E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	1K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f042ash020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Date	Revision Level	Chapter/Section	Description	Page No.
Dec 2012	27	Port Alternate Function Map- ping (Non 8-Pin Parts), Port Alternate Function Mapping (8- Pin Parts)	Added missing Port D data to Table 15; cor- rected active Low status (set overlines) for PA0 (T0OUT), PA2 (RESET) and PA5 (T1OUT) in Table 16.	<u>40, 43</u>
Sep 2011	26	LED Drive Enable Register	Clarified statement surrounding the Alternate Function Register as it relates to the LED function; revised Flash Sector Protect Regis- ter description; revised Packaging chapter.	<u>53,</u> <u>157,</u> 245
Sep 2008	25	Overview, Address Space, Register Map, General-Pur- pose Input/Output, Available Packages, Ordering Informa- tion	Added references to F042A Series back in Table 1, Table 5, Table 7 and Table 14.	<u>2, 8,</u> <u>16, 18,</u> <u>36,</u> <u>246</u>
May 2008	24	Overview, Address Space, Register Map, General-Pur- pose Input/Output, Available Packages, Ordering Informa- tion	Changed title to Z8 Encore! XP F082A Series and removed references to F042A Series in Table 1, Table 5, Table 7 and Table 14.	<u>2, 8,</u> <u>16, 18,</u> <u>36,</u> <u>246</u>
Dec 2007	23	Pin Description, General-Pur- pose Input/Output, Watchdog Timer	Updated Figure 3, Table 15, Tables 60 through 62.	<u>9, 40,</u> <u>97</u>
Jul 2007	22	Electrical Characteristics	Updated Tables 16 and 132; power con- sumption data.	<u>43,</u> 229
Jun 2007	21	n/a	Revision number update.	All

iii

LED Drive Level Low Register 54
GPIO Mode Interrupt Controller
Interrupt Vector Listing
Architecture
Operation
Master Interrupt Enable
Interrupt Vectors and Priority 58
Interrupt Assertion
Software Interrupt Assertion 59
Watchdog Timer Interrupt Assertion 59
Interrupt Control Register Definitions
Interrupt Request 0 Register 60
Interrupt Request 1 Register
Interrupt Request 2 Register
IRQ0 Enable High and Low Bit Registers
IRQ1 Enable High and Low Bit Registers64
IRQ2 Enable High and Low Bit Registers
Interrupt Edge Select Register 67
Shared Interrupt Select Register 68
Interrupt Control Register 69
Timers
Architecture
Operation
Timer Operating Modes
Reading the Timer Count Values
Timer Pin Signal Operation
Timer Control Register Definitions
Timer 0–1 Control Registers
Timer 0–1 High and Low Byte Registers
Timer Reload High and Low Byte Registers
Timer 0–1 PWM High and Low Byte Registers
Watchdog Timer
Operation
Watchdog Timer Refresh
Watchdog Timer Time-Out Response
Watchdog Timer Reload Unlock Sequence
Watchdog Timer Calibration
Watchdog Timer Control Register Definitions
Watchdog Timer Control Register
Watchdog Timer Reload Upper, High and Low Byte Registers

vi

Signal Descriptions

Table 2 describes the Z8 Encore! XP F082A Series signals. See the <u>Pin Configurations</u> section on page 8 to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description				
General-Purpose I/0) Ports	A–D				
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.				
PB[7:0]	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.				
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.				
PD[0]	I/O	Port D. This pin is used for general-purpose output only.				
UART Controllers						
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.				
RXD0	I	Receive Data. This signal is the receive input for the UART and IrDA.				
CTS0	Ι	Clear To Send. This signal is the flow control input for the UART.				
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 Register. The DE signal may be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.				
Timers						
T0OUT/T1OUT	0	Timer Output 0–1. These signals are outputs from the timers.				
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM Dual Output mode.				
T0IN/T1IN	Ι	Timer Input 0–1. These signals are used as the capture, gating and coun- ter inputs.				
Comparator						
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.				
COUT	0	Comparator Output.				

