

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f022aph020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description

The Z8 Encore! XP F082A Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information about physical package specifications, see the <u>Packaging</u> chapter on page 245.

Available Packages

The following package styles are available for each device in the Z8 Encore! XP F082A Series product line:

- SOIC: 8-, 20- and 28-pin
- PDIP: 8-, 20- and 28-pin
- SSOP: 20- and 28- pin
- QFN 8-pin (MLF-S, a QFN-style package with an 8-pin SOIC footprint)

In addition, the Z8 Encore! XP F082A Series devices are available both with and without advanced analog capability (ADC, temperature sensor and op amp). Devices Z8F082A, Z8F042A, Z8F022A and Z8F012A contain the advanced analog, while devices Z8F081A, Z8F041A, Z8F021A and Z8F011A do not have the advanced analog capability.

Pin Configurations

Figure 2 through Figure 4 display the pin configurations for all the packages available in the Z8 Encore! XP F082A Series. See <u>Table 2</u> on page 10 for a description of the signals. The analog input alternate functions (ANA*x*) are not available on the Z8F081A, Z8F041A, Z8F021A and Z8F011A devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts and are replaced by PB6 and PB7.

At reset, all Port A, B and C pins default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general purpose input ports until programmed otherwise. At powerup, the PD0 pin defaults to the **RESET** alternate function.

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

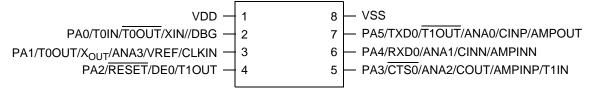


Figure 2. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP Package

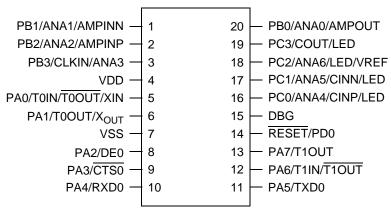


Figure 3. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Package

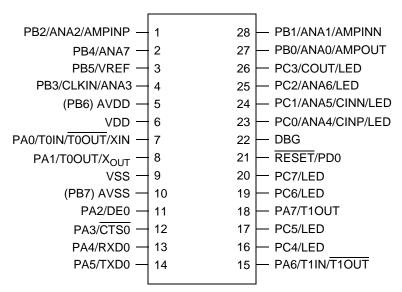


Figure 4. Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Package

Reset, Stop Mode Recovery and Low Voltage Detection

The Reset Controller within the Z8 Encore! XP F082A Series controls Reset and Stop Mode Recovery operation and provides indication of low supply voltage conditions. In typical operation, the following events cause a Reset:

- Power-On Reset (POR)
- Voltage Brown-Out (VBO)
- Watchdog Timer time-out (when configured by the WDT_RES Flash option bit to initiate a reset)
- External **RESET** pin assertion (when the alternate **RESET** function is enabled by the GPIO Register)
- On-chip debugger initiated Reset (OCDCTL[0] set to 1)

When the device is in STOP Mode, a Stop Mode Recovery is initiated by either of the following occurrences:

- Watchdog Timer time-out
- GPIO Port input pin transition on an enabled Stop Mode Recovery source

The low voltage detection circuitry on the device (available on the 8-pin product versions only) performs the following functions:

- Generates the VBO reset when the supply voltage drops below a minimum safe level.
- Generates an interrupt when the supply voltage drops below a user-defined level (8-pin devices only).

Reset Types

The Z8 Encore! XP F082A Series provides several different types of Reset operation. Stop Mode Recovery is considered as a form of Reset. Table 8 lists the types of Reset and their operating characteristics. The System Reset is longer if the external crystal oscillator is enabled by the Flash option bits, allowing additional time for oscillator start-up.

operational amplifier (LPO) is OFF. To use the LPO, clear the LPO bit, turning it ON. Clearing this bit might interfere with normal ADC measurements on ANA0 (the LPO output). This bit enables the amplifier even in STOP Mode. If the amplifier is not required in STOP Mode, disable it. Failure to perform this results in STOP Mode currents greater than specified.

