Zilog - Z8F082APB020SG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	6
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f082apb020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7

warning signal. The $\overline{\text{RESET}}$ pin is bidirectional, that is, it functions as reset source and as a reset indicator.

Pin Description

The Z8 Encore! XP F082A Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information about physical package specifications, see the <u>Packaging</u> chapter on page 245.

Available Packages

The following package styles are available for each device in the Z8 Encore! XP F082A Series product line:

- SOIC: 8-, 20- and 28-pin
- PDIP: 8-, 20- and 28-pin
- SSOP: 20- and 28- pin
- QFN 8-pin (MLF-S, a QFN-style package with an 8-pin SOIC footprint)

In addition, the Z8 Encore! XP F082A Series devices are available both with and without advanced analog capability (ADC, temperature sensor and op amp). Devices Z8F082A, Z8F042A, Z8F022A and Z8F012A contain the advanced analog, while devices Z8F081A, Z8F041A, Z8F021A and Z8F011A do not have the advanced analog capability.

Pin Configurations

Figure 2 through Figure 4 display the pin configurations for all the packages available in the Z8 Encore! XP F082A Series. See <u>Table 2</u> on page 10 for a description of the signals. The analog input alternate functions (ANA*x*) are not available on the Z8F081A, Z8F041A, Z8F021A and Z8F011A devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts and are replaced by PB6 and PB7.

At reset, all Port A, B and C pins default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general purpose input ports until programmed otherwise. At powerup, the PD0 pin defaults to the **RESET** alternate function.

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page
F85	Reserved	—	XX	
Oscillator Contr	ol			
F86	Oscillator Control	OSCCTL	A0	<u>196</u>
F87–F8F	Reserved	—	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	<u>141</u>
F91–FBF	Reserved	—	XX	
Interrupt Contro	oller			
FC0	Interrupt Request 0	IRQ0	00	<u>60</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>63</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>63</u>
FC3	Interrupt Request 1	IRQ1	00	<u>61</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>65</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>65</u>
FC6	Interrupt Request 2	IRQ2	00	<u>62</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>66</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>67</u>
FC9–FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>68</u>
FCE	Shared Interrupt Select	IRQSS	00	<u>68</u>
FCF	Interrupt Control	IRQCTL	00	<u>69</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>44</u>
FD1	Port A Control	PACTL	00	<u>46</u>
FD2	Port A Input Data	PAIN	XX	<u>46</u>
FD3	Port A Output Data	PAOUT	00	<u>46</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>44</u>
FD5	Port B Control	PBCTL	00	<u>46</u>
FD6	Port B Input Data	PBIN	XX	<u>46</u>
FD7	Port B Output Data	PBOUT	00	<u>46</u>
GPIO Port C				
FD8	Port C Address	PCADDR	00	44
Notes:				

Table 7. Register File Address Map (Continued)

