

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	8500
Number of Logic Elements/Cells	68000
Total RAM Bits	1056768
Number of I/O	500
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe2-70e-5f672i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeECP2/M Family Data Sheet Architecture

September 2013

Data Sheet DS1006

Architecture Overview

Each LatticeECP2/M device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sys-DSP[™] Digital Signal Processing blocks, as shown in Figure 2-1. In addition, the LatticeECP2M family contains SERDES Quads in one or more of the corners. Figure 2-2 shows the block diagram of ECP2M20 with one quad.

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

The LatticeECP2/M devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large dedicated 18K fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. In addition, LatticeECP2/M devices contain up to two rows of DSP Blocks. Each DSP block has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP2M devices feature up to 16 embedded 3.125Gbps SERDES (Serializer / Deserializer) channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of four SERDES channels along with its Physical Coding Sub-layer (PCS) block, creates a quad. The functionality of the SERDES/PCS Quads can be controlled by memory cells set during device configuration or by registers that are addressable during device operation. The registers in every quad can be programmed by a soft IP interface, referred to as the SERDES Client Interface (SCI). These quads (up to four) are located at the corners of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysl/O buffers. The sysl/O buffers of the LatticeECP2/M devices are arranged in eight banks, allowing the implementation of a wide variety of I/O standards. In addition, a separate I/O bank is provided for the programming interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as SPI4.2, along with memory interfaces including DDR2.

The LatticeECP2/M registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP2/M architecture provides two General PLLs (GPLL) and up to six Standard PLLs (SPLL) per device. In addition, each LatticeECP2/M family member provides two DLLs per device. The GPLLs and DLLs blocks are located in pairs at the end of the bottommost EBR row; the DLL block is located towards the edge of the device. The SPLL blocks are located at the end of the other EBR/DSP rows.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual boot support is located toward the center of this EBR row. The Ball Grid Array (BGA) package devices in the LatticeECP2/M family supports a sysCONFIG[™] port located in the corner between banks four and five, which allows for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator. The LatticeECP2/M devices use 1.2V as their core voltage.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

ROM Mode

ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

Routing

There are many resources provided in the LatticeECP2/M devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered, allowing the routing of both short and long connections between PFUs.

The LatticeECP2/M family has an enhanced routing architecture that produces a compact design. The Diamond design software takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

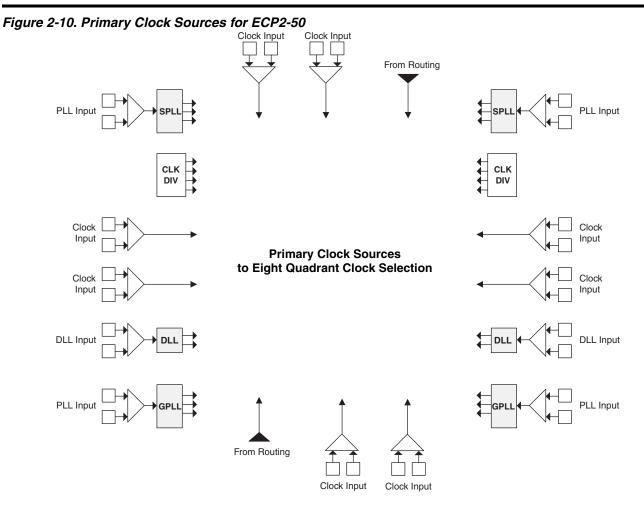
sysCLOCK Phase Locked Loops (GPLL/SPLL)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. All the devices in the LatticeECP2/M family support two General Purpose PLLs (GPLLs) which are full-featured PLLs. In addition, some of the larger devices have two to six Standard PLLs (SPLLs) that have a subset of GPLL functionality.

General Purpose PLL (GPLL)

The architecture of the GPLL is shown in Figure 2-5. A description of the GPLL functionality follows.

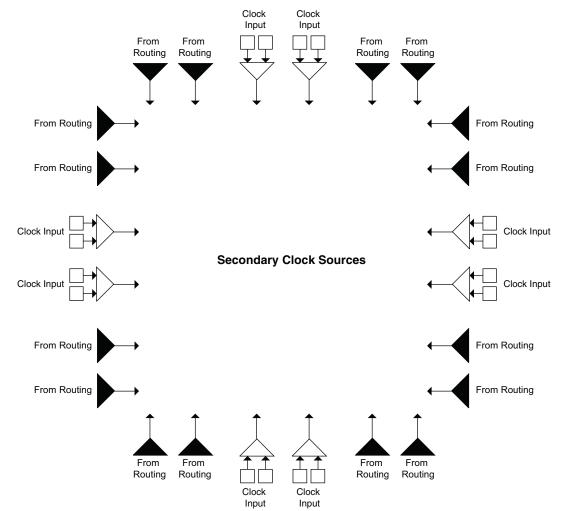
CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP or from a user clock PIN/ logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference frequency.


The Delay Adjust Block adjusts either the delays of the reference or feedback signals. The Delay Adjust Block can either be programmed during configuration or can be adjusted dynamically. The setup, hold or clock-to-out times of the device can be improved by programming a delay in the feedback or input path of the PLL, which will advance or delay the output clock with reference to the input clock.

Following the Delay Adjust Block, both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and not relock until the t_{LOCK} parameter has been satisfied. LatticeECP2/M devices have two dedicated pins on the left and right edges of the device for connecting optional external capacitors to the VCO. This allows the PLLs to operate at a lower frequency. This is a shared resource that can only be used by one PLL (GPLL or SPLL) per side.

