Zilog - Z8F022AQB020SG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-QFN (5x6)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f022aqb020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LED Drive Level Low Register 54
GPIO Mode Interrupt Controller
Interrupt Vector Listing
Architecture
Operation
Master Interrupt Enable
Interrupt Vectors and Priority 58
Interrupt Assertion
Software Interrupt Assertion 59
Watchdog Timer Interrupt Assertion 59
Interrupt Control Register Definitions
Interrupt Request 0 Register 60
Interrupt Request 1 Register
Interrupt Request 2 Register
IRQ0 Enable High and Low Bit Registers
IRQ1 Enable High and Low Bit Registers64
IRQ2 Enable High and Low Bit Registers
Interrupt Edge Select Register 67
Shared Interrupt Select Register 68
Interrupt Control Register 69
Timers
Architecture
Operation
Timer Operating Modes
Reading the Timer Count Values
Timer Pin Signal Operation
Timer Control Register Definitions
Timer 0–1 Control Registers
Timer 0–1 High and Low Byte Registers
Timer Reload High and Low Byte Registers
Timer 0–1 PWM High and Low Byte Registers
Watchdog Timer
Operation
Watchdog Timer Refresh
Watchdog Timer Time-Out Response
Watchdog Timer Reload Unlock Sequence
Watchdog Timer Calibration
Watchdog Timer Control Register Definitions
Watchdog Timer Control Register
Watchdog Timer Reload Upper, High and Low Byte Registers

vi

Table 4. Pin Characteristics (8-Pin Devices)								
Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull-up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5V Tolerance
PA0/DBG	I/O	I (but can change during reset if key sequence detected)	N/A	Yes	Programma- ble Pull-up	Yes	Yes, Programma- ble	Yes, unless pull-ups enabled
PA1	I/O	I	N/A	Yes	Programma- ble Pull-up	Yes	Yes, Programma- ble	Yes, unless pull-ups enabled
RESET/ PA2	I/O	I/O (defaults to RESET)	Low (in Reset mode)	Yes	Programma- ble for PA2; always on for RESET	Yes	Programma- ble for PA2; always on for RESET	Yes, unless pull-ups enabled
PA[5:3]	I/O	I	N/A	Yes	Programma- ble Pull-up	Yes	Yes, Programma- ble	Yes, unless pull-ups enabled
V_{DD}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Port A–D Control Registers

The Port A–D Control registers set the GPIO port operation. The value in the corresponding Port A–D Address Register determines which subregister is read from or written to by a Port A–D Control Register transaction; see Table 20.

Bit	7	6	5	4	3	2	1	0
Field	PCTL							
RESET				00)H			
R/W	R/W R/W R/W R/W R/W R/W R/W							
Address	FD1H, FD5H, FD9H, FDDH							

Table 20. Port A–D Control Registers (PxCTL)

Bit	Description
[7:0]	Port Control
PCTLx	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Data Direction Subregisters

The Port A–D Data Direction subregister is accessed through the Port A–D Control Register by writing 01H to the Port A–D Address Register; see Table 21.

Bit	7	6	5	4	3	2	1	0
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register							

Table 21. Port A–D Data Direction Subregisters (PxDD)

Bit	Description
[7:0]	Data Direction
DDx	These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting.
	0 = Output. Data in the Port A–D Output Data Register is driven onto the port pin.
	 1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register. The output driver is tristated.
Note:	x indicates the specific GPIO port pin number (7–0).

Port A–D Alternate Function Subregisters

The Port A–D Alternate Function Subregister, shown in Table 22, is accessed through the Port A–D Control Register by writing 02H to the Port A–D Address Register. The Port A–D Alternate Function subregisters enable the alternate function selection on pins. If disabled, pins functions as GPIO. If enabled, select one of four alternate functions using alternate function set subregisters 1 and 2 as described in the the Port A–D Alternate Functions section on page 37 and the Port A–D Alternate Function Set 2 Subregisters section on page 51. See the <u>GPIO Alternate Functions</u> section on page 37 to determine the alternate function associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated alternate function. Failure to follow this guideline can result in unpredictable operation.

