

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	6
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f041apb020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADC Data High Byte Register	. 136 . 137
Low Power Operational Amplifier	. 139 . 139
Comparator	. 140 . 140 . 141
Temperature Sensor Temperature Sensor Operation	. 144 . 144
Flash Memory Architecture Flash Information Area Operation Flash Operation Timing Using the Flash Frequency Registers	. 146 . 146 . 147 . 147 . 149
Flash Code Protection Against External Access Flash Code Protection Against Accidental Program and Erasure Byte Programming	. 149 . 149 151
Dyte Programming Page Erase Mass Erase The information in the programming	. 151 . 152 . 152
Flash Controller Bypass Flash Controller Behavior in DEBUG Mode Flash Control Register Definitions Flash Control Register Definitions	. 152 . 153 . 153
Flash Control Register Flash Status Register	. 153 . 153 . 155
Flash Page Select Register Flash Sector Protect Register Elash Frequency High and Low Byte Registers	. 156 . 157 . 157
Flash Option Bits	. 157
Operation Option Bit Configuration By Reset Option Bit Types	. 159 . 159 . 160
Flash Option Bit Control Register Definitions	. 161 . 161 . 161
Trim Bit Data Register	. 161 . 162 . 162
Flash Program Memory Address 0000HFlash Program Memory Address 0001H	. 162 . 164
Trim Bit Address Space	. 165

Pin Description

The Z8 Encore! XP F082A Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information about physical package specifications, see the <u>Packaging</u> chapter on page 245.

Available Packages

The following package styles are available for each device in the Z8 Encore! XP F082A Series product line:

- SOIC: 8-, 20- and 28-pin
- PDIP: 8-, 20- and 28-pin
- SSOP: 20- and 28- pin
- QFN 8-pin (MLF-S, a QFN-style package with an 8-pin SOIC footprint)

In addition, the Z8 Encore! XP F082A Series devices are available both with and without advanced analog capability (ADC, temperature sensor and op amp). Devices Z8F082A, Z8F042A, Z8F022A and Z8F012A contain the advanced analog, while devices Z8F081A, Z8F041A, Z8F021A and Z8F011A do not have the advanced analog capability.

Pin Configurations

Figure 2 through Figure 4 display the pin configurations for all the packages available in the Z8 Encore! XP F082A Series. See <u>Table 2</u> on page 10 for a description of the signals. The analog input alternate functions (ANA*x*) are not available on the Z8F081A, Z8F041A, Z8F021A and Z8F011A devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts and are replaced by PB6 and PB7.

At reset, all Port A, B and C pins default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general purpose input ports until programmed otherwise. At powerup, the PD0 pin defaults to the **RESET** alternate function.

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

Signal Mnemonic	I/O	Description
Analog		
ANA[7:0]	Ι	Analog Port. These signals are used as inputs to the analog-to-digital converter (ADC).
VREF	I/O	Analog-to-digital converter reference voltage input, or buffered output for internal reference.
Low-Power Operati	ional Ar	nplifier (LPO)
AMPINP/AMPINN	Ι	LPO inputs. If enabled, these pins drive the positive and negative amplifier inputs respectively.
AMPOUT	0	LPO output. If enabled, this pin is driven by the on-chip LPO.
Oscillators		
XIN	I	External Crystal Input. This is the input pin to the crystal oscillator. A crystal can be connected between it and the X_{OUT} pin to form the oscillator. In addition, this pin is used with external RC networks or external clock drivers to provide the system clock.
X _{OUT}	0	External Crystal Output. This pin is the output of the crystal oscillator. A crystal can be connected between it and the XIN pin to form the oscillator.
Clock Input		
CLKIN	Ι	Clock Input Signal. This pin may be used to input a TTL-level signal to be used as the system clock.
LED Drivers		
LED	0	Direct LED drive capability. All port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger		
DBG	I/O	Debug. This signal is the control and data input and output to and from the On-Chip Debugger.
		Caution: The DBG pin is open-drain and requires a pull-up resistor to ensure proper operation.
Notes: 1. PB6 and PB7 are	only ava	ensure proper operation.