The output of the VCO then enters the post-scalar divider. The post-scalar divider allows the VCO to operate at higher frequencies than the clock output (CLKOP), thereby increasing the frequency range. A secondary divider takes the CLKOP signal and uses it to derive lower frequency outputs (CLKOK). The Phase/Duty Select block adjusts the phase and duty cycle of the CLKOP signal and generates the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically adjusted.

The primary output from the post scalar divider CLKOP along with the outputs from the secondary divider (CLKOK) and Phase/Duty select (CLKOS) are fed to the clock distribution network.


Note: This diagram shows sources for the ECP2-50 device. Smaller LatticeECP2 devices have fewer SPLLs. All LatticeECP2M devices have six SPLLs.

Secondary Clock/Control Sources

LatticeECP2/M devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest from routing. Figure 2-11 shows the secondary clock sources.

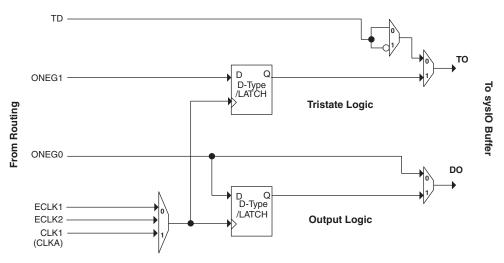



Figure 2-31. Output and Tristate Block for Left, Right and Bottom Edges

Figure 2-32. Output and Tristate Block, Top Edge

Note: Simplified version does not show CE and SET/RESET details.

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-31 shows the diagram of the Tristate Register Block with the Output Block for the left, right and bottom edges and Figure 2-32 shows the diagram of the Tristate Register Block with the Output Block for the top edge.

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct register for feeding to the output (D0).

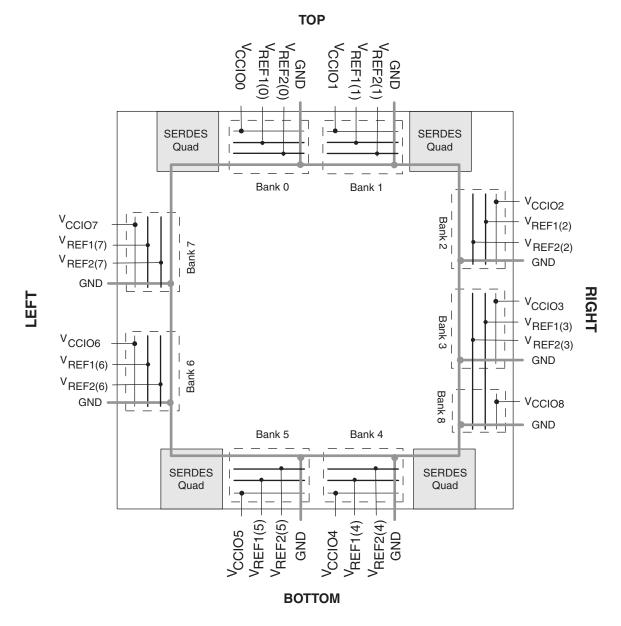
Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing, one of the edge clocks (ECLK1/ ECLK2) and a DQS signal provided from the programmable DQS pin and provided to the input register block. The clock can optionally be inverted.

DDR Memory Support

Certain PICs have additional circuitry to allow the implementation of high speed source synchronous and DDR memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges


PICs on these edges have registered elements that support DDR memory interfaces. One of every 16 PIOs contains a delay element to facilitate the generation of DQS signals. The DQS signal feeds the DQS bus that spans the set of 16 PIOs. Figure 2-33 shows the assignment of DQS pins in each set of 16 PIOs.

Bottom Edge

PICs on the bottom edge have registered elements that support DDR memory interfaces. One of every 18 PIOs contains a delay element to facilitate the generation of DQS signals. The DQS signal feeds the DQS bus that spans the set of 18 PIOs. Figure 2-34 shows the assignment of DQS pins in each set of 18 PIOs.

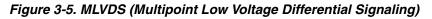
Figure 2-38. LatticeECP2M Banks

LatticeECP2/M devices contain two types of sysI/O buffer pairs.

1. Top (Bank 0 and Bank 1) sysl/O Buffer Pairs (Single-Ended Outputs Only)

The sysl/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.


2. Bottom (Bank 4 and Bank 5) sysl/O Buffer Pairs (Single-Ended Outputs Only)

The sysI/O buffer pairs in the bottom banks of the device consist of two single-ended output drivers and two

MLVDS

The LatticeECP2/M devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

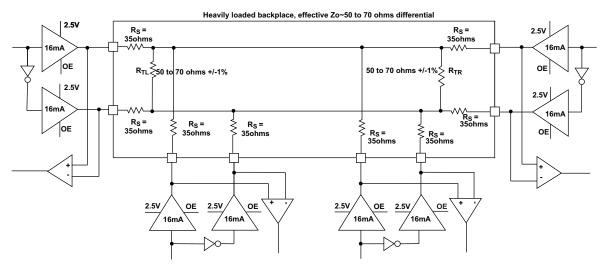


Table 3-6. MLVDS DC Conditions¹

		Тур	oical	
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage	1.52	1.60	V
V _{OL}	Output Low Voltage	0.98	0.90	V
V _{OD}	Output Differential Voltage	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

For further information about LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see the list of additional technical information at the end of this data sheet.