Bit	7	6	5	4	3	2	1	0
Field	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0
RESET	00H (Ports A–C); 01H (Port D); 04H (Port A of 8-pin device)							
R/W	R/W							
Address	If 02H in Port A–D Address Register, accessible through the Port A–D Control Register							

Bit	Description
[7:0]	Port Alternate Function Enabled
AFx	0 = The port pin is in normal mode and the DDx bit in the Port A–D Data Direction subregister determines the direction of the pin.
	1 = The alternate function selected through Alternate Function Set subregisters is enabled. Port pin operation is controlled by the alternate function.

Note: x indicates the specific GPIO port pin number (7-0).

Port A–D Output Control Subregisters

The Port A–D Output Control Subregister, shown in Table 23, is accessed through the Port A–D Control Register by writing 03H to the Port A–D Address Register. Setting the bits in the Port A–D Output Control subregisters to 1 configures the specified port pins for opendrain operation. These subregisters affect the pins directly and, as a result, alternate functions are also affected.

Bit	7	6	5	4	3	2	1	0
Field	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 07H in Port A–D Address Register, accessible through the Port A–D Control Register							
Bit	Description							
[7:0]	•	ate Functio	on Set 1					

Table 27. Port A–D Alternate Function Set	1 Subregisters (PxAFS1)

Bit	Description
[7:0]	Port Alternate Function Set 1
PAFSx	0 = Port Alternate Function selected, as defined in Tables 15 and 16 on page 43.
	1 = Port Alternate Function selected, as defined in Tables 15 and 16 on page 43.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Alternate Function Set 2 Subregisters

The Port A–D Alternate Function Set 2 Subregister, shown in Table 28, is accessed through the Port A–D Control Register by writing 08H to the Port A–D Address Register. The Alternate Function Set 2 subregisters selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in Table 16 on page 43.

Note: Alternate function selection on the port pins must also be enabled. See the Port A–D Alternate Function Subregisters section on page 47 for details.

Bit	7	6	5	4	3	2	1	0	
Field	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20	
RESET	00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	If 08H ir	If 08H in Port A–D Address Register, accessible through the Port A–D Control Register							

Bit Description

[7] **Port Alternate Function Set 2**

- PAFS2x 0 = Port Alternate Function selected, as defined in Table 16.
 - 1 = Port Alternate Function selected, as defined in Table 16.

Note: x indicates the specific GPIO port pin number (7-0).

51

Architecture

Figure 8 displays the interrupt controller block diagram.

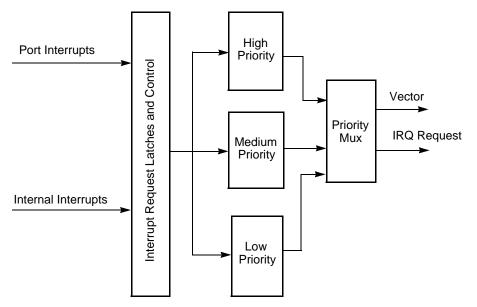


Figure 8. Interrupt Controller Block Diagram

Operation

This section describes the operational aspects of the following functions.

Master Interrupt Enable: see page 57

Interrupt Vectors and Priority: see page 58

Interrupt Assertion: see page 58

Software Interrupt Assertion: see page 59

Watchdog Timer Interrupt Assertion: see page 59

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control Register globally enables and disables interrupts. Interrupts are globally enabled by any of the following actions:

- Execution of an EI (Enable Interrupt) instruction
- Execution of an IRET (Return from Interrupt) instruction

Timers

These Z8 Encore! XP F082A Series products contain two 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timers' feature include:

- 16-bit reload counter
- Programmable prescaler with prescale values from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency
- Timer output pin
- Timer interrupt

In addition to the timers described in this chapter, the Baud Rate Generator of the UART (if unused) may also provide basic timing functionality. For information about using the Baud Rate Generator as an additional timer, see the <u>Universal Asynchronous Receiver/</u> <u>Transmitter</u> chapter on page 99.

Architecture

Figure 9 displays the architecture of the timers.

enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Observe the following steps for configuring a timer for COUNTER Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer.
 - Configure the timer for COUNTER Mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER Mode. After the first timer Reload in COUNTER Mode, counting always begins at the reset value of 0001H. In COUNTER Mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control Register to enable the timer.

In COUNTER Mode, the number of Timer Input transitions since the timer start is computed via the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value-Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER Mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPAR-ATOR COUNTER Mode, the prescaler is disabled.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers, shown in Tables 54 and 55, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte Register are stored in a temporary holding register. When a write to the Timer Reload Low Byte Register occurs, the temporary holding register value is written to the Timer High Byte Register. This operation allows simultaneous updates of the 16-bit Timer reload value.

