E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f041ash020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 1.	Z8 Encore! XP F082A Series Family Part Selection Guide 2
Table 2.	Signal Descriptions
Table 3.	Pin Characteristics (20- and 28-pin Devices) 13
Table 4.	Pin Characteristics (8-Pin Devices) 14
Table 5.	Z8 Encore! XP F082A Series Program Memory Maps 16
Table 6.	Z8 Encore! XP F082A Series Flash Memory Information Area Map 17
Table 7.	Register File Address Map 18
Table 8.	Reset and Stop Mode Recovery Characteristics and Latency 23
Table 9.	Reset Sources and Resulting Reset Type
Table 10.	Stop Mode Recovery Sources and Resulting Action
Table 11.	Reset Status Register (RSTSTAT)
Table 12.	Reset and Stop Mode Recovery Bit Descriptions
Table 13.	Power Control Register 0 (PWRCTL0)
Table 14.	Port Availability by Device and Package Type
Table 15.	Port Alternate Function Mapping (Non 8-Pin Parts) 40
Table 16.	Port Alternate Function Mapping (8-Pin Parts)
Table 17.	GPIO Port Registers and Subregisters
Table 18.	Port A–D GPIO Address Registers (PxADDR)
Table 19.	Port A–D GPIO Address Registers by Bit Description
Table 20.	Port A–D Control Registers (PxCTL)
Table 21.	Port A–D Data Direction Subregisters (PxDD) 46
Table 22.	Port A–D Alternate Function Subregisters (PxAF)
Table 23.	Port A–D Output Control Subregisters (PxOC)
Table 24.	Port A–D High Drive Enable Subregisters (PxHDE)
Table 25.	Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE) 49
Table 26.	Port A–D Pull-Up Enable Subregisters (PxPUE)
Table 27.	Port A–D Alternate Function Set 2 Subregisters (PxAFS2) 51
Table 28.	Port A–D Alternate Function Set 1 Subregisters (PxAFS1) 51

- Up to 8 ports capable of direct LED drive with no current limit resistor required
- On-Chip Debugger (OCD)
- Voltage Brown-Out (VBO) protection
- Programmable low battery detection (LVD) (8-pin devices only)
- Bandgap generated precision voltage references available for the ADC, comparator, VBO and LVD
- Power-On Reset (POR)
- 2.7V to 3.6V operating voltage
- 8-, 20- and 28-pin packages
- 0° C to $+70^{\circ}$ C and -40° C to $+105^{\circ}$ C for operating temperature ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Z8 Encore! XP F082A Series product line.

Part Number	Flash (KB)	RAM (B)	NVDS ¹ (B)	I/O	Comparator	Advanced Analog ²	ADC Inputs	Packages
Z8F082A	8	1024	0	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F081A	8	1024	0	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F042A	4	1024	128	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F041A	4	1024	128	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F022A	2	512	64	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F021A	2	512	64	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F012A	1	256	16	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F011A	1	256	16	6–25	Yes	No	0	8-, 20- and 28-pin

Table 1. Z8 Encore! XP F082A Series Family Part Selection Guide

Notes:

1. Non-volatile data storage.

2. Advanced Analog includes ADC, temperature sensor and low-power operational amplifier.

Block Diagram

Figure 1 displays the block diagram of the architecture of the Z8 Encore! XP F082A Series devices.

15

Address Space

The eZ8 CPU can access the following three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more information about eZ8 CPU and its address space, refer to the <u>eZ8 CPU Core User Manual</u> (<u>UM0128</u>), which is available for download on <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! MCU is 4 KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4 KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore! XP^{TM} F082A Series devices contain 256 B to 1KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. The Z8 Encore! XP F082A Series devices contain 1 KB to 8KB of on-chip Flash memory in the Program Memory address space, depending on the device. Reading from Program Memory

Program Memory Address (Hex)	Function
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-03FF	Program Memory
Note: *See Table 32 on page 56 for a list of	the interrupt vectors.

Data Memory

The Z8 Encore! XP F082A Series does not use the eZ8 CPU's 64 KB Data Memory address space.

