Zilog - Z8F082AQB020SG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Active
eZ8
8-Bit
20MHz
IrDA, UART/USART
Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
6
8KB (8K x 8)
FLASH
-
1K x 8
2.7V ~ 3.6V
A/D 4x10b
Internal
0°C ~ 70°C (TA)
Surface Mount
8-VDFN Exposed Pad
8-QFN (5x6)
https://www.e-xfl.com/product-detail/zilog/z8f082aqb020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

xi

List of Figures

Figure 1.	Z8 Encore! XP F082A Series Block Diagram 3
Figure 2.	Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP Package
Figure 3.	Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Package
Figure 4.	Z8F08xA, Z8F04xA, Z8F02xA and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Package
Figure 5.	Power-On Reset Operation
Figure 6.	Voltage Brown-Out Reset Operation
Figure 7.	GPIO Port Pin Block Diagram
Figure 8.	Interrupt Controller Block Diagram
Figure 9.	Timer Block Diagram
Figure 10.	UART Block Diagram 100
Figure 11.	UART Asynchronous Data Format without Parity 101
Figure 12.	UART Asynchronous Data Format with Parity 101
Figure 13.	UART Asynchronous MULTIPROCESSOR Mode Data Format 105
Figure 14.	UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity) 107
Figure 15.	UART Receiver Interrupt Service Routine Flow
Figure 16.	Infrared Data Communication System Block Diagram 120
Figure 17.	Infrared Data Transmission 121
Figure 18.	IrDA Data Reception
Figure 19.	Analog-to-Digital Converter Block Diagram
Figure 20.	Comparator Block Diagram 140
Figure 21.	Flash Memory Arrangement 147
Figure 22.	Flash Controller Operation Flow Chart 148
Figure 23.	On-Chip Debugger Block Diagram 180
Figure 24.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface; #1 of 2

- Up to 8 ports capable of direct LED drive with no current limit resistor required
- On-Chip Debugger (OCD)
- Voltage Brown-Out (VBO) protection
- Programmable low battery detection (LVD) (8-pin devices only)
- Bandgap generated precision voltage references available for the ADC, comparator, VBO and LVD
- Power-On Reset (POR)
- 2.7V to 3.6V operating voltage
- 8-, 20- and 28-pin packages
- 0° C to $+70^{\circ}$ C and -40° C to $+105^{\circ}$ C for operating temperature ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Z8 Encore! XP F082A Series product line.

Part Number	Flash (KB)	RAM (B)	NVDS ¹ (B)	I/O	Comparator	Advanced Analog ²	ADC Inputs	Packages
Z8F082A	8	1024	0	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F081A	8	1024	0	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F042A	4	1024	128	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F041A	4	1024	128	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F022A	2	512	64	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F021A	2	512	64	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F012A	1	256	16	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F011A	1	256	16	6–25	Yes	No	0	8-, 20- and 28-pin

Table 1. Z8 Encore! XP F082A Series Family Part Selection Guide

Notes:

1. Non-volatile data storage.

2. Advanced Analog includes ADC, temperature sensor and low-power operational amplifier.

Pin Description

The Z8 Encore! XP F082A Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information about physical package specifications, see the <u>Packaging</u> chapter on page 245.

Available Packages

The following package styles are available for each device in the Z8 Encore! XP F082A Series product line:

- SOIC: 8-, 20- and 28-pin
- PDIP: 8-, 20- and 28-pin
- SSOP: 20- and 28- pin
- QFN 8-pin (MLF-S, a QFN-style package with an 8-pin SOIC footprint)

In addition, the Z8 Encore! XP F082A Series devices are available both with and without advanced analog capability (ADC, temperature sensor and op amp). Devices Z8F082A, Z8F042A, Z8F022A and Z8F012A contain the advanced analog, while devices Z8F081A, Z8F041A, Z8F021A and Z8F011A do not have the advanced analog capability.

Pin Configurations

Figure 2 through Figure 4 display the pin configurations for all the packages available in the Z8 Encore! XP F082A Series. See <u>Table 2</u> on page 10 for a description of the signals. The analog input alternate functions (ANA*x*) are not available on the Z8F081A, Z8F041A, Z8F021A and Z8F011A devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts and are replaced by PB6 and PB7.

At reset, all Port A, B and C pins default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general purpose input ports until programmed otherwise. At powerup, the PD0 pin defaults to the **RESET** alternate function.