Table 3-18. Reference Clock

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
F _{REFCLK}	Reference clock frequency		—	100		MHz
V _{CM}	Input common mode voltage		—	0.65		V
T _R /T _F	Clock input rise/fall time		_	_	1.0	ns
V _{SW}	Differential input voltage swing		0.6	—	1.6	V
DC _{REFCLK}	Input clock duty cycle		40	50	60	%
PPM	Reference clock tolerance		-300	_	+300	ppm

LFE2-6E/SE and LFE2-12E/SE Logic Signal Connections: 144 TQFP (Cont.)

		LFE2	-6E/SE			L	FE2-12E/12SE	
Pin Number	Pin/Pad Function	Bank	Dual Function	Differential	Pin/Pad Function	Bank	Dual Function	Differential
91	PR20B	3	RLM0_GPLLC_IN_A**	C (LVDS)*	PR20B	3	RLM0_GPLLC_IN_A**	C (LVDS)*
92	PR20A	3	RLM0_GPLLT_IN_A**	T (LVDS)*	PR20A	3	RLM0_GPLLT_IN_A**	T (LVDS)*
93	RLM0_PLLCAP	3			RLM0_PLLCAP	3		
94	VCC	-			VCC	-		
95	GND	-			GND	-		
96	PR17B	3	RLM0_GDLLC_IN_A**	C (LVDS)*	PR17B	3	RLM0_GDLLC_IN_A**	C (LVDS)*
97	PR17A	3	RLM0_GDLLT_IN_A**	T (LVDS)*	PR17A	3	RLM0_GDLLT_IN_A**	T (LVDS)*
98	PR16B	3	VREF2_3	С	PR16B	3	VREF2_3	С
99	PR16A	3	VREF1_3	Т	PR16A	3	VREF1_3	Т
100	PR15B	3	PCLKC3_0	C (LVDS)*	PR15B	3	PCLKC3_0	C (LVDS)*
101	PR15A	3	PCLKT3_0	T (LVDS)*	PR15A	3	PCLKT3_0	T (LVDS)*
102	VCC	-			VCC	-		
103	PR13B	2	PCLKC2_0/RDQ10	С	PR13B	2	PCLKC2_0/RDQ10	С
104	PR13A	2	PCLKT2_0/RDQ10	Т	PR13A	2	PCLKT2_0/RDQ10	Т
105	GND	-			GND	-		
106	VCCIO2	2			VCCIO2	2		
107	PR2B	2	VREF2_2	C (LVDS)*	PR2B	2	VREF2_2	C (LVDS)*
108	PR2A	2	VREF1_2	T (LVDS)*	PR2A	2	VREF1_2	T (LVDS)*
109	PT28B	1	VREF2_1	С	PT55B	1	VREF2_1	С
110	PT28A	1	VREF1_1	Т	PT55A	1	VREF1_1	Т
111	PT26B	1		С	PT54B	1		С
112	PT26A	1		Т	PT54A	1		Т
113	PT24B	1		С	PT52B	1		С
114	PT24A	1		Т	PT52A	1		Т
115	PT22B	1		С	PT50B	1		С
116	PT22A	1		Т	PT50A	1		Т
117	VCCIO1	1			VCCIO1	1		
118	PT20B	1		С	PT48B	1		С
119	PT20A	1		Т	PT48A	1		Т
120	GND	-			GND	-		
121	PT18B	1		С	PT44B	1		С
122	PT18A	1		Т	PT44A	1		Т
123	PT16A	1			PT40B	1		С
124	NC	1			PT40A	1		Т
125	PT14B	1		С	PT34B	1		С
126	PT14A	1		Т	PT34A	1		Т
127	NC	1			NC	1		
128	VCC	-			VCC	-		
129	PT12B	1	PCLKC1_0	С	PT30B	1	PCLKC1_0	С
130	PT12A	1	PCLKT1_0	Т	PT30A	1	PCLKT1_0	Т
131	PT10B	0	PCLKC0_0	С	PT28B	0	PCLKC0_0	С
132	XRES	0			XRES	0		
133	GND	-			GND	-		
134	PT10A	0	PCLKT0_0	Т	PT28A	0	PCLKT0_0	Т
135	VCC	-			VCC	-		

LFE2-20E/SE Logic Signal Connections: 256 fpBGA (Cont.)

		LFE2-2	20E/SE		
Ball Number	Ball Number	Ball/Pad Function	Bank	Dual Function	Differential
VCCIO	VCCIO	VCCIO1	1		
D12	D12	PT62A	1		Т
B14	B14	PT61B	1		С
C14	C14	PT60B	1		С
A14	A14	PT61A	1		Т
D13	D13	PT60A	1		Т
C13	C13	PT59B	1		С
GND	GND	GNDIO1	-		
A13	A13	PT58B	1		С
B13	B13	PT59A	1		Т
VCCIO	VCCIO	VCCIO1	1		
A12	A12	PT58A	1		Т
B11	B11	PT57B	1		С
D11	D11	PT56B	1		С
A11	A11	PT57A	1		Т
C11	C11	PT56A	1		Т
-	GND	GNDIO1	1		
-	VCC	VCCIO	1		
D10	D10	PT46B	1		С
C10	C10	PT46A	1		Т
GND	GND	GNDIO1	-		
B10	B10	PT45B	1		С
A9	A9	PT44B	1		С
A10	A10	PT45A	1		Т
B9	B9	PT44A	1		Т
VCCIO	VCCIO	VCCIO1	1		
A8	A8	PT43B	1		С
D9	D9	PT42B	1		С
B8	B8	PT43A	1		т
C9	C9	PT42A	1		Т
GND	GND	GNDIO1	-		
B7	B7	PT41B	1		С
E9	E9	PT40B	1		C
A7	A7	PT41A	1		T
D8	D8	PT40A	1		T
VCCIO	VCCIO	VCCIO1	1		· ·
A6	A6	PT39B	1	PCLKC1_0	С
B6	B6	PT39A	1	PCLKT1_0	T
E6	E6	XRES	1		· ·
F8	 F8	PT37B	0	PCLKC0_0	С
GND	GND	GNDIO0	-		
E8	E8	PT37A	0	PCLKT0_0	т

LFE2-12E/SE and LFE2-20E/SE Logic Signal Connections: 484 fpBGA (Cont.)