Table 2. Signal Descriptions

1. PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are replaced by AV_{DD} and AV_{SS} .

2. The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

Bit Description (Continued)

[6] **GATED Mode**

- TPOL (cont'd)
- 0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.
 - 1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE Mode

- 0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.
- 1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT Mode

- 0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon reload. When enabled, the Timer Output Complement is forced Low (0) upon PWM count match and forced High (1) upon reload. The PWMD field in TxCTL0 Register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to High (1).
- 1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon reload. When enabled, the Timer Output Complement is forced High (1) upon PWM count match and forced Low (0) upon reload. The PWMD field in TxCTL0 Register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

CAPTURE RESTART Mode

- 0 = Count is captured on the rising edge of the Timer Input signal.
- 1 = Count is captured on the falling edge of the Timer Input signal.

COMPARATOR COUNTER Mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload. Also:

0 =Count is captured on the rising edge of the comparator output.

1 = Count is captured on the falling edge of the comparator output.

Caution: When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, TxOUT changes to whatever state the TPOL bit is in. The timer does not need to be enabled for that to happen. Also, the Port Data Direction Subregister is not required to be set to output on TxOUT. Changing the TPOL bit with the timer enabled and running does not immediately change the TxOUT.

- 6. Read data from the UART Receive Data Register. If operating in MULTIPROCES-SOR (9-bit) Mode, further actions may be required depending on the MULTIPRO-CESSOR Mode bits MPMD[1:0].
- 7. Return to <u>Step 4</u> to receive additional data.

Receiving Data using the Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (and error conditions). Observe the following steps to configure the UART receiver for interrupt-driven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set the acceptable priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request Register.
- 6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) mode functions, if appropriate.
 - Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR Mode.
 - Set the Multiprocessor Mode Bits, MPMD[1:0], to select the acceptable address matching scheme.
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore! devices without a DMA block)
- 7. Write the device address to the Address Compare Register (automatic MULTIPRO-CESSOR Modes only).
- 8. Write to the UART Control 0 Register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if multiprocessor mode is not enabled and select either even or odd parity
- 9. Execute an EI instruction to enable interrupts.

Bit	7	6	5	4	3	2	1	0
Field				Tک	(D			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address	1	F40H						
Note: X =	Undefined.							

Table 67. UART Transmit Data Register (U0TXD)

Bit	Description
[7:0]	Transmit Data
TXD	UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) Register, shown in Table 68. The read-only UART Receive Data Register shares a Register File address with the Write-only UART Transmit Data Register.

Table 68	. UART	Receive	Data	Register	(U0RXD)
----------	--------	---------	------	----------	---------

Bit	7	6	5	4	3	2	1	0
Field				R۷	(D			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	F40H							
Note: X =	Undefined.							
Bit	Descriptio	n						

Dit	Description
[7:0]	Receive Data
RXD	UART receiver data byte from the RXDx pin.

UART Address Compare Register

The UART Address Compare (UxADDR) Register stores the multi-node network address of the UART (see Table 69). When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare Register. Receive interrupts and RDA assertions only occur in the event of a match.

The baud rate is set by the UART's Baud Rate Generator and supports IrDA standard baud rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the infrared endec. The infrared endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. Figure 17 displays IrDA data transmission. When the infrared endec is enabled, the UART's TXD signal is internal to the Z8 Encore! XP F082A Series products while the IR_TXD signal is output through the TXD pin.

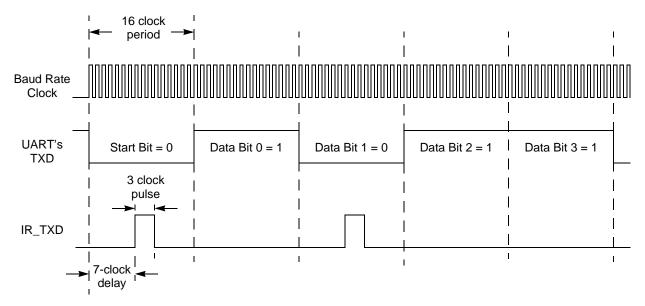


Figure 17. Infrared Data Transmission

The ADC registers actually return 13 bits of data, but the two LSBs are intended for compensation use only. When the software compensation routine is performed on the 13 bit raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the final value is an 11-bit number.