Table 2. Signal Descriptions (Continued)

replaced by AV_{DD} and AV_{SS} . 2. The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

	Table 5. 1 III Onaracteristics (20- and 20-pin Devices)										
Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull-up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5 V Tolerance			
AVDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
AVSS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA			
DBG	I/O	I	N/A	Yes	Yes	Yes	Yes	No			
PA[7:0]	I/O	I	N/A	Yes	Programma- ble Pull-up	Yes	Yes, Programma- ble	PA[7:2] unless pul- lups enabled			
PB[7:0]	I/O	I	N/A	Yes	Programma- ble Pull-up	Yes	Yes, Programma- ble	PB[7:6] unless pul- lups enabled			
PC[7:0]	I/O	I	N/A	Yes	Programma- ble Pull-up	Yes	Yes, Programma- ble	PC[7:3] unless pul- lups enabled			
RESET/ PD0	I/O	I/O (defaults to RESET)	Low (in Reset mode)	Yes (PD0 only)	Programma- ble for PD0; alw <u>ays on f</u> or RESET	Yes	Programma- ble for PD0; alw <u>ays on f</u> or RESET	Yes, unless pul- lups enabled			
VDD	N/A	N/A	N/A	N/A			N/A	N/A			
VSS	N/A	N/A	N/A	N/A			N/A	N/A			

Table 3. Pin Characteristics (20- and 28-pin Devices)

Note: PB6 and PB7 are available only in those devices without ADC.

Port A–D Address Registers

The Port A–D Address registers select the GPIO port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO port controls; see Tables 18 and 19.

Bit	7	6	5	4	3	2	1	0
Field	PADDR[7:0]							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		FD0H, FD4H, FD8H, FDCH						

Table 18. Port A–D GPIO Address Registers (PxADDR)

Bit	Description
[7:0]	Port Address
PADDRx	The Port Address selects one of the subregisters accessible through the Port Control Register.
Note: x inc	dicates the specific GPIO port pin number (7–0).

Table 19. Port A–D GPIO Address Registers by Bit Description

PADDR[7:0]	Port Control Subregister accessible using the Port A–D Control Registers
00H	No function. Provides some protection against accidental port reconfiguration.
01H	Data Direction.
02H	Alternate Function.
03H	Output Control (Open-Drain).
04H	High Drive Enable.
05H	Stop Mode Recovery Source Enable.
06H	Pull-up Enable.
07H	Alternate Function Set 1.
08H	Alternate Function Set 2.
09H–FFH	No function.

Port A–D Control Registers

The Port A–D Control registers set the GPIO port operation. The value in the corresponding Port A–D Address Register determines which subregister is read from or written to by a Port A–D Control Register transaction; see Table 20.

Bit	7	6	5	4	3	2	1	0
Field		PCTL						
RESET		00H						
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
Address		FD1H, FD5H, FD9H, FDDH						

Table 20. Port A–D Control Registers (PxCTL)

Bit	Description
[7:0]	Port Control
PCTLx	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Note: x indicates the specific GPIO port pin number (7–0).

Port A–D Data Direction Subregisters

The Port A–D Data Direction subregister is accessed through the Port A–D Control Register by writing 01H to the Port A–D Address Register; see Table 21.

Bit	7	6	5	4	3	2	1	0		
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0		
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	If 01H ir	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register								

Table 21. Port A–D Data Direction Subregisters (PxDD)

Bit	Description
[7:0]	Data Direction
DDx	These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting.
	1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register.
	The output driver is tristated.
Note:	x indicates the specific GPIO port pin number (7–0).

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency. Further, the high or low state of the comparator output signal pulse must be no less than twice the system clock period. A shorter pulse may not be captured.

After reaching the reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Observe the following steps for configuring a timer for COMPARATOR COUNTER Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer.
 - Configure the timer for COMPARATOR COUNTER Mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER Mode. After the first timer Reload in COMPARATOR COUNTER Mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER Mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control Register to enable the timer.