The pin configurations listed are preliminary and subject to change based on manufacturing limitations. addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 5 describes the Program Memory Maps for the Z8 Encore! XP F082A Series products.

Program Memory Address (Hex)	Function		
Z8F082A and Z8F081A Products			
0000–0001	Flash Option Bits		
0002–0003	Reset Vector		
0004–0005	WDT Interrupt Vector		
0006–0007	Illegal Instruction Trap		
0008–0037	Interrupt Vectors*		
0038–0039	Reserved		
003A-003D	Oscillator Fail Trap Vectors		
003E-1FFF	Program Memory		
Z8F042A and Z8F041A Products			
0000–0001	Flash Option Bits		
0002–0003	Reset Vector		
0004–0005	WDT Interrupt Vector		
0006–0007	Illegal Instruction Trap		
0008–0037	Interrupt Vectors*		
0038–0039	Reserved		
003A-003D	Oscillator Fail Trap Vectors		
003E-0FFF	Program Memory		
Z8F022A and Z8F021A Products			
0000–0001	Flash Option Bits		
0002–0003	Reset Vector		
0004–0005	WDT Interrupt Vector		
0006–0007	Illegal Instruction Trap		
0008–0037	Interrupt Vectors*		
0038–0039	Reserved		
003A-003D	Oscillator Fail Trap Vectors		
003E-07FF	Program Memory		
Z8F012A and Z8F011A Products			
0000–0001	Flash Option Bits		

Table 5. Z8 Encore! XP F082A Series Program Memory Maps

Note: *See Table 32 on page 56 for a list of the interrupt vectors.

Bit	Description (Continued)
[4] U0RENL	UART 0 Receive Interrupt Request Enable Low Bit
[3] U0TENL	UART 0 Transmit Interrupt Request Enable Low Bit
[2:1]	Reserved
	These bits are reserved and must be programmed to 00.
[0] ADCENL	ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

Table 41 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers, shown in Tables 41 and 42, form a priority-encoded enabling for interrupts in the Interrupt Request 1 Register.

IRQ1ENH[x	IRQ1ENL[<i>x</i>]	Priority	Description				
0	0	Disabled	Disabled				
0	1	Level 1	Low				
1	0	Level 2	Medium				
1	1	Level 3	High				
Note: x indica	ote: x indicates register bits 0–7.						

Table 41. IRQ1 Enable and Priority Encoding

Bit	Description (Continued)
[2] BRGCTL	 Baud Rate Control This bit causes an alternate UART behavior depending on the value of the REN bit in the UART Control 0 Register. When the UART receiver is not enabled (REN=0), this bit determines whether the Baud Rate Generator issues interrupts. 0 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value. 1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0. Reads from the Baud Rate High and Low Byte registers return the current BRG count value. When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate registers to return the BRG count value instead of the reload value. 0 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value. 1 = Reads from the Baud Rate High and Low Byte registers return the BRG count value. 0 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value. 1 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value. 1 = Reads from the Baud Rate High and Low Byte registers return the BRG reload value.
[1] RDAIRQ	 Receive Data Interrupt Enable 0 = Received data and receiver errors generates an interrupt request to the Interrupt Controller. 1 = Received data does not generate an interrupt request to the Interrupt Controller. Only receiver errors generate an interrupt request.
[0] IREN	 Infrared Encoder/Decoder Enable 0 = Infrared Encoder/Decoder is disabled. UART operates normally. 1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through the Infrared Encoder/Decoder.

113

Calibration and Compensation

The Z8 Encore! XP F082A Series ADC is factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, you can perform your own calibration, storing the values into Flash themselves. Thirdly, the user code can perform a manual offset calibration during DIFFERENTIAL Mode operation.

Factory Calibration

Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash option bit space. This data consists of 3 bytes for each input mode, one for offset and two for gain correction. For a list of input modes for which calibration data exists, see the <u>Zilog Calibration Data</u> section on page 168.

User Calibration

If you have precision references available, its own external calibration can be performed using any input modes. This calibration data takes into account buffer offset and nonlinearity; therefore Zilog recommends that this calibration be performed separately for each of the ADC input modes planned for use.