In COMPARE Mode, the Timer Reload High and Low Byte registers store the 16-bit Compare value.

Bit	7	6	5	4	3	2	1	0		
Field	TRH									
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	F02H, F0AH									

Table 54. Timer 0–1 Reload High Byte Register (TxRH)

Bit	7	6	5	4	3	2	1	0		
Field	TRL									
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	F03H, F0BH									

Bit	Description
[7:0]	Timer Reload Register High and Low
TRH, TRL	These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the max- imum count value which initiates a timer reload to 0001H. In COMPARE Mode, these two bytes form the 16-bit Compare value.

into the Watchdog Timer Reload registers results in a one-second time-out at room temperature and 3.3V supply voltage. Time-outs other than one second may be obtained by scaling the calibration values up or down as required.

Note: The Watchdog Timer accuracy still degrades as temperature and supply voltage vary. See <u>Table 137</u> on page 235 for details.

Watchdog Timer Control Register Definitions

This section defines the features of the following Watchdog Timer Control registers.

Watchdog Timer Control Register (WDTCTL): see page 96

Watchdog Timer Reload Upper Byte Register (WDTU): see page 97

Watchdog Timer Reload High Byte Register (WDTH): see page 97

Watchdog Timer Reload Low Byte Register (WDTL): see page 98

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) Register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL Register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL Register address produce no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the reload registers. This register address is shared with the read-only Reset Status Register.

Bit	7	6	5	4	3	2	1	0		
Field	WDTUNLK									
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	W	W	W	W	W	W	W	W		
Address	FF0H									
Note: X =	Undefined.									

DIL	Description
[7:0]	Watchdog Timer Unlock
WDTUNLK	The software must write the correct unlocking sequence to this register before it is allowed
	to modify the contents of the Watchdog Timer reload registers.

Description

Dit

Bit	7	6	5	4	3	2	1	0			
Field	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address				F4	3H						
Bit	Descript	Description									
[6] MPEN	 MD[1,0] If MULTIPROCESSOR (9-bit) Mode is enabled: 00 = The UART generates an interrupt request on all received bytes (data and address). 01 = The UART generates an interrupt request only on received address bytes. 10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare Register and on all successive data bytes until an address mismatch occurs. 11 = The UART generates an interrupt request on all received data bytes for which the most recent address byte matched the value in the Address Compare Register. MULTIPROCESSOR (9-bit) Enable This bit is used to enable MULTIPROCESSOR (9-bit) Mode. 0 = Disable MULTIPROCESSOR (9-bit) Mode. 										
[4] MPBT	Multipro This bit is used by tion. 0 = Send	 1 = Enable MULTIPROCESSOR (9-bit) Mode. Multiprocessor Bit Transmit This bit is applicable only when MULTIPROCESSOR (9-bit) Mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data informa- tion. 0 = Send a 0 in the multiprocessor bit location of the data stream (data byte). 1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).									
[3] DEPOL	Driver E 0 = DE s	 1 = Send a 1 in the multiprocessor bit location of the data stream (address byte). Driver Enable Polarity 0 = DE signal is Active High. 1 = DE signal is Active Low. 									

Table 64. UART Control 1 Register (U0CTL1)

Table 67. UART Transmit Data Register (U0TXD)	

Bit	7	6	5	4	3	2	1	0
Field				Tک	(D			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	F40H							
Note: X =	Undefined.							

Bit	Description
[7:0]	Transmit Data
TXD	UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) Register, shown in Table 68. The read-only UART Receive Data Register shares a Register File address with the Write-only UART Transmit Data Register.

Table 68. UART Receive	Data Register	(U0RXD)
------------------------	---------------	---------

Bit	7	6	5	4	3	2	1	0
Field				RX	(D			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address		F40H						
Note: X =	Undefined.	ndefined.						
Bit	Descriptio	n						

[7:0]	Receive Data
RXD	UART receiver data byte from the RXDx pin.

UART Address Compare Register

The UART Address Compare (UxADDR) Register stores the multi-node network address of the UART (see Table 69). When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a program or erase operation on Flash memory, you must first configure the Flash Frequency High and Low Byte registers. The Flash Frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 32kHz (32768Hz) through 20MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in kHz). This value is calculated using the following equation:

 $FFREQ[15:0] = \frac{System Clock Frequency (Hz)}{1000}$

Caution: Flash programming and erasure are not supported for system clock frequencies below 32kHz (32768Hz) or above 20MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! XP F082A Series devices.