1. XX = Undefined.

2. Refer to the eZ8 CPU Core User Manual (UM0128).

	-			
Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page
FD9	Port C Control	PCCTL	00	<u>46</u>
FDA	Port C Input Data	PCIN	XX	<u>46</u>
FDB	Port C Output Data	PCOUT	00	<u>46</u>
GPIO Port D				
FDC	Port D Address	PDADDR	00	<u>44</u>
FDD	Port D Control	PDCTL	00	<u>46</u>
FDE	Reserved	—	XX	
FDF	Port D Output Data	PDOUT	00	<u>46</u>
FE0–FEF	Reserved	—	XX	
Watchdog Time	r (WDT)			
FF0	Reset Status (Read-only)	RSTSTAT	X0	<u>29</u>
	Watchdog Timer Control (Write-only)	WDTCTL	N/A	<u>96</u>
FF1	Watchdog Timer Reload Upper Byte	WDTU	00	<u>97</u>
FF2	Watchdog Timer Reload High Byte	WDTH	04	<u>97</u>
FF3	Watchdog Timer Reload Low Byte	WDTL	00	<u>98</u>
FF4–FF5	Reserved	—	XX	
Trim Bit Control				
FF6	Trim Bit Address	TRMADR	00	<u>161</u>
FF7	Trim Bit Data	TRMDR	00	<u>162</u>
Flash Memory C	Controller			
FF8	Flash Control	FCTL	00	<u>155</u>
FF8	Flash Status	FSTAT	00	<u>155</u>
FF9	Flash Page Select	FPS	00	<u>156</u>
	Flash Sector Protect	FPROT	00	<u>157</u>
FFA	Flash Programming Frequency High Byte	FFREQH	00	<u>158</u>
FFB	Flash Programming Frequency Low Byte	FFREQL	00	<u>158</u>
eZ8 CPU				
FFC	Flags	_	XX	See
FFD	Register Pointer	RP	XX	foot-
FFE	Stack Pointer High Byte	SPH	XX	-note 2.
FFF	Stack Pointer Low Byte	SPL	XX	
Notes:				

Table 7. Register File Address Map (Continued)

1. XX = Undefined.

2. Refer to the <u>eZ8</u> CPU Core User Manual (UM0128).

Shared Debug Pin

On the 8-pin version of this device only, the Debug pin shares function with the PA0 GPIO pin. This pin performs as a general purpose input pin on power-up, but the debug logic monitors this pin during the reset sequence to determine if the unlock sequence occurs. If the unlock sequence is present, the debug function is unlocked and the pin no longer functions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another reset event occurs. For more details, see the <u>On-Chip Debugger</u> chapter on page 180.

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled, the GPIO settings are overridden and PA0 and PA1 are disabled. See the <u>Oscillator Control Register Definitions section on page 196</u> for details.

5V Tolerance

All six I/O pins on the 8-pin devices are 5V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0] and PC[2:0]. All other signal pins are 5 V-tolerant and can safely handle inputs higher than V_{DD} except when the programmable pull-ups are enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control (OSCCTL) Register such that the external oscillator is selected as the system clock. See the <u>Oscillator Control Register Definitions section on page 196</u> for details. For 8-pin devices, use PA1 instead of PB3.

Port A–D Address Registers

The Port A–D Address registers select the GPIO port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO port controls; see Tables 18 and 19.

Bit	7	6	5	4	3	2	1	0	
Field	PADDR[7:0]								
RESET	00H								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FD0H, FD4H, FD8H, FDCH							

Table 18. Port A–D GPIO Address Registers (PxADDR)

Bit	Description
[7:0]	Port Address
PADDRx	The Port Address selects one of the subregisters accessible through the Port Control Register.
Note: x inc	dicates the specific GPIO port pin number (7–0).

Table 19. Port A–D GPIO Address Registers by Bit Description

PADDR[7:0]	Port Control Subregister accessible using the Port A–D Control Registers
00H	No function. Provides some protection against accidental port reconfiguration.
01H	Data Direction.
02H	Alternate Function.
03H	Output Control (Open-Drain).
04H	High Drive Enable.
05H	Stop Mode Recovery Source Enable.
06H	Pull-up Enable.
07H	Alternate Function Set 1.
08H	Alternate Function Set 2.
09H–FFH	No function.

Port A–D Alternate Function Subregisters

The Port A–D Alternate Function Subregister, shown in Table 22, is accessed through the Port A–D Control Register by writing 02H to the Port A–D Address Register. The Port A–D Alternate Function subregisters enable the alternate function selection on pins. If disabled, pins functions as GPIO. If enabled, select one of four alternate functions using alternate function set subregisters 1 and 2 as described in the the Port A–D Alternate Functions section on page 37 and the Port A–D Alternate Function Set 2 Subregisters section on page 51. See the <u>GPIO Alternate Functions</u> section on page 37 to determine the alternate function associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated alternate function. Failure to follow this guideline can result in unpredictable operation.