Flash Information Area

Table 6 describes the Z8 Encore! XP F082A Series Flash Information Area. This 128B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Table 6. Z8 Encore! XP F082A Series Flash Memory Information Area Map

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog Option Bits/Calibration Data
FE40–FE53	Part Number 20-character ASCII alphanumeric code Left-justified and filled with FFH
FE54–FE5F	Reserved
FE60–FE7F	Zilog Calibration Data
FE80–FFFF	Reserved

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page
Timer 1				
F08	Timer 1 High Byte	T1H	00	<u>90</u>
F09	Timer 1 Low Byte	T1L	01	<u>90</u>
F0A	Timer 1 Reload High Byte	T1RH	FF	<u>91</u>
Timer 1 (cont'd)				
F0B	Timer 1 Reload Low Byte	T1RL	FF	<u>91</u>
F0C	Timer 1 PWM High Byte	T1PWMH	00	<u>92</u>
F0D	Timer 1 PWM Low Byte	T1PWML	00	<u>92</u>
F0E	Timer 1 Control 0	T1CTL0	00	<u>85</u>
F0F	Timer 1 Control 1	T1CTL1	00	<u>86</u>
F10–F6F	Reserved	_	XX	
UART				
F40	UART Transmit/Receive Data registers	TXD, RXD	XX	<u>115</u>
F41	UART Status 0 Register	U0STAT0	00	<u>114</u>
F42	UART Control 0 Register	U0CTL0	00	<u>110</u>
F43	UART Control 1 Register	U0CTL1	00	<u>110</u>
F44	UART Status 1 Register	U0STAT1	00	<u>115</u>
F45	UART Address Compare Register	U0ADDR	00	<u>116</u>
F46	UART Baud Rate High Byte Register	U0BRH	FF	<u>117</u>
F47	UART Baud Rate Low Byte Register	U0BRL	FF	<u>117</u>
Analog-to-Digita	al Converter (ADC)			
F70	ADC Control 0	ADCCTL0	00	<u>134</u>
F71	ADC Control 1	ADCCTL1	80	<u>136</u>
F72	ADC Data High Byte	ADCD_H	XX	<u>137</u>
F73	ADC Data Low Byte	ADCD_L	XX	<u>137</u>
F74–F7F	Reserved	—	XX	
Low Power Con	trol			
F80	Power Control 0	PWRCTL0	80	<u>34</u>
F81	Reserved	_	XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	<u>53</u>
F83	LED Drive Level High Byte	LEDLVLH	00	<u>53</u>
F84	LED Drive Level Low Byte	LEDLVLL	00	<u>54</u>
Notes:				

Table 7. Register File Address Map (Continued)

1. XX = Undefined.

2. Refer to the eZ8 CPU Core User Manual (UM0128).

HALT Mode

Executing the eZ8 CPU's HALT instruction places the device into HALT Mode, which powers down the CPU but leaves all other peripherals active. In HALT Mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate
- System clock is enabled and continues to operate
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- Watchdog Timer's internal RC oscillator continues to operate
- If enabled, the Watchdog Timer continues to operate
- All other on-chip peripherals continue to operate, if enabled

The eZ8 CPU can be brought out of HALT Mode by any of the following operations:

- Interrupt
- Watchdog Timer time-out (interrupt or reset)
- Power-On Reset
- Voltage Brown-Out reset
- External **RESET** pin assertion

To minimize current in HALT Mode, all GPIO pins that are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

Peripheral-Level Power Control

In addition to the STOP and HALT modes, it is possible to disable each peripheral on each of the Z8 Encore! XP F082A Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

The following sections define the Power Control registers.

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block. The default state of the low-power

operational amplifier (LPO) is OFF. To use the LPO, clear the LPO bit, turning it ON. Clearing this bit might interfere with normal ADC measurements on ANA0 (the LPO output). This bit enables the amplifier even in STOP Mode. If the amplifier is not required in STOP Mode, disable it. Failure to perform this results in STOP Mode currents greater than specified.

Note: This register is only reset during a POR sequence. Other system reset events do not affect it.