Note: This register is only reset during a POR sequence. Other system reset events do not affect it.

Bit	7	6	5	4	3	2	1	0		
Field	LPO	Rese	erved	VBO	TEMP	ADC	COMP	Reserved		
RESET	1	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				F8	ОH		•	·		
Bit	Descriptio	Description								
[7] LPO		· ·		r Disable ren in STOP	Mode).					
[6:5]	Reserved These bits a	are reserved	I and must b	pe programn	ned to 00.					
[4] VBO		nabled.			both enable	e the VBO fo	or the VBO t	to be active.		
[3] TEMP	Temperature Sensor Disable 0 = Temperature Sensor enabled. 1 = Temperature Sensor disabled.									
[2] ADC	Analog-to-Digital Converter Disable 0 = Analog-to-Digital Converter enabled. 1 = Analog-to-Digital Converter disabled.									
[1] COMP	Comparator Disable 0 = Comparator is enabled. 1 = Comparator is disabled.									
[0]	Reserved This bit is re	eserved and	must be pr	ogrammed t	o 0.					

Table 13. Power Control Register 0 (PWRCTL0)

66

IRQ2ENH[<i>x</i>]	IRQ2ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Medium
1	1	Level 3	High

Table 44. IRQ2 Enable and Priority Encoding

Table 45. IRQ2 Enable High Bit Register (IRQ2ENH)

Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FC7H						

Bit	Description
[7:4]	Reserved These bits are reserved and must be programmed to 0000.
[3] C3ENH	Port C3 Interrupt Request Enable High Bit
[2] C2ENH	Port C2 Interrupt Request Enable High Bit
[1] C1ENH	Port C1 Interrupt Request Enable High Bit
[0] C0ENH	Port C0 Interrupt Request Enable High Bit

Watchdog Timer

The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults and other system-level problems which may place the Z8 Encore! XP F082A Series devices into unsuitable operating states. The features of Watchdog Timer include:

- On-chip RC oscillator
- A selectable time-out response: reset or interrupt
- 24-bit programmable time-out value

Operation

The Watchdog Timer is a one-shot timer that resets or interrupts the Z8 Encore! XP F082A Series devices when the WDT reaches its terminal count. The Watchdog Timer uses a dedicated on-chip RC oscillator as its clock source. The Watchdog Timer operates in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash option bit. The WDT_AO bit forces the Watchdog Timer to operate immediately upon reset, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is described by the following equation:

WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT reload value must not be set to values below 000004H. Table 58 provides information about approximate time-out delays for the minimum and maximum WDT reload values.

WDT Reload Value	WDT Reload Value		e Time-Out Delay VDT oscillator frequency)
(Hex)	(Decimal)	Typical	Description
000004	4	400 μs	Minimum time-out delay
FFFFF	16,777,215	28 minutes	Maximum time-out delay

Table 58. Watchdog Timer Approximate Time-Out Delays

into the Watchdog Timer Reload registers results in a one-second time-out at room temperature and 3.3V supply voltage. Time-outs other than one second may be obtained by scaling the calibration values up or down as required.

Note: The Watchdog Timer accuracy still degrades as temperature and supply voltage vary. See <u>Table 137</u> on page 235 for details.

Watchdog Timer Control Register Definitions

This section defines the features of the following Watchdog Timer Control registers.