Bit	7	6	5	4	3	2	1	0	
Field	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0	
RESET	00H (Ports A–C); 01H (Port D); 04H (Port A of 8-pin device)								
R/W	R/W								
Address	If 02H ir	n Port A–D A	Address Reg	gister, acces	sible throug	h the Port A	–D Control I	Register	

Table 22. Port A–D Alternate	Function Su	bregisters	(PxAF)
------------------------------	-------------	------------	--------

Bit	Description
[7:0]	Port Alternate Function Enabled
AFx	0 = The port pin is in normal mode and the DDx bit in the Port A–D Data Direction subregister determines the direction of the pin.
	 1 = The alternate function selected through Alternate Function Set subregisters is enabled. Port pin operation is controlled by the alternate function.

Note: x indicates the specific GPIO port pin number (7-0).

Port A–D Output Control Subregisters

The Port A–D Output Control Subregister, shown in Table 23, is accessed through the Port A–D Control Register by writing 03H to the Port A–D Address Register. Setting the bits in the Port A–D Output Control subregisters to 1 configures the specified port pins for opendrain operation. These subregisters affect the pins directly and, as a result, alternate functions are also affected.

- Set the initial logic level (High or Low) for the Timer Output alternate function, if appropriate
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control Register to enable the timer and initiate counting.

In COMPARE Mode, the system clock always provides the timer input. The Compare time can be calculated by the following equation:

COMPARE Mode Time (s) = (Compare Value – Start Value) × Prescale System Clock Frequency (Hz)

GATED Mode

In GATED Mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control Register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal remains asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Observe the following steps for configuring a timer for GATED Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer

Watchdog Timer Refresh

When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation.

When the Z8 Encore! XP F082A Series devices are operating in DEBUG Mode (using the on-chip debugger), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash option bit determines the time-out response of the Watchdog Timer. For information about programming the WDT_RES Flash option bit, see the <u>Flash Option Bits</u> chapter on page 159.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Reset Status (RSTSTAT) Register; see the <u>Reset Status Register</u> on page 29. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its reload value.

The Reset Status (RSTSTAT) Register must be read before clearing the WDT interrupt. This read clears the WDT time-out Flag and prevents further WDT interrupts from immediately occurring.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP F082A Series devices are in STOP Mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) Register are set to 1 following a WDT time-out in STOP Mode. For more information about Stop Mode Recovery, see the <u>Reset, Stop</u> <u>Mode Recovery and Low Voltage Detection</u> chapter on page 22.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers, shown in Tables 60 through 62, form the 24-bit reload value that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit reload value ranges across bits [23:0] to encompass the three bytes {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate reload value. Reading from these registers returns the current Watchdog Timer count value.

Caution: The 24-bit WDT reload value must not be set to a value less than 000004H.

Bit	7	6	5	4	3	2	1	0		
Field		WDTU								
RESET		00H								
R/W		R/W*								
Address	FF1H									
Note: A read returns the current WDT count value; a write sets the appropriate reload value.										

Table 60. Watchdog Timer Reload Upper Byte Register (WDTU)

Bit	Description
[7:0]	WDT Reload Upper Byte
WDTU	Most-significant byte (MSB): bits[23:16] of the 24-bit WDT reload value.

Table 61. Watchdog Timer Reload High Byte Register (WDTH)

Bit	7	6	5	4	3	2	1	0
Field	WDTH							
RESET	04H							
R/W	R/W*							
Address	FF2H							
Note: A read returns the current WDT count value; a write sets the appropriate reload value.								

Bit	Description
[7:0]	WDT Reload High Byte
WDTH	Middle byte; bits[15:8] of the 24-bit WDT reload value.

- Set or clear CTSE to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin
- 8. Execute an EI instruction to enable interrupts.