Manual Offset Calibration

When uncalibrated, the ADC has significant offset (see <u>Table 139</u> on page 236). Subsequently, manual offset calibration capability is built into the block. When the ADC Control Register 0 sets the input mode (ANAIN[2:0]) to MANUAL OFFSET CALIBRATION Mode, the differential inputs to the ADC are shorted together by an internal switch. Reading the ADC value at this point produces 0 in an ideal system. The value actually read is the ADC offset. This value can be stored in nonvolatile memory (see the <u>Nonvolatile Data Storage</u> chapter on page 176) and accessed by user code to compensate for the input offset error. There is no provision for manual gain calibration.

Software Compensation Procedure Using Factory Calibration Data

The value read from the ADC high and low byte registers is uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following equation yields the compensated value:

$$ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL) \times GAINCAL)/2$$

where GAINCAL is the gain calibration value, OFFCAL is the offset calibration value and ADC_{uncomp} is the uncompensated value read from the ADC. All values are in two's complement format.

Bit	7	6	5	4	3	2	1	0
Field	REFSELH		Reserved				UFMODE[2:	0]
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F7	1H			
Bit	Des	cription						
[/] REFSELH	Volta In co the lo REF 00= 01= 10= 11=	In conjunction with the Low bit (REFSELL) in ADC Control Register 0, this determined the level of the internal voltage reference; the following details the effects of {REFSEL REFSELL}; this reference is independent of the Comparator reference. 00= Internal Reference Disabled, reference comes from external pin. 01= Internal Reference set to 1.0V. 10= Internal Reference set to 2.0V (default). 11= Reserved.						etermines REFSELH,
[6:3]	Reso Thes	Reserved These bits are reserved and must be programmed to 0000.						
[2:0] BUFMODI	Inpu E[2:0] 000 001 010 011 :	but Buffer Mode Select 0 = Single-ended, unbuffered input. 1 = Single-ended, buffered input with unity gain. 0 = Reserved. 1 = Reserved.						

Table 74. ADC Control/Status Register 1 (ADCCTL1)

100 = Differential, unbuffered input.101 = Differential, buffered input with unity gain.

110 = Reserved. 111 = Reserved.

ADC Data High Byte Register

The ADC Data High Byte (ADCD_H) Register contains the upper eight bits of the ADC output. The output is an 13-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte Register is read-only. Reading the ADC Data High Byte Register latches data in the ADC Low Bits Register.

Low Power Operational Amplifier

The LPO is a general-purpose low power operational amplifier. Each of the three ports of the amplifier is accessible from the package pins. The LPO contains only one pin configuration: ANA0 is the output/feedback node, ANA1 is the inverting input and ANA2 is the noninverting input.

Operation

To use the LPO, it must be enabled in the Power Control Register 0 (PWRCTL0). The default state of the LPO is OFF. To use the LPO, the LPO bit must be cleared by turning it ON (for details, see the <u>Power Control Register 0</u> section on page 33). When making normal ADC measurements on ANA0 (i.e., measurements not involving the LPO output), the LPO bit must be turned OFF. Turning the LPO bit ON interferes with normal ADC measurements.

Caution: The LPO bit enables the amplifier even in STOP Mode. If the amplifier is not required in STOP Mode, disable it. Failing to perform this results in STOP Mode currents higher than necessary.

As with other ADC measurements, any pins used for analog purposes must be configured as such in the GPIO registers. See the <u>Port A–D Alternate Function Subregisters</u> section on page 47 for details.

LPO output measurements are made on ANA0, as selected by the ANAIN[3:0] bits of ADC Control Register 0. It is also possible to make single-ended measurements on ANA1 and ANA2 while the amplifier is enabled, which is often useful for determining offset conditions. Differential measurements between ANA0 and ANA2 may be useful for noise cancellation purposes.

If the LPO output is routed to the ADC, then the BUFFMODE[2:0] bits of ADC Control/Status Register 1 must also be configured for unity-gain buffered operation. Sampling the LPO in an unbuffered mode is not recommended.

When either input is overdriven, the amplifier output saturates at the positive or negative supply voltage. No instability results.