Watchdog Timer Control Register (WDTCTL): see page 96

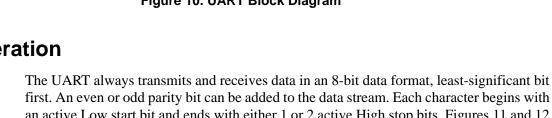
Watchdog Timer Reload Upper Byte Register (WDTU): see page 97

Watchdog Timer Reload High Byte Register (WDTH): see page 97

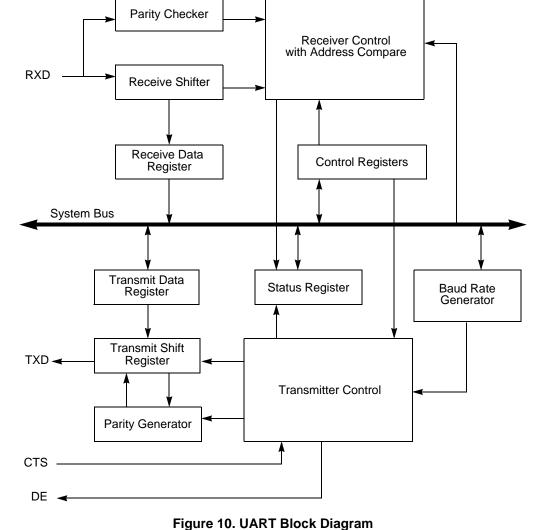
Watchdog Timer Reload Low Byte Register (WDTL): see page 98

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) Register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL Register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL Register address produce no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the reload registers. This register address is shared with the read-only Reset Status Register.


Bit	7	6	5	4	3	2	1	0
Field	WDTUNLK							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	FF0H							
Note: X =	Undefined.							

DIL	Description
[7:0]	Watchdog Timer Unlock
WDTUNLK	The software must write the correct unlocking sequence to this register before it is allowed
	to modify the contents of the Watchdog Timer reload registers.


Description

Dit

first. An even or odd parity bit can be added to the data stream. Each character begins with an active Low start bit and ends with either 1 or 2 active High stop bits. Figures 11 and 12 display the asynchronous data format employed by the UART without parity and with parity, respectively.

- Set or clear the CTSE bit to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin
- 6. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data Register is empty (indicated by a 1). If empty, continue to <u>Step 7</u>. If the Transmit Data Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data Register becomes available to receive new data.
- 7. Write the UART Control 1 Register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data Register. The transmitter automatically transfers the data to the Transmit Shift Register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR Mode is enabled.
- 11. To transmit additional bytes, return to <u>Step 5</u>.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data Register to accept new data for transmission. Observe the following steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) Mode functions, if MULTIPROCESSOR Mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR Mode.
- 7. Write to the UART Control 0 Register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission
 - Enable parity, if appropriate and if MULTIPROCESSOR Mode is not enabled and select either even or odd parity

Bit	7	6	5	4	3	2	1	0
Field		TXD						
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	F40H							
Note: X = Undefined.								

Table 67. UART Transmit Data Register (U0TXD)

Bit	Description
[7:0]	Transmit Data
TXD	UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) Register, shown in Table 68. The read-only UART Receive Data Register shares a Register File address with the Write-only UART Transmit Data Register.

Table 68	. UART	Receive	Data	Register	(U0RXD)
----------	--------	---------	------	----------	---------

Bit	7	6	5	4	3	2	1	0	
Field	RXD								
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
Address	F40H								
Note: X = Undefined.									
Bit Description									

Dit	Description
[7:0]	Receive Data
RXD	UART receiver data byte from the RXDx pin.

UART Address Compare Register

The UART Address Compare (UxADDR) Register stores the multi-node network address of the UART (see Table 69). When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

Infrared Encoder/Decoder

Z8 Encore! XP F082A Series products contain a fully-functional, high-performance UART to Infrared Encoder/Decoder (endec). The infrared endec is integrated with an onchip UART to allow easy communication between the Z8 Encore! XP MCU and IrDA Physical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers and other infrared enabled devices.

Architecture

Figure 16 displays the architecture of the infrared endec.