Flash Code Protection Against External Access

The user code contained within the Flash memory can be protected against external access by the on-chip debugger. Programming the FRP Flash option bit prevents reading of the user code with the On-Chip Debugger. See the <u>Flash Option Bits</u> chapter on page 159 and the <u>On-Chip Debugger</u> chapter on page 180 for more information.

Flash Code Protection Against Accidental Program and Erasure

The Z8 Encore! XP F082A Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection Using the Flash Option Bits

The FRP and FWP Flash option bits combine to provide three levels of Flash Program Memory protection, as shown in Table 79. See the <u>Flash Option Bits</u> chapter on page 159 for more information.

150

Table 79. Flash Code Protection Using the Flash Option Bits

FWP	Flash Code Protection Description
0	Programming and erasing disabled for all of Flash Program Mem- ory. In user code programming, Page Erase and Mass Erase are all disabled. Mass Erase is available through the On-Chip Debugger.
1	Programming, Page Erase and Mass Erase are enabled for all of Flash Program Memory.

Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash memory. To program or erase the Flash memory, first write the Page Select Register with the target page. Unlock the Flash Controller by making two consecutive writes to the Flash Control Register with the values 73H and 8CH, sequentially. The Page Select Register must be rewritten with the target page. If the two Page Select writes do not match, the controller reverts to a locked state. If the two writes match, the selected page becomes active. See Figure 22 on page 148 for details.

After unlocking a specific page, you can enable either Page Program or Erase. Writing the value 95H causes a Page Erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control Register locks the Flash Controller. Mass Erase is not allowed in the user code but only in through the Debug Port.

After unlocking a specific page, you can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control Register cause the active page to revert to a locked state.

Sector-Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8 of the total Flash memory size unless this value is smaller than the page size – in which case, the sector and page sizes are equal. On Z8 Encore! F082A Series devices, the sector size is varied according to the Flash memory configuration shown in <u>Table 78</u> on page 146.

The Flash Sector Protect Register can be configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The Flash Sector Protect Register is cleared after reset, and any previously-written protection values are lost. User code must write this register in their initialization routine if they prefer to enable sector protection.

The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register is accessed by writing the Flash Control Regis-

Info Page	Memory			
Address	Address	Compensation Usage	ADC Mode	Reference Type
12	FE12	Positive Gain High Byte	Differential Unbuffered	Internal 2.0 V
13	FE13	Positive Gain Low Byte	Differential Unbuffered	Internal 2.0 V
30	FE30	Negative Gain High Byte	Differential Unbuffered	Internal 2.0 V
31	FE31	Negative Gain Low Byte	Differential Unbuffered	Internal 2.0 V
72	FE72	Offset	Differential Unbuffered	Internal 1.0 V
14	FE14	Positive Gain High Byte	Differential Unbuffered	Internal 1.0 V
15	FE15	Positive Gain Low Byte	Differential Unbuffered	Internal 1.0 V
32	FE32	Negative Gain High Byte	Differential Unbuffered	Internal 1.0 V
33	FE33	Negative Gain Low Byte	Differential Unbuffered	Internal 1.0 V
75	FE75	Offset	Differential Unbuffered	External 2.0 V
16	FE16	Positive Gain High Byte	Differential Unbuffered	External 2.0 V
17	FE17	Positive Gain Low Byte	Differential Unbuffered	External 2.0 V
34	FE34	Negative Gain High Byte	Differential Unbuffered	External 2.0 V
35	FE35	Negative Gain Low Byte	Differential Unbuffered	External 2.0 V
78	FE78	Offset	Differential 1x Buffered	Internal 2.0 V
18	FE18	Positive Gain High Byte	Differential 1x Buffered	Internal 2.0 V
19	FE19	Positive Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
36	FE36	Negative Gain High Byte	Differential 1x Buffered	Internal 2.0 V
37	FE37	Negative Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
7B	FE7B	Offset	Differential 1x Buffered	External 2.0 V
1A	FE1A	Positive Gain High Byte	Differential 1x Buffered	External 2.0 V
1B	FE1B	Positive Gain Low Byte	Differential 1x Buffered	External 2.0 V
38	FE38	Negative Gain High Byte	Differential 1x Buffered	External 2.0 V
39	FE39	Negative Gain Low Byte	Differential 1x Buffered	External 2.0 V

Table 97. ADC Calibration Data Location (Continued)

173

Table 101. Watchdog Calibration Low Byte at 007FH (WDTCALL)

Bit	7	6	5	4	3	2	1	0
Field				WDT	CALL			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			Infor	mation Page	e Memory 00)7FH		
Note: U =	Unchanged b	y Reset. R/W	/ = Read/Write	Э.				