		LFE2-	12E/12SE				LFE2-20E/20SE	
Ball Number	Ball/Pad Function	Bank	Dual Function	Differential	Ball/Pad Function	Bank	Dual Function	Differential
T7	PL29B	6	LDQ28	С	PL43B	6	LDQ42	С
Т6	PL26B	6	LDQ28	C (LVDS)*	PL40B	6	LDQ42	C (LVDS)*
AA2	PL31A	6	LDQ28	Т	PL45A	6	LDQ42	Т
VCCIO	VCCIO6	6			VCCIO6	6		
Y1	PL28A	6	LDQS28	T (LVDS)*	PL42A	6	LDQS42	T (LVDS)*
AA1	PL31B	6	LDQ28	С	PL45B	6	LDQ42	С
W1	PL28B	6	LDQ28	C (LVDS)*	PL42B	6	LDQ42	C (LVDS)*
V3	PL30B	6	LDQ28	C (LVDS)*	PL44B	6	LDQ42	C (LVDS)*
GNDIO	GNDIO6	-			GNDIO	-		
V4	PL30A	6	LDQ28	T (LVDS)*	PL44A	6	LDQ42	T (LVDS)*
U5	TDI	-			TDI	-		
U7	TCK	-			ТСК	-		
V6	TDO	-			TDO	-		
V5	TMS	-			TMS	-		
Т8	VCCJ	-			VCCJ	-		
W4	PB3A	5	BDQ6	Т	PB3A	5	BDQ6	Т
Y3	PB2A	5	VREF2_5/BDQ6	Т	PB2A	5	VREF2_5/BDQ6	Т
W3	PB3B	5	BDQ6	С	PB3B	5	BDQ6	С
Y2	PB2B	5	VREF1_5/BDQ6	С	PB2B	5	VREF1_5/BDQ6	С
AB3	PB5A	5	BDQ6	Т	PB5A	5	BDQ6	Т
VCCIO	VCCIO5	5			VCCIO5	5		
W5	PB4A	5	BDQ6	Т	PB4A	5	BDQ6	Т
AB2	PB5B	5	BDQ6	С	PB5B	5	BDQ6	С
W6	PB4B	5	BDQ6	С	PB4B	5	BDQ6	С
AB5	PB7A	5	BDQ6	Т	PB7A	5	BDQ6	Т
GNDIO	GNDIO5	-			GNDIO	-		
Y4	PB6A	5	BDQS6	Т	PB6A	5	BDQS6	Т
AB4	PB7B	5	BDQ6	С	PB7B	5	BDQ6	С
AA3	PB6B	5	BDQ6	С	PB6B	5	BDQ6	С
AB6	PB9A	5	BDQ6	Т	PB9A	5	BDQ6	Т
VCCIO	VCCIO5	5			VCCIO5	5		
AA5	PB8A	5	BDQ6	Т	PB8A	5	BDQ6	т
AA6	PB9B	5	BDQ6	C	PB9B	5	BDQ6	C
Y5	PB8B	5	BDQ6	C	PB8B	5	BDQ6	C
GNDIO	GNDIO5	-		-	GNDIO	_		
-	-	-			VCCI05	5		
Y6	PB12A	5	BDQ15	Т	PB21A	5	BDQ24	т
W7	PB11A	5	BDQ15	T	PB20A	5	BDQ24	T
Y7	PB12B	5	BDQ15	C	PB21B	5	BDQ24	C
W8	PB11B	5	BDQ15	C	PB20B	5	BDQ24	C
U8	PB14A	5	BDQ15 BDQ15	Т	PB23A	5	BDQ24 BDQ24	Т
VCCIO	VCCIO5	5			VCCIO5	5	DUQLY	
AA7	PB13A	5	BDQ15	Т	PB22A	5	BDQ24	Т
U9	PB14B	5	BDQ15 BDQ15	C	PB23B	5	BDQ24 BDQ24	C
03	10140	5	00010	U	1 0230	5	00024	U

LFE2-70E/SE Logic Signal Connections: 900 fpBGA (Cont.)