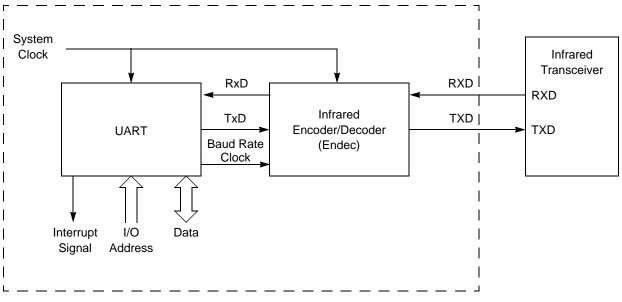


Figure 16. Infrared Data Communication System Block Diagram

Operation

When the infrared endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver through the TXD pin. Likewise, data received from the infrared transceiver is passed to the infrared endec through the RXD pin, decoded by the infrared endec and passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

Z8 Encore! XP[®] F082A Series Product Specification

125

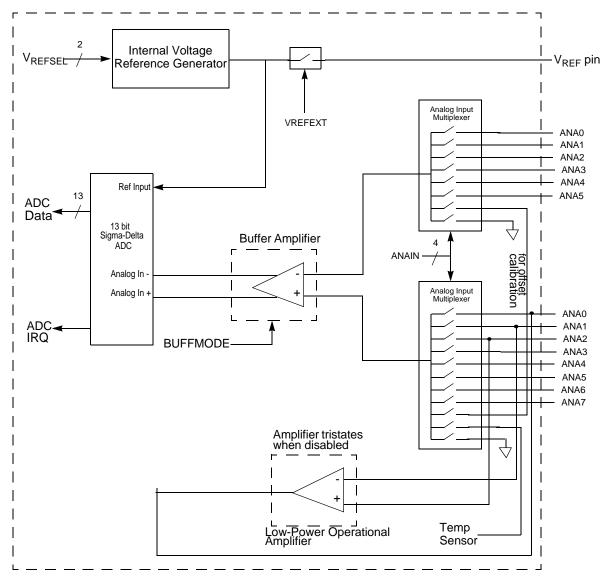


Figure 19. Analog-to-Digital Converter Block Diagram

Operation

In both SINGLE-ENDED and DIFFERENTIAL modes, the effective output of the ADC is an 11-bit, signed, two's complement digital value. In DIFFERENTIAL Mode, the ADC can output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-ENDED Mode, the output generally ranges from 0 to +1023, but offset errors can cause small negative values.

Trim Bit Address 0004H

Table 95. Trim Option Bits at 0004H

Bit	7	6	5	4	3	2	1	0	
Field	Reserved								
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	Information Page Memory 0024H								
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.								

Bit Description

[7:0] Reserved

These bits are reserved; altering this register may result in incorrect device operation.

Zilog Calibration Data

This section briefly describes the features of the following Flash option bit calibration registers.

ADC Calibration Data: see page 169

Temperature Sensor Calibration Data: see page 171

Watchdog Timer Calibration Data: see page 172

Serialization Data: see page 173

Randomized Lot Identifier: see page 174

Byte Write

To write a byte to the NVDS array, the user code must first push the address, then the data byte onto the stack. The user code issues a CALL instruction to the address of the byte-write routine (0x10B3). At the return from the sub-routine, the write status byte resides in working register R0. The bit fields of this status byte are defined in Table 106. The contents of the status byte are undefined for write operations to illegal addresses. Also, user code must pop the address and data bytes off the stack.

The write routine uses 13 bytes of stack space in addition to the two bytes of address and data pushed by the user. Sufficient memory must be available for this stack usage.

Because of the Flash memory architecture, NVDS writes exhibit a nonuniform execution time. In general, a write takes $251 \mu s$ (assuming a 20MHz system clock). Every 400 to 500 writes, however, a maintenance operation is necessary. In this rare occurrence, the write takes up to 61 ms to complete. Slower system clock speeds result in proportionally higher execution times.

NVDS byte writes to invalid addresses (those exceeding the NVDS array size) have no effect. Illegal write operations have a $2\mu s$ execution time.

Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		RCPY	PF	AWE	DWE
Default Value	0	0	0	0	0	0	0	0

Table 106. Write Status Byte

Bit	Description
[7:4]	Reserved These bits are reserved and must be programmed to 0000.
[3]	Recopy Subroutine Executed
RCPY	A recopy subroutine was executed. These operations take significantly longer than a normal write operation.
[2]	Power Failure Indicator
PF	A power failure or system reset occurred during the most recent attempted write to the NVDS array.
[1]	Address Write Error
AWE	An address byte failure occurred during the most recent attempted write to the NVDS array.
[0]	Data Write Error
DWE	A data byte failure occurred during the most recent attempted write to the NVDS array.

Operation	Minimum Latency	Maximum Latency
Read (16 byte array)	875	9961
Read (64 byte array)	876	8952
Read (128 byte array)	883	7609
Write (16 byte array)	4973	5009
Write (64 byte array)	4971	5013
Write (128 byte array)	4984	5023
Illegal Read	43	43
Illegal Write	31	31

Table 107. NVDS Read Time

If NVDS read performance is critical to your software architecture, you can optimize your code for speed. Try the first suggestion below before attempting the second.

- 1. Periodically refresh all addresses that are used. The optimal use of NVDS in terms of speed is to rotate the writes evenly among all addresses planned to use, bringing all reads closer to the minimum read time. Because the minimum read time is much less than the write time, however, actual speed benefits are not always realized.
- 2. Use as few unique addresses as possible to optimize the impact of refreshing, plus minimize the requirement for it.

Serial Break leaves the device in DEBUG Mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

OCD Unlock Sequence (8-Pin Devices Only)

Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to access the DBG pin. If this sequence is not completed during a system reset, then the PA0/DBG pin functions only as a GPIO pin.

The following sequence unlocks the DBG pin:

- 1. Hold PA2/RESET Low.
- 2. Wait 5ms for the internal reset sequence to complete.
- 3. Send the following bytes serially to the debug pin:

```
DBG \leftarrow 80H (autobaud)
DBG \leftarrow EBH
DBG \leftarrow 5AH
DBG \leftarrow 70H
DBG \leftarrow CDH (32-bit unlock key)
```

- Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the DBG pin on the 20-/28-pin device. To enter DEBUG Mode, reautobaud and write 80H to the OCD Control Register (see the <u>On-Chip Debugger Commands</u> section on page 186).
- **Caution:** Between <u>Steps 3</u> and <u>4</u>, there is an interval during which the 8-pin device is neither in RE-SET nor DEBUG Mode. If a device has been erased or has not yet been programmed, all program memory bytes contain FFH. The CPU interprets this value as an illegal instruction; therefore some irregular behavior can occur before entering DEBUG Mode, and the register values after entering DEBUG Mode will differ from their specified reset values. However, none of these irregularities prevent the programming of Flash memory. Before beginning system debug, Zilog recommends that some legal code be programmed into the 8-pin device and that a RESET occurs.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters DEBUG Mode and idles the eZ8 CPU. If Breakpoints are not

DBG \leftarrow Size[15:8] DBG \leftarrow Size[7:0] DBG \leftarrow 1-65536 data bytes

Read Data Memory (0DH). The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG Mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

Read Program Memory CRC (0EH). The Read Program Memory CRC command computes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the 16bit CRC-CCITT polynomial. If the device is not in DEBUG Mode, this command returns FFFFH for the CRC value. Unlike most other OCD Read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads the Program Memory, calculates the CRC value and returns the result. The delay is a function of the Program Memory size and is approximately equal to the system clock period multiplied by the number of bytes in the Program Memory.

DBG \leftarrow 0EH DBG \rightarrow CRC[15:8] DBG \rightarrow CRC[7:0]

Step Instruction (10H). The Step Instruction command steps one assembly instruction at the current Program Counter (PC) location. If the device is not in DEBUG Mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

DBG \leftarrow 10H

Stuff Instruction (11H). The Stuff Instruction command steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the instruction are read from Program Memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a Breakpoint. If the device is not in DEBUG Mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

DBG ← 11H DBG ← opcode[7:0]