Bit	7	6	5	4	3	2	1	0				
Field	LPO	Rese	erved	VBO	TEMP	ADC	DC COMP R					
RESET	1	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address	F80H											
Bit	Description	n										
[7] LPO	Low-Power Operational Amplifier Disable 0 = LPO is enabled (this applies even in STOP Mode). 1 = LPO is disabled.											
[6:5]	Reserved These bits are reserved and must be programmed to 00.											
[4] VBO	Voltage Brown-Out Detector Disable This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active. 0 = VBO enabled. 1 = VBO disabled											
[3] TEMP	Temperatu 0 = Temper 1 = Temper	ature Sensor I ature Senso ature Senso	Disable r enabled. r disabled.									
[2] ADC	Analog-to- 0 = Analog- 1 = Analog-	Digital Con to-Digital Co to-Digital Co	verter Disa onverter ena onverter disa	ble abled. abled.								
[1] COMP	Comparato 0 = Compar 1 = Compar	or Disable rator is enab rator is disab	led. bled.									
[0]	Reserved This bit is re	eserved and	must be pro	ogrammed to	o 0.							

Table 13. Power Control Register 0 (PWRCTL0)

Shared Debug Pin

On the 8-pin version of this device only, the Debug pin shares function with the PA0 GPIO pin. This pin performs as a general purpose input pin on power-up, but the debug logic monitors this pin during the reset sequence to determine if the unlock sequence occurs. If the unlock sequence is present, the debug function is unlocked and the pin no longer functions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another reset event occurs. For more details, see the <u>On-Chip Debugger</u> chapter on page 180.

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled, the GPIO settings are overridden and PA0 and PA1 are disabled. See the <u>Oscillator Control Register Definitions section on page 196</u> for details.

5V Tolerance

All six I/O pins on the 8-pin devices are 5V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0] and PC[2:0]. All other signal pins are 5 V-tolerant and can safely handle inputs higher than V_{DD} except when the programmable pull-ups are enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control (OSCCTL) Register such that the external oscillator is selected as the system clock. See the <u>Oscillator Control Register Definitions section on page 196</u> for details. For 8-pin devices, use PA1 instead of PB3.

GPIO Mode Interrupt Controller

The interrupt controller on the Z8 Encore! XP F082A Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of interrupt controller include:

- 20 possible interrupt sources with 18 unique interrupt vectors:
 - Twelve GPIO port pin interrupt sources (two interrupt vectors are shared)
 - Eight on-chip peripheral interrupt sources (two interrupt vectors are shared)
- Flexible GPIO interrupts:
 - Eight selectable rising and falling edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually programmable interrupt priority
- Watchdog Timer and LVD can be configured to generate an interrupt
- Supports vectored and polled interrupts

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt controller has no effect on operation. For more information about interrupt servicing by the eZ8 CPU, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, which is available for download on <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 34 lists all of the interrupts available in order of priority. The interrupt vector is stored with the most-significant byte (MSB) at the even Program Memory address and the least-significant byte (LSB) at the following odd Program Memory address.

Note: Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL0 Register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control Register to enable the timer and initiate counting.

In CAPTURE Mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE Mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon Compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

Observe the following steps for configuring a timer for COMPARE Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for COMPARE Mode
 - Set the prescale value

Universal Asynchronous Receiver/ Transmitter

The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. Features of the UART include:

- 8-bit asynchronous data transfer
- Selectable even- and odd-parity generation and checking
- Option of one or two STOP bits
- Separate transmit and receive interrupts
- Framing, parity, overrun and break detection
- Separate transmit and receive enables
- 16-bit baud rate generator (BRG)
- Selectable MULTIPROCESSOR (9-bit) Mode with three configurable interrupt schemes
- Baud rate generator (BRG) can be configured and used as a basic 16-bit timer
- Driver enable (DE) output for external bus transceivers

Architecture

The UART consists of three primary functional blocks: transmitter, receiver and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. Figure 10 displays the UART architecture.

Output Data

The output format of the corrected ADC value is shown below.

	MSB						LSB								
S	v	b	а	9	8	7	6	5	4	3	2	1	0	-	-

The overflow bit in the corrected output indicates that the computed value was greater than the maximum logical value (+1023) or less than the minimum logical value (-1024). Unlike the hardware overflow bit, this is not a simple binary flag. For a normal (nonoverflow) sample, the sign and the overflow bit match. If the sign bit and overflow bit do not match, a computational overflow has occurred.

Input Buffer Stage

Many applications require the measurement of an input voltage source with a high output impedance. This ADC provides a buffered input for such situations. The drawback of the buffered input is a limitation of the input range. When using unity gain buffered mode, the input signal must be prevented from coming too close to either V_{SS} or V_{DD} . See <u>Table 139</u> on page 236 for details.

This condition applies only to the input voltage level (with respect to ground) of each differential input signal. The actual differential input voltage magnitude may be less than 300mV.