		LFE2-70E/SE		
Ball Number	Ball/Pad Function	Bank	Dual Function	Differentia
AD2	PL90B	6	LDQ88	C (LVDS)*
AD7	PL91A	6	LDQ88	Т
GND	GNDIO6	-		
AB9	PL91B	6	LDQ88	С
AD5	TCK	-		
AE7	TDI	-		
AD4	TMS	-		
AA9	TDO	-		
AD3	VCCJ	-		
AC8	PB2A	5	VREF2_5/BDQ6	Т
AE8	PB2B	5	VREF1_5/BDQ6	С
AD8	PB3A	5	BDQ6	Т
AF8	PB3B	5	BDQ6	С
AG7	PB4A	5	BDQ6	Т
VCCIO	VCCIO5	5		
AH7	PB4B	5	BDQ6	С
AC9	PB5A	5	BDQ6	Т
AE9	PB5B	5	BDQ6	С
AD9	PB6A	5	BDQS6	Т
GND	GNDIO5	-		
AF9	PB6B	5	BDQ6	С
AB10	PB7A	5	BDQ6	Т
AA10	PB7B	5	BDQ6	С
AJ7	PB8A	5	BDQ6	Т
VCCIO	VCCIO5	5		
AK7	PB8B	5	BDQ6	С
AC10	PB9A	5	BDQ6	Т
AE10	PB9B	5	BDQ6	С
AJ8	PB10A	5	BDQ6	Т
GND	GNDIO5	-		
AK8	PB10B	5	BDQ6	С
AF6	PB11A	5	BDQ15	Т
AF7	PB11B	5	BDQ15	С
AG5	PB12A	5	BDQ15	т
AH5	PB12B	5	BDQ15	С
AG6	PB13A	5	BDQ15	Т
AH6	PB13B	5	BDQ15	С
VCCIO	VCCIO5	5		-
AJ4	PB14A	5	BDQ15	т
AK4	PB14B	5	BDQ15	C
GND	GNDIO5	-		
AJ5	PB15A	5	BDQS15	T
AK5	PB15B	5	BDQ15	C

LFE2M35E/SE and LFE2M50E/SE Logic Signal Connections: 672 fpBGA (Cont.)

		L	FE2M35E/SE			L	FE2M50E/SE	
Ball Number	Ball/Pad Function	Bank	Dual Function	Differential	Ball/Pad Function	Bank	Dual Function	Differential
P8	PL45A	6	LDQ48	Т	PL49A	6	LDQ52	Т
R6	PL45B	6	LDQ48	С	PL49B	6	LDQ52	С
VCCIO	VCCIO6	6			VCCIO6	6		
T1	PL46A	6	LDQ48	T (LVDS)*	PL50A	6	LDQ52	T*
U1	PL46B	6	LDQ48	C (LVDS)*	PL50B	6	LDQ52	C*
R7	PL47A	6	LDQ48	Т	PL51A	6	LDQ52	Т
T5	PL47B	6	LDQ48	С	PL51B	6	LDQ52	С
GNDIO	GNDIO6	-			GNDIO6	-		
U3	PL48A	6	LDQS48	T (LVDS)*	PL52A	6	LDQS52	T*
U4	PL48B	6	LDQ48	C (LVDS)*	PL52B	6	LDQ52	C*
U5	PL49A	6	LDQ48	Т	PL53A	6	LDQ52	Т
VCCIO	VCCIO6	6			VCCIO6	6		
U6	PL49B	6	LDQ48	С	PL53B	6	LDQ52	С
U2	PL50A	6	LDQ48	T (LVDS)*	PL54A	6	LDQ52	T*
V1	PL50B	6	LDQ48	C (LVDS)*	PL54B	6	LDQ52	C*
W2	PL51A	6	LDQ48	Т	PL55A	6	LDQ52	Т
GNDIO	GNDIO6	-			GNDIO6	-		
V2	PL51B	6	LDQ48	С	PL55B	6	LDQ52	С
V4	PL55A	6	LDQ57	T (LVDS)*	PL59A	6		T*
VCCIO	VCCIO6	6			VCCIO6	6		
V3	PL55B	6	LDQ57	C (LVDS)*	PL59B	6		C*
-	-	-		. ,	GNDIO6	-		
W4	PL57A	6	LLM0_GPLLT_IN_A**/LDQS57****	T (LVDS)*	PL62A	6	LLM0_GPLLT_IN_A	T*
GNDIO	GNDIO6	-		. ,	GNDIO6	-		
W3	PL57B	6	LLM0_GPLLC_IN_A**/LDQ57	C (LVDS)*	PL62B	6	LLM0_GPLLC_IN_A	C*
W1	PL58A	6	LLM0_GPLLT_FB_A/LDQ57	T	PL63A	6	LLM0_GPLLT_FB_A	Т
Y1	PL58B	6	LLM0_GPLLC_FB_A/LDQ57	С	PL63B	6	LLM0_GPLLC_FB_A	С
VCCIO	VCCIO6	6			VCCIO6	6		
AA1	PL59A	6	LLM0_GDLLT_IN_A**/LDQ57	T (LVDS)*	PL64A	6	LLM0_GDLLT_IN_A	T*
AB1	PL59B	6	LLM0_GDLLC_IN_A**/LDQ57	C (LVDS)*	PL64B	6	LLM0_GDLLC_IN_A	C*
U7	PL60A	6	LLM0_GDLLT_FB_A/LDQ57	T	PL65A	6	LLM0_GDLLT_FB_A	Т
V6	PL60B	6	LLM0_GDLLC_FB_A/LDQ57	С	PL65B	6	LLM0_GDLLC_FB_A	С
GNDIO	GNDIO6	-			GNDIO6	-		
Т8	LLM0_PLLCAP	6			LLM0_PLLCAP	6		
W5	PL62A	6	LDQ66	T (LVDS)*	PL67A	6	LDQ71	T*
Y4	PL62B	6	LDQ66	C (LVDS)*	PL67B	6	LDQ71	C*
U8	PL63A	6	LDQ66	Т	PL68A	6	LDQ71	Т
W6	PL63B	6	LDQ66	С	PL68B	6	LDQ71	С
VCCIO	VCCIO6	6			VCCIO6	6		
Y3	PL64A	6	LDQ66	T (LVDS)*	PL69A	6	LDQ71	T*
AA3	PL64B	6	LDQ66	C (LVDS)*	PL69B	6	LDQ71	C*
V7	NC	-			PL70A	6	LDQ71	Т
Y5	PL65B	6	LDQ66	С	PL70B	6	LDQ71	С
GNDIO	GNDIO6	-			GNDIO6	-		
AB2	PL66A	6	LDQS66	T (LVDS)*	PL71A	6	LDQS71	T*
AA4	PL66B	6	LDQ66	C (LVDS)*	PL71B	6	LDQ71	C*
Y6	PL67A	6	LDQ66	T	PL72A	6	LDQ71	T
VCCIO	VCCIO6	6			VCCIO6	6		