Hardware Overflow

When the hardware overflow bit (OVF) is set in ADC Data Low Byte (ADCD_L) Register, all other data bits are invalid. The hardware overflow bit is set for values greater than V_{REF} and less than $-V_{REF}$ (DIFFERENTIAL Mode).

Automatic Powerdown

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered down. From this powerdown state, the ADC requires 40 system clock cycles to power up. The ADC powers up when a conversion is requested by the ADC Control Register.

Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. Observe the following steps for setting up the ADC and initiating a single-shot conversion:

- 1. Enable the appropriate analog inputs by configuring the general-purpose I/O pins for alternate analog function. This configuration disables the digital input and output drivers.
- 2. Write the ADC Control/Status Register 1 to configure the ADC.
 - Write to BUFMODE[2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, plus unbuffered or buffered mode.
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is. contained in the ADC Control Register 0.
- 3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion. The bit fields in the ADC Control Register can be written simultaneously (the ADC can be configured and enabled with the same write instruction):
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Clear CONT to 0 to select a single-shot conversion.

Comparator

The Z8 Encore! XP F082A Series devices feature a general purpose comparator that compares two analog input signals. These analog signals may be external stimulus from a pin (CINP and/or CINN) or internally generated signals. Both a programmable voltage reference and the temperature sensor output voltage are available internally. The output is available as an interrupt source or can be routed to an external pin.

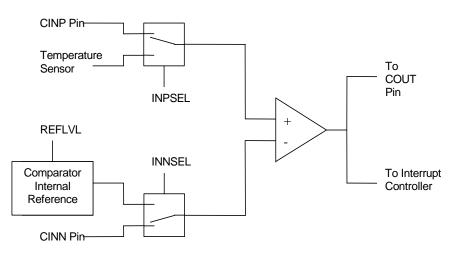


Figure 20. Comparator Block Diagram

Operation

When the positive comparator input exceeds the negative input by more than the specified hysteresis, the output is a logic High. When the negative input exceeds the positive by more than the hysteresis, the output is a logic Low. Otherwise, the comparator output retains its present value. See <u>Table 141</u> on page 238 for details.

The comparator may be powered down to reduce supply current. See the <u>Power Control</u> <u>Register 0</u> section on page 33 for details.

Caution: Because of the propagation delay of the comparator, Zilog does not recommend enabling or reconfiguring the comparator without first disabling the interrupts and waiting for the comparator output to settle. Doing so can result in spurious interrupts.

Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the read-only Flash Status Register.

Bit	Description (Continued)
[5:4] OSC_SEL[1:0]	 Oscillator Mode Selection 00 = On-chip oscillator configured for use with external RC networks (<4MHz). 01 = Minimum power for use with very low frequency crystals (32kHz to 1.0MHz). 10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz to 5.0MHz). 11 = Maximum power for use with high frequency crystals (5.0MHz to 20.0MHz). This setting is the default for unprogrammed (erased) Flash.
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = Voltage Brown-Out Protection can be disabled in STOP Mode to reduce total power consumption. For the block to be disabled, the power control register bit must also be written (see the <u>Power Control Register Definitions</u> section on page 33). 1 = Voltage Brown-Out Protection is always enabled including during STOP Mode. This setting is the default for unprogrammed (erased) Flash.
[2] FRP	 Flash Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.
[1]	Reserved This bit is reserved and must be programmed to 1.
[0] FWP	 Flash Write Protect This Option Bit provides Flash Program Memory protection: 0 = Programming and erasure disabled for all of Flash Program Memory. Programming, Page Erase and Mass Erase through User Code is disabled. Mass Erase is available using the On-Chip Debugger. 1 = Programming, Page Erase and Mass Erase are enabled for all of Flash program memory.