Bit	Description (Continued)
[1:0]	For 8-pin devices, the following voltages can be configured; for 20- and 28-pin devices, these
	bits are reserved.
	00000 = 0.00 V
	000001 = 0.05 V
	000010 = 0.10 V
	000011 = 0.15 V
	000100 = 0.20 V
	000101 = 0.25 V
	000110 = 0.30 V
	000111 = 0.35 V
	001000 = 0.40 V
	001001 = 0.45 V
	001010 = 0.50 V
	001011 = 0.55 V
	001100 = 0.60 V
	001101 = 0.65 V
	001110 = 0.70 V
	001111 = 0.75 V
	010000 = 0.80 V
	010001 = 0.85 V
	010010 = 0.90 V
	010011 = 0.95 V
	010100 = 1.00 V (Default)
	010101 = 1.05 V
	010110 = 1.10 V
	010111 = 1.15 V
	011000 = 1.20 V
	011001 = 1.25 V
	011010 = 1.30 V
	011011 = 1.35 V
	011100 = 1.40 V
	011101 = 1.45 V
	011110 = 1.50 V
	U11111 = 1.55 V
	100000 = 1.60 V
	100010 = 1.05 V
	100010 = 1.70 V
	100017 = 1.75 V
	100100 = 1.80 V

Flash Memory

The products in the Z8 Encore! XP F082A Series feature a nonvolatile Flash memory of 8KB (8192), 4 KB (4096), 2 KB (2048 bytes), or 1 KB (1024) with read/write/erase capability. The Flash Memory can be programmed and erased in-circuit by user code or through the On-Chip Debugger. The features include:

- User controlled read and write protect capability
- Sector-based write protection scheme
- Additional protection schemes against accidental program and erasure

Architecture

The Flash memory array is arranged in pages with 512 bytes per page. The 512-byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes.

For program or data protection, the Flash memory is also divided into sectors. In the Z8 Encore! XP F082A Series, these sectors are either 1024 bytes (in the 8KB devices) or 512 bytes (all other memory sizes) in size. Page and sector sizes are not generally equal.

The first 2 bytes of Flash Program memory are used as Flash option bits. For more information about their operation, see the <u>Flash Option Bits</u> chapter on page 159.

Table 78 describes the Flash memory configuration for each device in the Z8 Encore! XP F082A Series. Figure 21 displays the Flash memory arrangement.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash Sector Size (Bytes)
Z8F08xA	8 (8192)	16	0000H–1FFFH	1024
Z8F04xA	4 (4096)	8	0000H-0FFFH	512
Z8F02xA	2 (2048)	4	0000H-07FFH	512
Z8F01xA	1 (1024)	2	0000H-03FFH	512

Table 78. Z8 Encore! XP F082A Series Flash Memory Configurations

Trim Bit Address 0004H

Table 95. Trim Option Bits at 0004H

Bit	7	6	5	4	3	2	1	0
Field		Reserved						
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	Information Page Memory 0024H							
Note: U = Unchanged by Reset. R/W = Read/Write.								

Bit Description

[7:0] Reserved

These bits are reserved; altering this register may result in incorrect device operation.

Zilog Calibration Data

This section briefly describes the features of the following Flash option bit calibration registers.

ADC Calibration Data: see page 169

Temperature Sensor Calibration Data: see page 171

Watchdog Timer Calibration Data: see page 172

Serialization Data: see page 173

Randomized Lot Identifier: see page 174

Operation	Minimum Latency	Maximum Latency
Read (16 byte array)	875	9961
Read (64 byte array)	876	8952
Read (128 byte array)	883	7609
Write (16 byte array)	4973	5009
Write (64 byte array)	4971	5013
Write (128 byte array)	4984	5023
Illegal Read	43	43
Illegal Write	31	31

Table 107. NVDS Read Time

If NVDS read performance is critical to your software architecture, you can optimize your code for speed. Try the first suggestion below before attempting the second.

- 1. Periodically refresh all addresses that are used. The optimal use of NVDS in terms of speed is to rotate the writes evenly among all addresses planned to use, bringing all reads closer to the minimum read time. Because the minimum read time is much less than the write time, however, actual speed benefits are not always realized.
- 2. Use as few unique addresses as possible to optimize the impact of refreshing, plus minimize the requirement for it.

On-Chip Debugger

The Z8 Encore! XP F082A Series devices contain an integrated On-Chip Debugger (OCD) that provides advanced debugging features including:

- Single pin interface
- Reading and writing of the register file
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions
- Debug pin sharing with general-purpose input-output function to maximize pins available to the user (8-pin product only)

Architecture

The on-chip debugger consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator and debug controller. Figure 23 displays the architecture of the on-chip debugger.