In COMPARATOR COUNTER Mode, the number of comparator output transitions since the timer start is computed via the following equation:

Comparator Output Transitions = Current Count Value – Start Value

111

Table 63. UART Control 0 Register (U0CTL0)

Bit	7	6	5	4	3	2	1	0		
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address				F4	2H					
<u> </u>	D :									
Bit	Description									
[/] TEN	This bit ena and the CT 0 = Transm 1 = Transm	This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is Low and the CTSE bit is 1, the transmitter is enabled.) = Transmitter disabled. 1 = Transmitter enabled.								
[6] REN	Receive Er This bit ena 0 = Receive 1 = Receive	Receive Enable This bit enables or disables the receiver. 0 = Receiver disabled. 1 = Receiver enabled.								
[5] CTSE	CTS Enabl 0 = The CT 1 = The UA	<u>e</u> S signal has .RT recogniz	s no eff <u>ect o</u> zes the CTS	n the transm signal as ar	nitter. n enable cor	ntrol from the	e transmitter			
[4] PEN	Parity Enal This bit enal 0 = Parity is 1 = The transitional parity	 Parity Enable This bit enables or disables parity. Even or odd is determined by the PSEL bit. 0 = Parity is disabled. 1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit 								
[3] PSEL	Parity Sele 0 = Even pa 1 = Odd pa	e ct arity is trans rity is transn	mitted and e	expected on a contexpected on a	all received all received o	data. data.				
[2] SBRK	Send Break This bit pauses or breaks data transmission. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished sending data before setting this bit. 0 = No break is sent. 1 = Forces a break condition by setting the output of the transmitter to zero.									
[1] STOP	Stop Bit Set 0 = The transition 1 = The transition 1	elect nsmitter sen nsmitter sen	ds one stop ds two stop	bit. bits.						
[0] LBEN	Loop Back 0 = Normal 1 = All trans	a Enable operation. smitted data	is looped ba	ack to the re	ceiver.					

Bit	7	6	5	4	3	2	1	0
Field	TXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	F40H							
Note: X =	Undefined.							

Table 67. UART Transmit Data Register (U0TXD)

Bit	Description
[7:0]	Transmit Data
TXD	UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) Register, shown in Table 68. The read-only UART Receive Data Register shares a Register File address with the Write-only UART Transmit Data Register.

Table 68.	UART	Receive	Data	Register	(U0RXD))
-----------	------	---------	------	----------	---------	---

Bit	7	6	5	4	3	2	1	0
Field		RXD						
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	F40H							
Note: X = Undefined.								
Bit	Descriptio	n						

Dit	Description
[7:0]	Receive Data
RXD	UART receiver data byte from the RXDx pin.

UART Address Compare Register

The UART Address Compare (UxADDR) Register stores the multi-node network address of the UART (see Table 69). When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

The baud rate is set by the UART's Baud Rate Generator and supports IrDA standard baud rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the infrared endec. The infrared endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. Figure 17 displays IrDA data transmission. When the infrared endec is enabled, the UART's TXD signal is internal to the Z8 Encore! XP F082A Series products while the IR_TXD signal is output through the TXD pin.

Figure 17. Infrared Data Transmission

Caution: The byte at each address of the Flash memory cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs. Doing so may result in corrupted data at the target byte.

Page Erase

The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash memory sets all bytes in that page to the value FFH. The Flash Page Select Register identifies the page to be erased. Only a page residing in an unprotected sector can be erased. With the Flash Controller unlocked and the active page set, writing the value 95h to the Flash Control Register initiates the Page Erase operation. While the Flash Controller executes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase operation completes. If the Page Erase operation is performed using the On-Chip Debugger, poll the Flash Status Register to determine when the Page Erase operation is complete. When the Page Erase is complete, the Flash Controller returns to its locked state.

Mass Erase

The Flash memory can also be Mass Erased using the Flash Controller, but only by using the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFH. With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the value 63H to the Flash Control Register initiates the Mass Erase operation. While the Flash Controller executes the Mass Erase operation, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash Status Register to determine when the Mass Erase operation is complete. When the Mass Erase is complete, the Flash Controller returns to its locked state.

Flash Controller Bypass

The Flash Controller can be bypassed and the control signals for the Flash memory brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Programming algorithms by controlling the Flash programming signals directly.