Execute Instruction (12H). The Execute Instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over Breakpoints. The number of bytes to send for the instruction depends on the opcode. If the device is not

eZ8 CPU Instruction Set

This chapter describes the following features of the eZ8 CPU instruction set: <u>Assembly Language Programming Introduction</u>: see page 204 <u>Assembly Language Syntax</u>: see page 205 <u>eZ8 CPU Instruction Notation</u>: see page 206 <u>eZ8 CPU Instruction Classes</u>: see page 207 <u>eZ8 CPU Instruction Summary</u>: see page 212

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (opcodes and operands) to represent the instructions themselves. The opcodes identify the instruction while the operands represent memory locations, registers, or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is detailed in the following example.

		V _{DD} = 2.7 V to 3.6 V T _A = -40°C to +105°C				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
Av	Open loop voltage gain		80		dB	
GBW	Gain/Bandwidth product		500		kHz	
РМ	Phase Margin		50		deg	Assuming 13pF load capacitance.
V _{osLPO}	Input Offset Voltage		<u>+</u> 1	<u>+</u> 4	mV	
V _{osLPO}	Input Offset Voltage (Tem- perature Drift)		1	10	μV/C	
V _{IN}	Input Voltage Range	0.3		V _{DD} -1	V	
V _{OUT}	Output Voltage Range	0.3		V _{DD} -1	V	Ι _{ΟUT} = 45μΑ.

Table 140. Low Power Operational Amplifier Electrical Characteristics

Table 141. Comparator Electrical Characteristics

			= 2.7 V to -40°C to +			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{OS}	Input DC Offset		5		mV	
V _{CREF}	Programmable Internal Reference Voltage		<u>+</u> 5		%	20- and 28-pin devices.
			<u>+</u> 3		%	8-pin devices.
T _{PROP}	Propagation Delay		200		ns	
V _{HYS}	Input Hysteresis		4		mV	
V _{IN}	Input Voltage Range	V _{SS}		V _{DD} -1	V	

Z8 Encore! XP[®] F082A Series Product Specification

UARTx control 1 (UxCTL1) 112 UARTx receive data (UxRXD) 116 UARTx status 0 (UxSTAT0) 114 UARTx status 1 (UxSTAT1) 115 UARTx transmit data (UxTXD) 116 Watchdog Timer control (WDTCTL) 30, 96, 141, 196 Watchdog Timer reload high byte (WDTH) 97 Watchdog Timer reload low byte (WDTL) 98 Watchdog Timer reload upper byte (WDTU) 97 register file 15 register pair 206 register pointer 207 reset and stop mode characteristics 23 and Stop Mode Recovery 22 carry flag 209 sources 24 **RET 211** return 211 RL 211 **RLC 211** rotate and shift instuctions 211 rotate left 211 rotate left through carry 211 rotate right 211 rotate right through carry 211 **RP 207** RR 206, 211

rr 206 RRC 211

S

SBC 208 SCF 209, 210 second opcode map after 1FH 225 set carry flag 209, 210 set register pointer 210 shift right arithmatic 211 shift right logical 211 signal descriptions 10 single-shot conversion (ADC) 126 software trap 211 source operand 207 SP 207 SRA 211 src 207 SRL 211 **SRP 210** stack pointer 207 **STOP 210** STOP mode 32 stop mode 210 Stop Mode Recovery sources 27 using a GPIO port pin transition 28 using Watchdog Timer time-out 28 stop mode recovery sources 29 using a GPIO port pin transition 29 **SUB 208** subtract 208 subtract - extended addressing 208 subtract with carry 208 subtract with carry - extended addressing 208 **SUBX 208 SWAP 211** swap nibbles 211 symbols, additional 207

Т

PRELIMINARY

TCM 209 TCMX 209 test complement under mask 209 test complement under mask - extended addressing 209 test under mask 209 test under mask - extended addressing 209 timer signals 10 timers 70 architecture 70 block diagram 71 CAPTURE mode 79, 80, 87, 88 CAPTURE/COMPARE mode 83, 88 COMPARE mode 81, 87