163

Info Page	Memory			
Address	Address	Compensation Usage	ADC Mode	Reference Type
12	FE12	Positive Gain High Byte	Differential Unbuffered	Internal 2.0 V
13	FE13	Positive Gain Low Byte	Differential Unbuffered	Internal 2.0 V
30	FE30	Negative Gain High Byte	Differential Unbuffered	Internal 2.0 V
31	FE31	Negative Gain Low Byte	Differential Unbuffered	Internal 2.0 V
72	FE72	Offset	Differential Unbuffered	Internal 1.0 V
14	FE14	Positive Gain High Byte	Differential Unbuffered	Internal 1.0 V
15	FE15	Positive Gain Low Byte	Differential Unbuffered	Internal 1.0 V
32	FE32	Negative Gain High Byte	Differential Unbuffered	Internal 1.0 V
33	FE33	Negative Gain Low Byte	Differential Unbuffered	Internal 1.0 V
75	FE75	Offset	Differential Unbuffered	External 2.0 V
16	FE16	Positive Gain High Byte	Differential Unbuffered	External 2.0 V
17	FE17	Positive Gain Low Byte	Differential Unbuffered	External 2.0 V
34	FE34	Negative Gain High Byte	Differential Unbuffered	External 2.0 V
35	FE35	Negative Gain Low Byte	Differential Unbuffered	External 2.0 V
78	FE78	Offset	Differential 1x Buffered	Internal 2.0 V
18	FE18	Positive Gain High Byte	Differential 1x Buffered	Internal 2.0 V
19	FE19	Positive Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
36	FE36	Negative Gain High Byte	Differential 1x Buffered	Internal 2.0 V
37	FE37	Negative Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
7B	FE7B	Offset	Differential 1x Buffered	External 2.0 V
1A	FE1A	Positive Gain High Byte	Differential 1x Buffered	External 2.0 V
1B	FE1B	Positive Gain Low Byte	Differential 1x Buffered	External 2.0 V
38	FE38	Negative Gain High Byte	Differential 1x Buffered	External 2.0 V
39	FE39	Negative Gain Low Byte	Differential 1x Buffered	External 2.0 V

Table 97. ADC Calibration Data Location (Continued)

enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

Breakpoints in Flash Memory

The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a Breakpoint, write 00H to the required break address, overwriting the current instruction. To remove a Breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

Runtime Counter

The On-Chip Debugger contains a 16-bit Runtime Counter. It counts system clock cycles between Breakpoints. The counter starts counting when the On-Chip Debugger leaves DEBUG Mode and stops counting when it enters DEBUG Mode again or when it reaches the maximum count of FFFFH.

On-Chip Debugger Commands

The host communicates to the on-chip debugger by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG Mode, all OCD commands become available unless the user code and control registers are protected by programming the Flash Read Protect Option bit (FRP). The Flash Read Protect Option bit prevents the code in memory from being read out of the Z8 Encore! XP F082A Series device. When this option is enabled, several of the OCD commands are disabled. See Table 109.

<u>Table 110</u> on page 191 is a summary of the on-chip debugger commands. Each OCD command is described in further detail in the bulleted list following this table. Table 110 also indicates those commands that operate when the device is not in DEBUG Mode (normal operation) and those commands that are disabled by programming the Flash Read Protect Option bit.

Debug Command	Command Byte	Enabled when Not in DEBUG Mode?	Disabled by Flash Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Reserved	01H	_	-
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	-	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit.
Read OCD Control Register	05H	Yes	-

Table 109. Debug Command Enable/Disable	Table 109.	Debug	Command	Enable/Disable
---	------------	-------	---------	----------------

Notation	Description	Operand	Range
Vector	Vector address	Vector	Vector represents a number in the range of 00H to FFH.
Х	Indexed	#Index	The register or register pair to be indexed is off- set by the signed Index value (#Index) in a +127 to –128 range.