Row programming is recommended for gang programming applications and large volume customers who do not require in-circuit initial programming of the Flash memory. Page Erase operations are also supported when the Flash Controller is bypassed.

For more information about bypassing the Flash Controller, refer to the <u>Third-Party Flash</u> <u>Programming Support for Z8 Encore! MCUs Application Note (AN0117)</u>, which is available for download on <u>www.zilog.com</u>.

Randomized Lot Identifier

Table 104. Lot Identification Number (RAND_LOT)

Bit	7	6	5	4	3	2	1	0
Field	RAND_LOT							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	s Interspersed throughout Information Page Memory							
Note: $U = l$	Note: U = Unchanged by Reset. R/W = Read/Write.							

Bit Description [7] Randomized Lot ID RAND_LOT The randomized lot ID is a 32-byte binary value that changes for each production lot. See Table 105.

Table 105. Randomized Lot ID Locations

Info Page	Memory	
Address	Address	Usage
3C	FE3C	Randomized Lot ID Byte 31 (most significant).
3D	FE3D	Randomized Lot ID Byte 30.
3E	FE3E	Randomized Lot ID Byte 29.
3F	FE3F	Randomized Lot ID Byte 28.
58	FE58	Randomized Lot ID Byte 27.
59	FE59	Randomized Lot ID Byte 26.
5A	FE5A	Randomized Lot ID Byte 25.
5B	FE5B	Randomized Lot ID Byte 24.
5C	FE5C	Randomized Lot ID Byte 23.
5D	FE5D	Randomized Lot ID Byte 22.
5E	FE5E	Randomized Lot ID Byte 21.
5F	FE5F	Randomized Lot ID Byte 20.
61	FE61	Randomized Lot ID Byte 19.
62	FE62	Randomized Lot ID Byte 18.
64	FE64	Randomized Lot ID Byte 17.
65	FE65	Randomized Lot ID Byte 16.
67	FE67	Randomized Lot ID Byte 15.
68	FE68	Randomized Lot ID Byte 14.

DBG \leftarrow Size[15:8] DBG \leftarrow Size[7:0] DBG \leftarrow 1-65536 data bytes

Read Data Memory (0DH). The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG Mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

Read Program Memory CRC (0EH). The Read Program Memory CRC command computes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the 16bit CRC-CCITT polynomial. If the device is not in DEBUG Mode, this command returns FFFFH for the CRC value. Unlike most other OCD Read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads the Program Memory, calculates the CRC value and returns the result. The delay is a function of the Program Memory size and is approximately equal to the system clock period multiplied by the number of bytes in the Program Memory.

DBG \leftarrow 0EH DBG \rightarrow CRC[15:8] DBG \rightarrow CRC[7:0]

Step Instruction (10H). The Step Instruction command steps one assembly instruction at the current Program Counter (PC) location. If the device is not in DEBUG Mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

DBG \leftarrow 10H

Stuff Instruction (11H). The Stuff Instruction command steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the instruction are read from Program Memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a Breakpoint. If the device is not in DEBUG Mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

DBG ← 11H DBG ← opcode[7:0]

Execute Instruction (12H). The Execute Instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over Breakpoints. The number of bytes to send for the instruction depends on the opcode. If the device is not

OCD Status Register

The OCD Status Register reports status information about the current state of the debugger and the system.

Table 111. OCD Status Register (OCDSTAT)

Bit	7	6	5	4	3	2	1	0
Field	DBG	HALT	FRPENB	Reserved				
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R

Bit	Description
[7] DBG	Debug Status 0 = NORMAL Mode. 1 = DEBUG Mode.
[6] HALT	HALT Mode 0 = Not in HALT Mode. 1 = In HALT Mode.
[5] FRPENB	Flash Read Protect Option Bit Enable 0 = FRP bit enabled, that allows disabling of many OCD commands. 1 = FRP bit has no effect.
[4:0]	Reserved These bits are reserved and must be programmed to 00000.