The input range of the unbuffered ADC swings from V_{SS} to V_{DD} . Input signals smaller than 300mV must use the unbuffered input mode. If these signals do not contain low output impedances, they might require off-chip buffering.

Signals outside the allowable input range can be used without instability or device damage. Any ADC readings made outside the input range are subject to greater inaccuracy than specified.

ADC Control Register Definitions

This section defines the features of the following ADC Control registers.

ADC Control Register 0 (ADCCTL0): see page 134

ADC Control/Status Register 1 (ADCCTL1): see page 136

ADC Data High Byte Register (ADCD_H): see page 137

ADC Data Low Byte Register (ADCD L): see page 137

Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the read-only Flash Status Register.

Figure 25. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface; #2 of 2

DEBUG Mode

The operating characteristics of the devices in DEBUG Mode are:

- The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute specific instructions
- The system clock operates unless in STOP Mode
- All enabled on-chip peripherals operate unless in STOP Mode
- Automatically exits HALT Mode
- Constantly refreshes the Watchdog Timer, if enabled

Entering DEBUG Mode

The operating characteristics of the devices entering DEBUG Mode are:

- The device enters DEBUG Mode after the eZ8 CPU executes a BRK (Breakpoint) instruction
- If the DBG pin is held Low during the final clock cycle of system reset, the part enters DEBUG Mode immediately (20-/28-pin products only)

Note: Holding the DBG pin Low for an additional 5000 (minimum) clock cycles after reset (making sure to account for any specified frequency error if using an internal oscillator) prevents a false interpretation of an Autobaud sequence (see the <u>OCD Auto-Baud Detector/Generator</u> section on page 183).

Read Register (09H). The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG Mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

DBG \leftarrow 09H DBG \leftarrow {4'h0,Register Address[11:8] DBG \leftarrow Register Address[7:0] DBG \leftarrow Size[7:0] DBG \rightarrow 1-256 data bytes

Write Program Memory (0AH). The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG Mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG \leftarrow 0AH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

Read Program Memory (0BH). The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG Mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH

DBG \leftarrow Program Memory Address[15:8]

DBG \leftarrow Program Memory Address[7:0]

DBG \leftarrow Size[15:8]

DBG \leftarrow Size[7:0]