The UART is now configured for interrupt-driven data transmission. Because the UART Transmit Data Register is empty, an interrupt is generated immediately. When the UART Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the following:

- 1. Write the UART Control 1 Register to select the multiprocessor bit for the byte to be transmitted:
- 2. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 3. Write the data byte to the UART Transmit Data Register. The transmitter automatically transfers the data to the Transmit Shift Register and transmits the data.
- 4. Clear the UART Transmit interrupt bit in the applicable Interrupt Request Register.
- 5. Execute the IRET instruction to return from the interrupt-service routine and wait for the Transmit Data Register to again become empty.

Receiving Data using the Polled Method

Observe the following steps to configure the UART for polled data reception:

- 1. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud rate for the incoming data stream.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Write to the UART Control 1 Register to enable MULTIPROCESSOR Mode functions, if appropriate.
- 4. Write to the UART Control 0 Register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if appropriate and if Multiprocessor mode is not enabled and select either even or odd parity.
- 5. Check the RDA bit in the UART Status 0 Register to determine if the Receive Data Register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate available data, continue to <u>Step 5</u>. If the Receive Data Register is empty (indicated by a 0), continue to monitor the RDA bit awaiting reception of the valid data.

Calibration and Compensation

The Z8 Encore! XP F082A Series ADC is factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, you can perform your own calibration, storing the values into Flash themselves. Thirdly, the user code can perform a manual offset calibration during DIFFERENTIAL Mode operation.

Factory Calibration

Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash option bit space. This data consists of 3 bytes for each input mode, one for offset and two for gain correction. For a list of input modes for which calibration data exists, see the <u>Zilog Calibration Data</u> section on page 168.

User Calibration

If you have precision references available, its own external calibration can be performed using any input modes. This calibration data takes into account buffer offset and nonlinearity; therefore Zilog recommends that this calibration be performed separately for each of the ADC input modes planned for use.

Manual Offset Calibration

When uncalibrated, the ADC has significant offset (see <u>Table 139</u> on page 236). Subsequently, manual offset calibration capability is built into the block. When the ADC Control Register 0 sets the input mode (ANAIN[2:0]) to MANUAL OFFSET CALIBRATION Mode, the differential inputs to the ADC are shorted together by an internal switch. Reading the ADC value at this point produces 0 in an ideal system. The value actually read is the ADC offset. This value can be stored in nonvolatile memory (see the <u>Nonvolatile Data Storage</u> chapter on page 176) and accessed by user code to compensate for the input offset error. There is no provision for manual gain calibration.

Software Compensation Procedure Using Factory Calibration Data

The value read from the ADC high and low byte registers is uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following equation yields the compensated value:

$$ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL) \times GAINCAL)/2$$

where GAINCAL is the gain calibration value, OFFCAL is the offset calibration value and ADC_{uncomp} is the uncompensated value read from the ADC. All values are in two's complement format.

#3	#3	#3	#3

4. Round the result and discard the least significant two bytes (equivalent to dividing by 2^{16}).

#3	#3	#3	#3
_			
0x00	0x00	0x80	0x00
=			
T	Γ	_	
#4 MSB	#4 LSB		

5. Determine the sign of the gain correction factor using the sign bits from <u>Step 2</u>. If the offset-corrected ADC value *and* the gain correction word both have the same sign, then the factor is positive and remains unchanged. If they have differing signs, then the factor is negative and must be multiplied by -1.

#5 MSB	#5 LSB
--------	--------

6. Add the gain correction factor to the original offset corrected value.

#5 MSB	#5 LSB
+	
#1 MSB	#1 LSB
=	
#6 MSB	#6 LSB
1	1

7. Shift the result to the right, using the sign bit determined in <u>Step 1</u>, to allow for the detection of computational overflow.

	$s \rightarrow$	#6 MSB	#6 LSB
--	-----------------	--------	--------

132

Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the read-only Flash Status Register.

Flash Page Select Register

The Flash Page Select (FPS) Register shares address space with the Flash Sector Protect Register. Unless the Flash controller is unlocked and written with 5EH, writes to this address target the Flash Page Select Register.