Figure 23. On-Chip Debugger Block Diagram

			•
Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	W	Maximum
Load Capacitance (C _L)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

Table 114. Recommended Crystal Oscillator Specifications

Table 115.	Transconductance	Values for Low.	Medium and Hig	h Gain Operating Modes

Mode	Crystal Frequency Range	Function	Transconductance (mA/V) (Use this range for calculations)					
Low Gain*	32kHz-1MHz	Low Power/Frequency Applications	0.02	0.04	0.09			
Medium Gain*	0.5MHz-10MHz	Medium Power/Frequency Applications	0.84	1.7	3.1			
High Gain*	8MHz–20MHz	High Power/Frequency Applications	1.1	2.3	4.2			
Note: *Printed of	ircuit board layouts m	nust not add more than 4pF of stray capacitan	ce to either	the X _{IN} or 2	X _{OUT} pins.			

if no oscillation occurs, reduce the values of the capacitors C1 and C2 to decrease the loading.

Internal Precision Oscillator

The internal precision oscillator (IPO) is designed for use without external components. You can either manually trim the oscillator for a nonstandard frequency or use the automatic factory-trimmed version to achieve a 5.53MHz frequency. IPO features include:

- On-chip RC oscillator that does not require external components
- Output frequency of either 5.53 MHz or 32.8 kHz (contains both a fast and a slow mode)
- Trimmed through Flash option bits with user override
- Elimination of crystals or ceramic resonators in applications where very high timing accuracy is not required

Operation

An 8-bit trimming register, incorporated into the design, compensates for absolute variation of oscillator frequency. Once trimmed the oscillator frequency is stable and does not require subsequent calibration. Trimming is performed during manufacturing and is not necessary for you to repeat unless a frequency other than 5.53 MHz (fast mode) or 32.8 kHz (slow mode) is required. This trimming is done at +30°C and a supply voltage of 3.3 V, so accuracy of this operating point is optimal.

If not used, the IPO can be disabled by the Oscillator Control Register (see the <u>Oscillator</u> <u>Control Register Definitions section on page 196</u>).

By default, the oscillator frequency is set by the factory trim value stored in the write-protected Flash information page. However, the user code can override these trim values as described in the <u>Trim Bit Address Space</u> section on page 165.

Select one of two frequencies for the oscillator (5.53MHz and 32.8kHz) using the OSC-SEL bits in the the <u>Oscillator Control</u> chapter on page 193.

				-	•			-				
Assembly	_	Address Mode		_ Opcode(s)	Flags						Fetch Cycle	Instr. Cycle
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	s	s
RRC dst	「	R		C0	*	*	*	*	-	-	2	2
	► <u>D7D6D5D4D3D2D1D0</u> ►_C dst	IR		C1	-						2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
	-	r	lr	33							2	4
	-	R	R	34							3	3
	-	R	IR	35	-						3	4
	-	R	IM	36	-						3	3
	-	IR	IM	37							3	4
SBCX dst, src	$dst \leftarrow dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
	-	ER	IM	39	-						4	3
SCF	C ← 1			DF	1	-	-	-	-	-	1	2
SRA dst		R		D0	*	*	*	0	_	-	2	2
	D7D6D5D4D3D2D1D0	IR		D1	-						2	3
SRL dst	0 - ► D7 D6 D5 D4 D3 D2 D1 D0 ► C	R		1F C0	*	*	0	*	_	_	3	2
	dst	IR		1F C1							3	3
SRP src	$RP \leftarrow src$		IM	01	_	_	_	_	_	_	2	2
STOP	STOP Mode			6F	_	-	_	_	_	-	1	2
Note: Flags Nota * = Value is a fund - = Unaffected.	ation: ction of the result of the oper	ation.										