Unlock and write Oscillator Control

Register (OSCCTL) to enable and

select oscillator at either 5.53MHz or

• Configure Flash option bits for correct

Unlock and write OSCCTL to enable

crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been deasserted, no waiting is required)

Configure Flash option bits for correct

Unlock and write OSCCTL to enable crystal oscillator and select as system

• Write GPIO registers to configure PB3

Unlock and write OSCCTL to select

Apply external clock signal to GPIO

· Enable WDT if not enabled and wait

until WDT Oscillator is operating Unlock and write Oscillator Control

pin for external clock function

external system clock

external oscillator mode

external oscillator mode

Very low power consumption	Register (OSCCTL) to enable and select oscillator		
Caution: Unintentional accesses to the Oscillator switching to a nonfunctioning oscillator. block employs a register unlocking/locki	Control Register can actually stop the chip To prevent this condition, the oscillator con ing scheme.		
OSC Control Register Unlocking/	/Locking		
To write the Oscillator Control Register, unlock it by making two writes to th Register with the values E7H followed by 18H. A third write to the OSCCTL changes the value of the actual register and returns the register to a locked stat			

Required Setup

32.8kHz

clock

stop the chip by oscillator control

> s to the OSCCTL CTL Register ed state. Any other sequence of Oscillator Control Register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

Clock Source

RC Oscillator

Internal Precision

External Crystal/

External Clock

Internal Watchdog

Timer Oscillator

Resonator

tor

Drive

Characteristics

High accuracy

• 32kHz to 20MHz

ponents

0 to 20MHz

• 10kHz nominal

nents required

source

•

External RC Oscilla- • 32kHz to 4MHz

• 32.8kHz or 5.53MHz

No external components required

Very high accuracy (dependent on

· Accuracy dependent on external com-

Accuracy dependent on external clock

Low accuracy; no external compo-

crystal or resonator used)

Requires external components

Notation	Description	Operand	Range
Vector	Vector address	Vector	Vector represents a number in the range of 00H to FFH.
Х	Indexed	#Index	The register or register pair to be indexed is off- set by the signed Index value (#Index) in a +127 to –128 range.

Table 118. Notational Shorthand (Continued)

Table 119 lists additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Symbol	Definition						
dst	Destination Operand						
SIC	Source Operand						
@	Indirect Address Prefix						
SP	Stack Pointer						
PC	Program Counter						
FLAGS	Flags Register						
RP	Register Pointer						
#	Immediate Operand Prefix						
В	Binary Number Suffix						
%	Hexadecimal Number Prefix						
Н	Hexadecimal Number Suffix						

Table 119. Additional Symbols

Assignment of a value is indicated by an arrow, as shown in the following example.

 $dst \leftarrow dst + src$

This example indicates that the source data is added to the destination data; the result is stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation

		V _{DE}	_o = 2.7 V to 3	3.6 V			
Symbol	Parameter	Typical ¹	Maximum Std Temp ²	Maximum Ext Temp ³	Units	Conditions	
I _{DD} ADCRef	ADC Internal Ref- erence Supply Cur- rent	0			μA	See Note 4.	
I _{DD} CMP	Comparator sup- ply Current	150	180	190	μA	See Note 4.	
I _{DD} LPO	Low-Power Opera- tional Amplifier Supply Current	3	5	5	μA	Driving a high-impedance load.	
I _{DD} TS	Temperature Sen- sor Supply Current	60			μA	See Note 4.	
I _{DD} BG	Band Gap Supply	320	480	500	μA	For 20-/28-pin devices.	
	Current					For 8-pin devices.	

Table 132. Power Consumption (Continued)

Notes:

1. Typical conditions are defined as $V_{DD} = 3.3 V$ and $+30^{\circ}C$.

2. Standard temperature is defined as $T_A = 0^{\circ}C$ to +70°C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

3. Extended temperature is defined as $T_A = -40^{\circ}$ C to +105°C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

On-Chip Peripheral AC and DC Electrical Characteristics

Table 135 tabulates the electrical characteristics of the POR and VBO blocks.