LFE2M50E/SE and LFE2M70E/SE Logic Signal Connections: 900 fpBGA (Cont.)

		LFE2M	50E/SE				LFE2M70E/SE	
Ball Number	Ball/Pad Function	Bank	Dual Function	Differential	Ball/Pad Function	Bank	Dual Function	Differential
AH25	LRC_SQ_VCCOB1	13			LRC_SQ_VCCOB1	13		
AJ25	LRC_SQ_HDOUTN1	13		С	LRC_SQ_HDOUTN1	13		С
AH26	LRC_SQ_VCCTX1	13			LRC_SQ_VCCTX1	13		
AJ26	LRC_SQ_HDOUTN0	13		С	LRC_SQ_HDOUTN0	13		С
AK27	LRC_SQ_VCCOB0	13			LRC_SQ_VCCOB0	13		
AK26	LRC_SQ_HDOUTP0	13		Т	LRC_SQ_HDOUTP0	13		Т
AH27	LRC_SQ_VCCTX0	13			LRC_SQ_VCCTX0	13		
AJ29	LRC_SQ_HDINN0	13		С	LRC_SQ_HDINN0	13		С
AJ30	LRC_SQ_VCCIB0	13			LRC_SQ_VCCIB0	13		
AK29	LRC_SQ_HDINP0	13		Т	LRC_SQ_HDINP0	13		Т
AH30	LRC_SQ_VCCRX0	13			LRC_SQ_VCCRX0	13		
AG27	CFG2	8			CFG2	8		
AD25	CFG1	8			CFG1	8		
AG28	CFG0	8			CFG0	8		
AG30	PROGRAMN	8			PROGRAMN	8		
AG29	CCLK	8			CCLK	8		
AC24	INITN	8			INITN	8		
AF27	DONE	8			DONE	8		
GNDIO	GNDIO8	-			GNDIO8	-		
AF28	WRITEN***	8			WRITEN***	8		
AE26	CS1N***	8			CS1N***	8		
AB23	CSN***	8			CSN***	8		
AF29	D0/SPIFASTN***	8			D0/SPIFASTN***	8		
VCCIO	VCCI08	8			VCCIO8	8		
AF30	D1***	8			D1***	8		
AD26	D2***	8			D2***	8		
AE29	D3***	8			D3***	8		
GNDIO	GNDIO8	-			GNDIO8	-		
AE30	D4***	8			D4***	8		
AD29	D5***	8			D5***	8		
AC25	D6***	8			D6***	8		
AD30	D7/SPID0***	8			D7/SPID0***	8		
VCCIO	VCCIO8	8			VCCIO8	8		
AA22	DI/CSSPI0N***	8			DI/CSSPI0N***	8		
AC26	DOUT/CSON/ CSSPI1N***	8			DOUT/CSON/ CSSPI1N***	8		
AA23	BUSY/SISPI***	8			BUSY/SISPI***	8		
AB22	RLM0_PLLCAP	3			RLM0_PLLCAP	3		
AC27	PR65B	3	RLM0_GDLLC_FB_A	С	PR85B	3	RLM0_GDLLC_FB_A/RDQ82	С
GNDIO	GNDIO3	-			GNDIO3	-		
AC28	PR65A	3	RLM0_GDLLT_FB_A	Т	PR85A	3	RLM0_GDLLT_FB_A/RDQ82	Т
AC29	PR64B	3	RLM0_GDLLC_IN_A**	C (LVDS)*	PR84B	3	RLM0_GDLLC_IN_A**/RDQ82	C (LVDS)*
AC30	PR64A	3	RLM0_GDLLT_IN_A**	T (LVDS)*	PR84A	3	RLM0_GDLLT_IN_A**/RDQ82	T (LVDS)*
AB30	PR63B	3	RLM0_GPLLC_IN_A**	С	PR83B	3	RLM0_GPLLC_IN_A**/RDQ82	С
VCCIO	VCCIO3	3			VCCIO3	3		
AA30	PR63A	3	RLM0_GPLLT_IN_A**	Т	PR83A	3	RLM0_GPLLT_IN_A**/RDQ82	Т
AB29	PR62B	3	RLM0_GPLLC_FB_A	C (LVDS)*	PR82B	3	RLM0_GPLLC_FB_A/RDQ82	C (LVDS)*
AB28	PR62A	3	RLM0_GPLLT_FB_A	T (LVDS)*	PR82A	3	RLM0_GPLLT_FB_A/RDQS82	T (LVDS)*
GNDIO	GNDIO3	-			GNDIO3	-		

LFE2M50E/SE and LFE2M70E/SE Logic Signal Connections: 900 fpBGA (Cont.)