Table 118. Notational Shorthand (Continued)

Table 119 lists additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Table 119. Additional Symbols

Assignment of a value is indicated by an arrow, as shown in the following example.

 $dst \leftarrow dst + src$

This example indicates that the source data is added to the destination data; the result is stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions can be divided functionally into the following groups:

- Arithmetic
- Bit Manipulation

214

Assembly			ress ode	_ Opcode(s)			Fla	ags			Fetch - Cycle	Instr. Cycle
Mnemonic	Symbolic Operation	dst src		(Hex)	С	Ζ	S	S V		Н	S	S
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	_	-	_	_	-	_	2	6
	$@SP \leftarrow PC \\ PC \leftarrow dst$	DA		D6	-						3	3
CCF	$C \leftarrow \sim C$			EF	*	-	_	-	-		1	2
CLR dst	dst ← 00H	R		B0	_	_	_	_	_	_	2	2
		IR		B1	-						2	3
COM dst	dst ← ~dst	R		60	_	*	*	0	_	_	2	2
		IR		61	-						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	_	_	2	3
		r	Ir	A3	-						2	4
		R	R	A4	-						3	3
		R	IR	A5	-						3	4
		R	IM	A6	-						3	3
		IR	IM	A7	-						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	_	_	3	3
		r	Ir	1F A3	-						3	4
		R	R	1F A4	-						4	3
		R	IR	1F A5	-						4	4
		R	IM	1F A6	-						4	3
		IR	IM	1F A7	-						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	_	5	3
		ER	IM	1F A9	-						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	_	4	3
		ER	IM	A9	-						4	3

Table 128. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

				•				'				
Assembly		Address Mode		_ Opcode(s)			Fla	Fetch Cycle	Instr. Cycle			
Mnemonic	Symbolic Operation	dst	src	(Hex)		Ζ	s v		D	Н	s	s
JR dst	$PC \gets PC + X$	DA		8B	_	_	_	_	_	_	2	2
JR cc, dst	if cc is true PC \leftarrow PC + X	DA		0B-FB	_	-	-	_	-	_	2	2
LD dst, rc	dst \leftarrow src	r	IM	0C-FC	_	_	_	_	_	_	2	2
		r	X(r)	C7	-						3	3
		X(r)	r	D7	-						3	4
		r	lr	E3	-						2	3
		R	R	E4	-						3	2
		R	IR	E5	-						3	4
		R	IM	E6	_						3	2
		IR	IM	E7	_						3	3
		lr	r	F3	_						2	3
		IR	R	F5	_						3	3
LDC dst, src	dst \leftarrow src	r	Irr	C2	_	_	_	_	_	_	2	5
		lr	Irr	C5	_						2	9
		Irr	r	D2	_						2	5
LDCI dst, src	dst ← src	lr	Irr	C3	_	_	_	_	_	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	D3	_						2	9
LDE dst, src	dst ← src	r	Irr	82	_	_	_	_	_	_	2	5
		Irr	r	92	-						2	5
LDEI dst, src	dst \leftarrow src	lr	Irr	83	_	-	_	_	_	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	-						2	9
LDWX dst, src	dst ← src	ER	ER	1FE8	_	_	_	-	_	_	5	4

Table 128. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

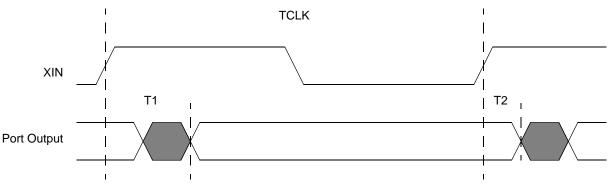
X = Undefined.

0 = Reset to 0.

1 =Set to 1.

On-Chip Peripheral AC and DC Electrical Characteristics

Table 135 tabulates the electrical characteristics of the POR and VBO blocks.