Table 135. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

		T _A =				
Symbol	Parameter	Minimum	Typical ¹	Maximum	Units	Conditions
V _{POR}	Power-On Reset Voltage Thresh- old	2.20	2.45	2.70	V	$V_{DD} = V_{POR}$
V_{VBO}	Voltage Brown-Out Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$
	V _{POR} to V _{VBO} hysteresis		50	75	mV	
	Starting V _{DD} voltage to ensure valid Power-On Reset.	-	V _{SS}	_	V	
T _{ANA}	Power-On Reset Analog Delay	-	70	-	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	Power-On Reset Digital Delay		16		μs	66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST})
T _{POR}	Power-On Reset Digital Delay		1		ms	5000 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled		16		μs	66 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled		1		ms	5000 Internal Precision Oscillator cycles
T _{VBO}	Voltage Brown-Out Pulse Rejec- tion Period	_	10	_	μs	Period of time in which $V_{DD} < V_{VBO}$ without generating a Reset.

Note: Data in the typical column is from characterization at 3.3 V and 30°C. These values are provided for design guidance only and are not tested in production.

Ordering Information

Order your F082A Series products from Zilog using the part numbers shown in Table 148. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

									-		
Part Number	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP F082A Series with 8KB Flash, 10-Bit Analog-to-Digital Converter											
Standard Temperature: 0°C to 70°C											
Z8F082APB020SG	8KB	1KB	0	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F082AQB020SG	8KB	1KB	0	6	14	2	4	1	1	1	QFN 8-pin package
Z8F082ASB020SG	8KB	1KB	0	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F082ASH020SG	8KB	1KB	0	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F082AHH020SG	8KB	1KB	0	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F082APH020SG	8KB	1KB	0	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F082ASJ020SG	8KB	1KB	0	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F082AHJ020SG	8KB	1KB	0	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F082APJ020SG	8KB	1KB	0	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatu	ıre: –40°	°C to 10)5°C								
Z8F082APB020EG	8KB	1KB	0	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F082AQB020EG	8KB	1KB	0	6	14	2	4	1	1	1	QFN 8-pin package
Z8F082ASB020EG	8KB	1KB	0	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F082ASH020EG	8KB	1KB	0	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F082AHH020EG	8KB	1KB	0	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F082APH020EG	8KB	1KB	0	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F082ASJ020EG	8KB	1KB	0	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F082AHJ020EG	8KB	1KB	0	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F082APJ020EG	8KB	1KB	0	23	20	2	8	1	1	1	PDIP 28-pin package

Table 148. Z8 Encore! XP F082A Series Ordering Matrix

Z8 Encore! XP[®] F082A Series Product Specification

260

LEA 210 load 210 load constant 209 load constant to/from program memory 210 load constant with auto-increment addresses 210 load effective address 210 load external data 210 load external data to/from data memory and autoincrement addresses 209 load external to/from data memory and auto-increment addresses 210 load using extended addressing 210 logical AND 210 logical AND/extended addressing 210 logical exclusive OR 210 logical exclusive OR/extended addressing 210 logical instructions 210 logical OR 210 logical OR/extended addressing 210 low power modes 32

Μ

master interrupt enable 57 memory data 17 program 15 mode **CAPTURE 87, 88 CAPTURE/COMPARE 88** CONTINUOUS 87 COUNTER 87 GATED 88 **ONE-SHOT 87** PWM 87, 88 modes 87 **MULT 208** multiply 208 multiprocessor mode, UART 105

Ν

NOP (no operation) 209 notation

0

b 206

cc 206

DA 206

ER 206

IM 206

IR 206

Ir 206

IRR 206

Irr 206

p 206

R 206

r 206

RA 206

RR 206

vector 207

notational shorthand 206

rr 206

X 207

OCD architecture 180 auto-baud detector/generator 183 baud rate limits 184 block diagram 180 breakpoints 185 commands 186 control register 191 data format 183 DBG pin to RS-232 Interface 181 debug mode 182 debugger break 211 interface 181 serial errors 184 status register 192 timing 242 OCD commands execute instruction (12H) 190 read data memory (0DH) 190 read OCD control register (05H) 188 read OCD revision (00H) 187 read OCD status register (02H) 187 read program counter (07H) 188