		LFE2M50	E/SE		LFE2M70E/SE				
Ball Number	Ball/Pad Function	Bank	Dual Function	Differential	Ball/Pad Function	Bank	Dual Function	Differentia	
G7	PL8A	7	LDQ6	T (LVDS)*	NC	-			
G8	PL6A	7	LDQS6****	T (LVDS)*	NC	-			
G9	PL5A	7	LDQ6	Т	NC	-			
H19	NC	-			NC	-			
H20	NC	-			NC	-			
H21	NC	-			NC	-			
H22	NC	-			NC	-			
H6	PL8B	7	LDQ6	C (LVDS)*	NC	-			
H8	PL5B	7	LDQ6	С	NC	-			
H9	PL2A	7	LDQ6	T (LVDS)*	NC	-			
J10	PL2B	7	LDQ6	C (LVDS)*	NC	-			
J20	NC	-			NC	-			
J21	NC	-			NC	-			
J9	PL4A	7	LDQ6	T (LVDS)*	NC	-			
K9	PL4B	7	LDQ6	C (LVDS)*	NC	-			
R9	NC	-			NC	-			
U22	NC	-			NC	-			
W9	NC	-			NC	-			
N13	VCCPLL	-			VCCPLL	-			
N18	VCCPLL	-			VCCPLL	-			
V13	VCCPLL	-			VCCPLL	-			
V18	VCCPLL	-			VCCPLL	-			

* Supports true LVDS. Other differential signals must be emulated with external resistors.

** These dedicated input pins can be used for GPLLs or GDLLs within the respective quadrant.

*** These sysCONFIG pins are dedicated I/O pins for configuration. The outpus are actively driven during normal device operation.

****Due to packaging bond out option, this DQS does not have all the necessary DQ pins bonded out for a full 8-bit data width.

Note: VCCIO and GND pads are used to determine the average DC current drawn by I/Os between GND/VCCIO connections, or between the last GND/VCCIO in an I/O bank and the end of an I/O bank. The substrate pads listed in the Pin Table do not necessarily have a one to one connection with a package ball or pin.

LFE2M70E/SE and LFE2M100E/SE Logic Signal Connections: 1152 fpBGA (Cont.)

		LFE2M70E/	SE			LFE2M100	E/SE	
Ball Number	Ball/Pad Function	Bank	Dual Function	Differential	Ball/Pad Function	Bank	Dual Function	Differential
GNDIO	GNDIO5	-			GNDIO5	-		
AE16	PB42B	5	BDQ42	С	PB51B	5	BDQ51	С
AF15	PB44A	5	BDQ42	Т	PB53A	5	BDQ51	Т
VCCIO	VCCIO5	5			VCCIO5	5		
AD16	PB44B	5	BDQ42	С	PB53B	5	BDQ51	С
AK17	PB45A	5	BDQ42	Т	PB54A	5	BDQ51	Т
AH16	PB45B	5	BDQ42	С	PB54B	5	BDQ51	С
AN16	PB46A	5	BDQ42	Т	PB55A	5	BDQ51	Т
GNDIO	GNDIO5	-			GNDIO5	-		
AP16	PB46B	5	BDQ42	С	PB55B	5	BDQ51	С
AL17	PB47A	5	BDQ51	Т	PB56A	5	BDQ60	Т
AM17	PB47B	5	BDQ51	С	PB56B	5	BDQ60	С
AN17	PB48A	5	BDQ51	Т	PB57A	5	BDQ60	Т
AP17	PB48B	5	BDQ51	С	PB57B	5	BDQ60	С
AD17	PB49A	5	BDQ51	Т	PB58A	5	BDQ60	Т
AE17	PB49B	5	BDQ51	С	PB58B	5	BDQ60	С
VCCIO	VCCIO5	5			VCCIO5	5		
AL18	PB50A	5	BDQ51	Т	PB59A	5	BDQ60	Т
AM18	PB50B	5	BDQ51	С	PB59B	5	BDQ60	С
GNDIO	GNDIO5	-			GNDIO5	-		
AP18	PB51A	5	BDQS51	Т	PB60A	5	BDQS60	Т
AN18	PB51B	5	BDQ51	С	PB60B	5	BDQ60	С
AG17	PB52A	5	VREF2_5/BDQ51	Т	PB61A	5	VREF2_5/BDQ60	Т
AJ17	PB52B	5	VREF1_5/BDQ51	С	PB61B	5	VREF1_5/BDQ60	С
AF17	PB53A	5	PCLKT5_0/BDQ51	Т	PB62A	5	PCLKT5_0/BDQ60	т
AH17	PB53B	5	PCLKC5_0/BDQ51	С	PB62B	5	PCLKC5_0/BDQ60	С
VCCIO	VCCIO5	5			VCCIO5	5		
GNDIO	GNDIO5	-			GNDIO5	-		
AF18	PB58A	4	PCLKT4_0/BDQ60	Т	PB67A	4	PCLKT4_0/BDQ69	Т
VCCIO	VCCIO4	4			VCCIO4	4		
AD18	PB58B	4	PCLKC4_0/BDQ60	С	PB67B	4	PCLKC4_0/BDQ69	С
AP19	PB59A	4	VREF2_4/BDQ60	Т	PB68A	4	VREF2_4/BDQ69	Т
AN19	PB59B	4	VREF1_4/BDQ60	С	PB68B	4	VREF1_4/BDQ69	С
AP20	PB60A	4	BDQS60	Т	PB69A	4	BDQS69	Т
GNDIO	GNDIO4	-			GNDIO4	-		
AM20	PB60B	4	BDQ60	С	PB69B	4	BDQ69	С
AN20	PB61A	4	BDQ60	Т	PB70A	4	BDQ69	Т
AM21	PB61B	4	BDQ60	С	PB70B	4	BDQ69	С
AG18	PB62A	4	BDQ60	Т	PB71A	4	BDQ69	Т
VCCIO	VCCIO4	4			VCCIO4	4		
AE18	PB62B	4	BDQ60	С	PB71B	4	BDQ69	С
AJ18	PB63A	4	BDQ60	Т	PB72A	4	BDQ69	Т
AH18	PB63B	4	BDQ60	С	PB72B	4	BDQ69	С
AK18	PB64A	4	BDQ60	Т	PB73A	4	BDQ69	Т
GNDIO	GNDIO4	-			GNDIO4	-		
AK19	PB64B	4	BDQ60	С	PB73B	4	BDQ69	С
AP21	PB65A	4	BDQ69	Т	PB74A	4	BDQ78	Т
AN21	PB65B	4	BDQ69	С	PB74B	4	BDQ78	С
AL20	PB66A	4	BDQ69	Т	PB75A	4	BDQ78	т