Table 128. eZ8 CPU Instruction Summary (Continued)

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

219

		T _A = -40°C to +105°C (unless otherwise specified)						
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions		
V _{OH1}	High Level Output Voltage	2.4	-	-	V	$I_{OH} = -2 \text{ mA}; V_{DD} = 3.0 \text{ V}$ High Output Drive disabled.		
V _{OL2}	Low Level Output Voltage	-	_	0.6	V	I _{OL} = 20 mA; V _{DD} = 3.3V High Output Drive enabled.		
V _{OH2}	High Level Output Voltage	2.4	-	-	V	I _{OH} = -20 mA; V _{DD} = 3.3V High Output Drive enabled.		
IIH	Input Leakage Cur- rent	-	<u>+</u> 0.002	<u>+</u> 5	μA	$V_{IN} = V_{DD}$ $V_{DD} = 3.3 \text{ V};$		
IIL	Input Leakage Cur- rent	-	<u>+</u> 0.007	<u>+</u> 5	μA	$V_{IN} = V_{SS}$ $V_{DD} = 3.3 V;$		
I _{TL}	Tristate Leakage Current	-	-	<u>+</u> 5	μA			
I _{LED}	Controlled Current	1.8	3	4.5	mA	{AFS2,AFS1} = {0,0}		
	Drive	2.8	7	10.5	mA	${AFS2,AFS1} = {0,1}$		
		7.8	13	19.5	mA	${AFS2,AFS1} = {1,0}$		
		12	20	30	mA	${AFS2,AFS1} = {1,1}$		
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	-	pF			
C _{XIN}	XIN Pad Capaci- tance	_	8.0 ²	_	pF			
C _{XOUT}	X _{OUT} Pad Capaci- tance	-	9.5 ²	-	pF			
I _{PU}	Weak Pull-up Cur- rent	30	100	350	μA	V _{DD} = 3.0 V–3.6 V		
V _{RAM}	RAM Data Reten- tion Voltage	TBD			V	Voltage at which RAM retains static values; no reading or writ- ing is allowed.		

Table 131. DC Characteristics (Continued)

Notes:

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

On-Chip Peripheral AC and DC Electrical Characteristics

Table 135 tabulates the electrical characteristics of the POR and VBO blocks.

Table 135. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing

		T _A =				
Symbol	Parameter	Minimum	Typical ¹	Maximum	Units	Conditions
V _{POR}	Power-On Reset Voltage Thresh- old	2.20	2.45	2.70	V	$V_{DD} = V_{POR}$
V_{VBO}	Voltage Brown-Out Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$
	V _{POR} to V _{VBO} hysteresis		50	75	mV	
	Starting V _{DD} voltage to ensure valid Power-On Reset.	-	V _{SS}	_	V	
T _{ANA}	Power-On Reset Analog Delay	-	70	-	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	Power-On Reset Digital Delay		16		μs	66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST})
T _{POR}	Power-On Reset Digital Delay		1		ms	5000 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled		16		μs	66 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled		1		ms	5000 Internal Precision Oscillator cycles
T _{VBO}	Voltage Brown-Out Pulse Rejec- tion Period	_	10	_	μs	Period of time in which $V_{DD} < V_{VBO}$ without generating a Reset.

Note: Data in the typical column is from characterization at 3.3 V and 30°C. These values are provided for design guidance only and are not tested in production.

Jart Number	Elash	MAM Mitth 3	SOVN	// V Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Standard Tomporatu			ND FIAS	ы, то		Anan	Jy-lu	-Digi		Unve	
	2 KB	512 B	64 B	6	14	2	Δ	1	1	1	PDIP 8-nin nackade
Z8F022A0B020SG	2 KB	512 B	64 B	6	14	2	4	1	1	1	OFN 8-pin package
Z8F022ASB020SG	2 KB	512 B	64 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F022ASH020SG	2 KB	512 B	64 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F022AHH020SG	2 KB	512 B	64 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F022APH020SG	2 KB	512 B	64 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F022ASJ020SG	2 KB	512 B	64 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F022AHJ020SG	2 KB	512 B	64 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F022APJ020SG	2 KB	512 B	64 B	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatu	re: –40°	°C to 10	5°C								
Z8F022APB020EG	2 KB	512 B	64 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F022AQB020EG	2 KB	512 B	64 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F022ASB020EG	2 KB	512 B	64 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F022ASH020EG	2 KB	512 B	64 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F022AHH020EG	2 KB	512 B	64 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F022APH020EG	2 KB	512 B	64 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F022ASJ020EG	2 KB	512 B	64 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F022AHJ020EG	2 KB	512 B	64 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F022APJ020EG	2 KB	512 B	64 B	23	20	2	8	1	1	1	PDIP 28-pin package

Table 148. Z8 Encore! XP F082A Series Ordering Matrix