The register is used to select one of the available Flash memory pages to be programmed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7 bits given by FPS[6:0] are chosen for program/erase operation.

Bit	7	6	5	4	3	2	1	0
Field	INFO_EN		PAGE					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FF9H							

Table 82. Flash Page Select Register (FPS)

Bit Description

[7] Information Area Enable

INFO_EN 0 = Information Area us not selected.

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

[6:0] Page Select

PAGE This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program Memory Address[15:9] = PAGE[6:0]. For the Z8F08xx devices, the upper 3 bits must be zero. For the Z8F04xx devices, the upper 4 bits must be zero. For Z8F02xx devices, the upper 5 bits must always be 0. For the Z8F01xx devices, the upper 6 bits must always be 0.

 If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/ DBG pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled High. At this point, the PA0/DBG pin may be used to autobaud and cause the device to enter DEBUG Mode. See the <u>OCD Unlock Sequence (8-Pin Devices Only) section on</u> page 185.

Exiting DEBUG Mode

The device exits DEBUG Mode following any of these operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0
- Power-On Reset
- Voltage Brown-Out reset
- Watchdog Timer reset
- Asserting the RESET pin Low to initiate a Reset
- Driving the DBG pin Low while the device is in STOP Mode initiates a System Reset

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character transmitted and received by the OCD consists of 1 Start bit, 8 data bits (least-significant bit first) and 1 Stop bit as displayed in Figure 26.

	START	D0	D1	D2	D3	D4	D5	D6	D7	STOP	
--	-------	----	----	----	----	----	----	----	----	------	--

Figure 26. OCD Data Format

Note: When responding to a request for data, the OCD may commence transmitting immediately after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the host must not actively drive the DBG pin High for more than 0.5 bit times. Zilog recommends that, if possible, the host drives the DBG pin using an open drain output to avoid this issue.

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger contains an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the

Electrical Characteristics

The data in this chapter represents all known data prior to qualification and characterization of the F082A Series of products, and is therefore subject to change. Additional electrical characteristics may be found in the individual chapters of this document.

Absolute Maximum Ratings

Stresses greater than those listed in Table 130 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		220	mW	
Maximum current into V _{DD} or out of V _{SS}		60	mA	
20-pin Packages Maximum Ratings at 0°C to 70°C				
Total power dissipation		430	mW	

Table	130.	Absolute	Maximum	Ratings
Iabio		/ 10001010	maximani	ruunigo

Figure 38 and Table 147 provide timing information for UART pins for the case where CTS is not used for flow control. DE asserts after the Transmit Data Register has been written. DE remains asserted for multiple characters as long as the Transmit Data Register is written with the next character before the current character has completed.

Table 147	IIΔRT	Timina	Without	CTS
		rinning	without	010

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
UART				
T ₁	DE assertion to TXD falling edge (start bit) delay	1 * X _{IN} period	1 bit time	
T ₂	End of Stop Bit(s) to DE deassertion delay (Tx Data Register is empty)	± 5		

254

Part Number	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP F082A Series Development Kit											
Z8F08A28100KITG		Z8 Enco	ore! XP	F082/	A Ser	ies 2	8-Pin	Deve	elopm	nent K	it
Z8F04A28100KITG		Z8 Enco	ore! XP	F042/	A Ser	ies 2	8-Pin	Deve	elopm	nent K	it
Z8F04A08100KITG		Z8 Enco	ore! XP	F042	A Ser	ies 8	-Pin I	Devel	opme	ent Kit	
ZUSBSC00100ZACG		USB Smart Cable Accessory Kit									
ZUSBOPTSC01ZACG		USB Opto-Isolated Smart Cable Accessory Kit									
ZENETSC0100ZACG		Etherne	t Smar	t Cable	e Acc	esso	ry Kit				

Table 148. Z8 Encore! XP F082A Series Ordering Matrix

Z8 Encore! XP[®] F082A Series Product Specification

Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2