Table 135. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

		T _A =	–40°C to +′				
Symbol	Parameter	Minimum	Typical ¹	Maximum	Units	Conditions	
V _{POR}	Power-On Reset Voltage Thresh- old	2.20	2.45	2.70	V	$V_{DD} = V_{POR}$	
V _{VBO}	Voltage Brown-Out Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$	
	V _{POR} to V _{VBO} hysteresis		50	75	mV		
	Starting V _{DD} voltage to ensure valid Power-On Reset.	-	V_{SS}	-	V		
T _{ANA}	Power-On Reset Analog Delay	-	70	-	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}	
T _{POR}	Power-On Reset Digital Delay		16		μs	66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST})	
T _{POR}	Power-On Reset Digital Delay		1		ms	5000 Internal Precision Oscillator cycles	
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled		16		μs	66 Internal Precision Oscillator cycles	
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled		1		ms	5000 Internal Precision Oscillator cycles	
T _{VBO}	Voltage Brown-Out Pulse Rejec- tion Period	_	10	_	μs	Period of time in which $V_{DD} < V_{VBO}$ without generating a Reset.	

Note: Data in the typical column is from characterization at 3.3 V and 30°C. These values are provided for design guidance only and are not tested in production.

General Purpose I/O Port Output Timing

Figure 35 and Table 144 provide timing information for GPIO port pins.

Figure 35	. GPIO	Port	Output	Timing
-----------	--------	------	--------	--------

		Delay (ns)					
Parameter	Abbreviation	Minimum	Maximum				
GPIO port pi	ns						
T ₁	X _{IN} Rise to Port Output Valid Delay	-	15				
T ₂	X _{IN} Rise to Port Output Hold Time	2	_				

Table 144. GPIO Port Output Timing

Part Number	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP F082A			(B Flas	sh							
Standard Temperatu											
Z8F081APB020SG	8KB	1KB	0	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F081AQB020SG	8KB	1KB	0	6	13	2	0	1	1	0	QFN 8-pin package
Z8F081ASB020SG	8KB	1KB	0	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F081ASH020SG	8KB	1KB	0	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F081AHH020SG	8KB	1KB	0	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F081APH020SG	8KB	1KB	0	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F081ASJ020SG	8KB	1KB	0	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F081AHJ020SG	8KB	1KB	0	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F081APJ020SG	8KB	1KB	0	25	19	2	0	1	1	0	PDIP 28-pin package
Extended Temperatu	ıre: –40°	C to 10	5°C								
Z8F081APB020EG	8KB	1KB	0	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F081AQB020EG	8KB	1KB	0	6	13	2	0	1	1	0	QFN 8-pin package
Z8F081ASB020EG	8KB	1KB	0	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F081ASH020EG	8KB	1KB	0	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F081AHH020EG	8KB	1KB	0	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F081APH020EG	8KB	1KB	0	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F081ASJ020EG	8KB	1KB	0	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F081AHJ020EG	8KB	1KB	0	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F081APJ020EG	8KB	1KB	0	25	19	2	0	1	1	0	PDIP 28-pin package

Table 148. Z8 Encore! XP F082A Series Ordering Matrix

254

	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP F082A Se	eries	Develo	pment	Kit							
Z8F08A28100KITG		Z8 Enco	ore! XP	F082/	A Ser	ies 2	8-Pin	Dev	elopn	nent K	it
Z8F04A28100KITG		Z8 Enco	ore! XP	F042/	A Ser	ies 2	8-Pin	Dev	elopn	nent K	it
Z8F04A08100KITG		Z8 Enco	ore! XP	F042/	A Ser	ies 8	-Pin l	Deve	opme	ent Kit	
ZUSBSC00100ZACG		USB Sn	nart Ca	ble Ac	cess	ory K	it				
ZUSBOPTSC01ZACG		USB Op	to-Isol	ated S	mart	Cabl	e Aco	cesso	ry Kit		
ZENETSC0100ZACG		Etherne	t Smar	t Cable	e Acc	esso	ry Kit				

Table 148. Z8 Encore! XP F082A Series Ordering Matrix