Bit	Description
[7:0]	Watchdog Timer Calibration Low Byte
WDTCALL	The WDTCALH and WDTCALL bytes, when loaded into the Watchdog Timer reload regis-
	ters result in a one second time-out at room temperature and 3.3V supply voltage. To use
	the Watchdog Timer calibration, user code must load WDTU with 0x00, WDTH with WDT-
	CALH and WDTL with WDTCALL.

Serialization Data

Table 102. Serial Number at 001C - 001F (S_NUM)

Bit	7	6	5	4	3	2	1	0
Field				S_N	NUM			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		Information Page Memory 001C-001F						
Note: U =	Unchanged b	by Reset. R/W	/ = Read/Writ	e.				

Bit	Description
[7:0]	Serial Number Byte
S_NUM	The serial number is a unique four-byte binary value. See Table 103.

Table 103. Serialization Data Locations

Info Page Address	Memory Address	Usage
1C	FE1C	Serial Number Byte 3 (most significant).
1D	FE1D	Serial Number Byte 2.
1E	FE1E	Serial Number Byte 1.
1F	FE1F	Serial Number Byte 0 (least significant).

Table 123. CPU Control Instructions (Continued)

Mnemonic	Operands	Instruction					
RCF	—	Reset Carry Flag					
SCF	—	Set Carry Flag					
SRP	SIC	Set Register Pointer					
STOP	—	STOP Mode					
WDT	—	Watchdog Timer Refresh					

Table 124. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto- Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	src	Push using Extended Addressing

Table 125. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
СОМ	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

221

Assembly		Address Mode		Opcode(s)	Flags						Fetch Cycle	Instr. Cycle
Mnemonic	Symbolic Operation	dst src		(Hex)	С	Ζ	S	V D		Н	S	S
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	_	-	4	3
		ER	IM	79							4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	_	-	-	-	-	_	2	6
WDT				5F	_	_	_	_	_	_	1	2
XOR dst, src	$dst \gets dst \ XOR \ src$	r	r	B2	_	*	*	0	_	_	2	3
		r	lr	B3	-						2	4
		R	R	B4							3	3
		R	IR	B5	-						3	4
		R	IM	B6	-						3	3
		IR	IM	B7							3	4
XORX dst, src	$dst \gets dst \ XOR \ src$	ER	ER	B8	_	*	*	0	_	_	4	3
		ER	IM	B9							4	3

Table 128. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

– = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

Electrical Characteristics

The data in this chapter represents all known data prior to qualification and characterization of the F082A Series of products, and is therefore subject to change. Additional electrical characteristics may be found in the individual chapters of this document.

Absolute Maximum Ratings

Stresses greater than those listed in Table 130 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		430	mW	

Table 130. Absolute Maximum Ratings	Table	130.	Absolute	Maximum	Ratings
-------------------------------------	-------	------	----------	---------	---------

Jaquin Munu Lue Z8 Encore! XP F082A	Lash E Series	W V With 11	SO N (B Flas	y 1/0 Lines	Hit Interrupts	e 16-Bit Timers w/PWM	6 4 10-Bit A/D Channels	ici UART with IrDA	D Comparator	Temperature Sensor	Description
Standard Temperatu				-			-	•			
Z8F012APB020SG	1KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F012AQB020SG	1KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F012ASB020SG	1KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F012ASH020SG	1KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F012AHH020SG	1KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F012APH020SG	1KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F012ASJ020SG	1KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F012AHJ020SG	1KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F012APJ020SG	1KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatu	re: –40'	°C to 10	5°C								
Z8F012APB020EG	1KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F012AQB020EG	1KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F012ASB020EG	1KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F012ASH020EG	1KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F012AHH020EG	1KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F012APH020EG	1KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F012ASJ020EG	1KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F012AHJ020EG	1KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F012APJ020EG	1KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package

Table 148. Z8 Encore! XP F082A Series Ordering Matrix