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs (K)
LFE2-20SE-5QN208I	131	1.2V	-5	Lead-Free PQFP	208	Ind	20
LFE2-20SE-6QN208I	131	1.2V	-6	Lead-Free PQFP	208	Ind	20
LFE2-20SE-5FN256I	193	1.2V	-5	Lead-Free fpBGA	256	Ind	20
LFE2-20SE-6FN256I	193	1.2V	-6	Lead-Free fpBGA	256	Ind	20
LFE2-20SE-5FN484I	331	1.2V	-5	Lead-Free fpBGA	484	Ind	20
LFE2-20SE-6FN484I	331	1.2V	-6	Lead-Free fpBGA	484	Ind	20
LFE2-20SE-5FN672I	402	1.2V	-5	Lead-Free fpBGA	672	Ind	20
LFE2-20SE-6FN672I	402	1.2V	-6	Lead-Free fpBGA	672	Ind	20

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs (K)
LFE2-35SE-5FN484I	331	1.2V	-5	Lead-Free fpBGA	484	Ind	35
LFE2-35SE-6FN484I	331	1.2V	-6	Lead-Free fpBGA	484	Ind	35
LFE2-35SE-5FN672I	450	1.2V	-5	Lead-Free fpBGA	672	Ind	35
LFE2-35SE-6FN672I	450	1.2V	-6	Lead-Free fpBGA	672	Ind	35

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs (K)
LFE2-50SE-5FN484I	339	1.2V	-5	Lead-Free fpBGA	484	Ind	50
LFE2-50SE-6FN484I	339	1.2V	-6	Lead-Free fpBGA	484	Ind	50
LFE2-50SE-5FN672I	500	1.2V	-5	Lead-Free fpBGA	672	Ind	50
LFE2-50SE-6FN672I	500	1.2V	-6	Lead-Free fpBGA	672	Ind	50

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs (K)
LFE2-70SE-5FN672I	500	1.2V	-5	Lead-Free fpBGA	672	Ind	70
LFE2-70SE-6FN672I	500	1.2V	-6	Lead-Free fpBGA	672	Ind	70
LFE2-70SE-5FN900I	583	1.2V	-5	Lead-Free fpBGA	900	Ind	70
LFE2-70SE-6FN900I	583	1.2V	-6	Lead-Free fpBGA	900	Ind	70

Part Number	I/Os	Voltage	Grade	Package	Pins	Temp.	LUTs (K)
LFE2M100SE-5FN1152C	520	1.2V	-5	Lead-Free fpBGA	1152	Com	100
LFE2M100SE-6FN1152C	520	1.2V	-6	Lead-Free fpBGA	1152	Com	100
LFE2M100SE-7FN1152C	520	1.2V	-7	Lead-Free fpBGA	1152	Com	100
LFE2M100SE-5FN900C	416	1.2V	-5	Lead-Free fpBGA	900	Com	100
LFE2M100SE-6FN900C	416	1.2V	-6	Lead-Free fpBGA	900	Com	100
LFE2M100SE-7FN900C	416	1.2V	-7	Lead-Free fpBGA	900	Com	100

LatticeECP2/M Family Data Sheet Supplemental Information

July 2012

Data Sheet DS1006

For Further Information

A variety of technical notes for the LatticeECP2/M family are available on the Lattice web site at <u>www.latticesemi.com</u>.

- TN1102, LatticeECP2/M sysIO Usage Guide
- TN1103, LatticeECP2/M sysCLOCK PLL Design and Usage Guide
- TN1104, LatticeECP2/M Memory Usage Guide
- TN1105, LatticeECP2/M High-Speed I/O Interface
- TN1106, Power Estimation and Management for LatticeECP2/M Devices
- TN1107, LatticeECP2/M sysDSP Usage Guide
- TN1108, LatticeECP2/M sysCONFIG Usage Guide
- TN1109, LatticeECP2/M Configuration Encryption Usage Guide
- TN1113, LatticeECP2/M Soft Error Detection (SED) Usage Guide
- TN1124, LatticeECP2M SERDES/PCS Usage Guide
- TN1162, LatticeECP2/M Hardware Checklist

For further information about interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: <u>www.pcisig.com</u>

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.