b	by Reset. R/W	/ = Read/Writ	e.				

Bit Description [7:0] **Temperature Sensor Calibration High Byte** TSCALH The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibra-

tion value. For more details, see Temperature Sensor Operation on page 139.

Table 99. Temperature Sensor Calibration Low Byte at 003B (TSCALL)

Bit	7	6	5	4	3	2	1	0
Field		TSCALL						
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	Information Page Memory 003B							
Note: U =	Unchanged b	y Reset. R/W	/ = Read/Writ	e.				

Bit Description

[7:0]	Temperature Sensor Calibration Low Byte
TSCALL	The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibra-
	tion value. For usage details, see the Temperature Sensor Operation section on page 144.

Z8 Encore! XP[®] F082A Series Product Specification

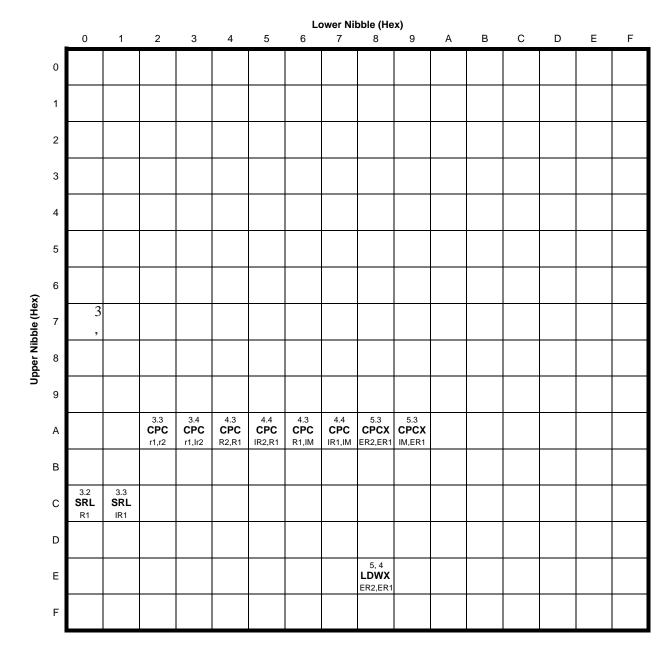


Figure 32. Second Opcode Map after 1FH

ning (Continued)	

Table 139. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)

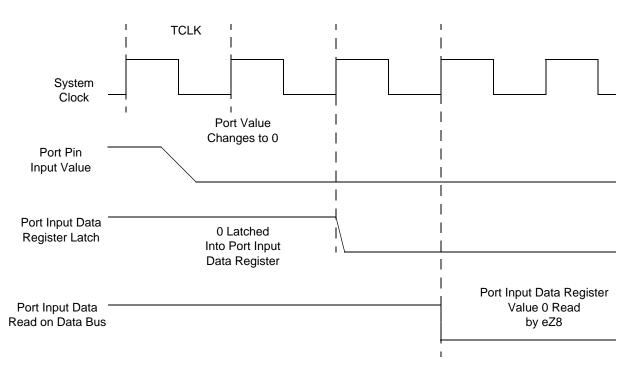
V_{DD} = 3.0 V to 3.6 V T_A = 0°C to +70°C (unless otherwise stated)

Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
	Continuous Conversion Time	-	256	_	Sys- tem clock cycles	All measurements but temperature sensor
			512			Temperature sensor measurement
	Signal Input Bandwidth	-	10		kHz	As defined by -3 dB point
R _S	Analog Source Impedance ⁴	-	_	10	kΩ	In unbuffered mode
				500	kΩ	In buffered modes
Zin	Input Impedance	-	150		kΩ	In unbuffered mode at 20MHz ⁵
		10	_		MΩ	In buffered modes
Vin	Input Voltage Range	0		V _{DD}	V	Unbuffered Mode
		0.3		V _{DD} -1.1	V	Buffered Modes These values define the range over which the ADC performs within spec; exceeding these values does not cause damage or insta- bility; see DC Charac- teristics for absolute pin voltage limits.

Notes:

1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.

2. Devices are factory calibrated at V_{DD} = 3.3 V and T_A = +30°C, so the ADC is maximally accurate under these conditions.


3. LSBs are defined assuming 10-bit resolution.

- 4. This is the maximum recommended resistance seen by the ADC input pin.
- 5. The input impedance is inversely proportional to the system clock frequency.

240

General Purpose I/O Port Input Data Sample Timing

Figure 34 displays timing of the GPIO Port input sampling. The input value on a GPIO port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

Figure 34. Port Input Sample Timing

Table 143. GPIO Port Input Timing

		Delay (ns)	
Parameter	Abbreviation	Minimum	Maximum
T _{S_PORT}	Port Input Transition to X _{IN} Rise Setup Time (not pictured)	5	-
T _{H_PORT}	X _{IN} Rise to Port Input Transition Hold Time (not pictured)	0	-
T _{SMR}	GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO port pins enabled as SMR sources)	1 μs	

Packaging

Zilog's Product Line of MCUs includes the Z8F011A, Z8F012A, Z8F021A, Z8F022A, Z8F041A, Z8F042A, Z8F081A and Z8F082A devices, which are available in the following packages:

- 8-pin Plastic Dual-Inline Package (PDIP)
- 8-Pin Quad Flat No-Lead Package (QFN)/MLF-S¹
- 8-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Small Shrink Outline Package (SSOP)
- 20-pin Plastic Dual-Inline Package (PDIP)
- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Small Shrink Outline Package (SSOP)
- 28-pin Plastic Dual-Inline Package (PDIP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

^{1.} The footprint of the QFN)/MLF-S package is identical to that of the 8-pin SOIC package, but with a lower profile.