DBG \rightarrow 1-65536 data bytes
```

Write Data Memory (0CH). The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG Mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

DBG \leftarrow 0CH DBG \leftarrow Data Memory Address[15:8] DBG \leftarrow Data Memory Address[7:0]

214

Assembly		Address Mode		Oncode(s)	Flags						Fetch	Instr. Cycle
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	S	S
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	_	_	_	_	_	_	2	6
	$@ SP \leftarrow PC \\ PC \leftarrow dst$	DA		D6							3	3
CCF	$C \leftarrow \sim C$			EF	*	-	_	-	-		1	2
CLR dst	dst ← 00H	R		B0	-	-	-	-	-	-	2	2
		IR		B1	-						2	3
COM dst	dst ← ~dst	R		60	_	*	*	0	_	-	2	2
		IR		61	-						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	_	-	2	3
		r	lr	A3	-						2	4
		R	R	A4	-						3	3
		R	IR	A5	-						3	4
		R	IM	A6	-						3	3
		IR	IM	A7	-						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	_	-	3	3
		r	lr	1F A3	-						3	4
		R	R	1F A4	-						4	3
		R	IR	1F A5	-						4	4
		R	IM	1F A6	-						4	3
		IR	IM	1F A7	-						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	-	5	3
		ER	IM	1F A9	-						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	-	4	3
		ER	IM	A9	-						4	3

Table 128. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

227

Table 130. Absolute Maximum Ratings (Continued)

Parameter	Minimum	Maximum	Units	Notes
Maximum current into V _{DD} or out of V _{SS}		120	mA	
28-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		450	mW	
Maximum current into V _{DD} or out of V _{SS}		125	mA	

Notes: Operating temperature is specified in DC Characteristics.

This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins but V_{DD}.

2. This voltage applies to pins on the 20-/28-pin packages supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1).

DC Characteristics

Table 131 lists the DC characteristics of the Z8 Encore! XP F082A Series products. All voltages are referenced to V_{SS} , the primary system ground.

		T _A = -40°C to +105°C (unless otherwise specified)				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{DD}	Supply Voltage	2.7	_	3.6	V	
V _{IL1}	Low Level Input Voltage	-0.3	-	0.3*V _{DD}	V	
V _{IH1}	High Level Input Voltage	0.7*V _{DD}	_	5.5	V	For all input pins without analog or oscillator function. For all sig- nal pins on the 8-pin devices. Programmable pull-ups must also be disabled.
V _{IH2}	High Level Input Voltage	0.7*V _{DD}	_	V _{DD} +0.3	V	For those pins with analog or oscillator function (20-/28-pin devices only), or when pro- grammable pull-ups are enabled.
V _{OL1}	Low Level Output Voltage	-	-	0.4	V	$I_{OL} = 2 \text{ mA}; V_{DD} = 3.0 \text{ V}$ High Output Drive disabled.

Table 131. DC Characteristics

Notes:

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

LD 210 LDC 210 LDCI 209, 210 LDE 210 **LDEI 209** LDX 210 LEA 210 logical 210 **MULT 208 NOP 209** OR 210 **ORX 210 POP 210** POPX 210 program control 211 **PUSH 210** PUSHX 210 RCF 209, 210 **RET 211** RL 211 **RLC 211** rotate and shift 211 RR 211 **RRC 211 SBC 208** SCF 209, 210 SRA 211 SRL 211 **SRP 210 STOP 210 SUB 208 SUBX 208 SWAP 211 TCM 209 TCMX 209** TM 209 TMX 209 **TRAP 211** Watchdog Timer refresh 210 **XOR 210 XORX 210** instructions, eZ8 classes of 207 interrupt control register 69 interrupt controller 55

architecture 55 interrupt assertion types 58 interrupt vectors and priority 58 operation 57 register definitions 60 software interrupt assertion 59 interrupt edge select register 67 interrupt request 0 register 60 interrupt request 1 register 61 interrupt request 2 register 62 interrupt return 211 interrupt vector listing 55 interrupts **UART 108** IR 206 Ir 206 IrDA architecture 120 block diagram 120 control register definitions 123 operation 120 receiving data 122 transmitting data 121 **IRET 211** IRQ0 enable high and low bit registers 62 IRQ1 enable high and low bit registers 64 IRQ2 enable high and low bit registers 65 **IRR 206** Irr 206

J

JP 211 jump, conditional, relative, and relative conditional 211

L

LD 210 LDC 210 LDCI 209, 210 LDE 210 LDEI 209, 210 LDX 210

CONTINUOUS mode 72, 87 COUNTER mode 73, 74 **COUNTER** modes 87 GATED mode 82, 88 ONE-SHOT mode 71, 87 operating mode 71 PWM mode 76, 77, 87, 88 reading the timer count values 84 reload high and low byte registers 91 timer control register definitions 85 timer output signal operation 84 timers 0-3 control registers 85, 86 high and low byte registers 89, 92 TM 209 TMX 209 transmit IrDA data 121 transmitting UART data-polled method 101 transmitting UART dat-interrupt-driven method 102 **TRAP 211**

U

UART 6 architecture 99 baud rate generator 110 baud rates table 118 control register definitions 110 controller signals 10 interrupts 108 multiprocessor mode 105 receiving data using interrupt-driven method 104 receiving data using the polled method 103 transmitting data usin the interrupt-driven method 102 transmitting data using the polled method 101 x baud rate high and low registers 117 x control 0 and control 1 registers 110 x status 0 and status 1 registers 114, 115 UxBRH register 117 UxBRL register 117

UxCTL0 register 111, 117 UxCTL1 register 112 UxRXD register 116 UxSTAT0 register 114 UxSTAT1 register 115 UxTXD register 116

V

vector 207 Voltage Brownout reset (VBR) 25

W

Watchdog Timer approximate time-out delay 93 approximate time-out delays 140 CNTL 25 control register 96 electrical characteristics and timing 235, 238 interrupt in normal operation 94 interrupt in STOP mode 94 operation 140 refresh 94, 210 reload unlock sequence 95 reload upper, high and low registers 97 reset 26 reset in normal operation 95 reset in STOP mode 95 time-out response 94 WDTCTL register 30, 96, 141, 196 WDTH register 97 WDTL register 98 working register 206 working register pair 206 WTDU register 97

Χ

X 207 XOR 210 XORX 210 263