

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.2 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 3-1). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 0											
00h	INDF	Addressir	ng this locatio	l register)	xxxx xxxx	25					
01h	TMR0	Timer0 M	odule's Regis	ter					• /	xxxx xxxx	43
02h	PCL	Program	Counter's (PC) Least Sign	ificant Byte					0000 0000	13
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
04h	FSR	Indirect d	ata memory a	ddress point	er				-	xxxx xxxx	25
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	29
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	34
07h	_	Unimplen	nented							_	
08h	_	Unimplen	nented							_	
09h	_	Unimplen	nented							_	
0Ah	PCLATH	_	_	_	Write buffer	for upper 5 b	oits of progra	im counter		0 0000	25
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	23
0Dh	_	Unimplen	nented							—	_
0Eh	TMR1L	Holding r	egister for the	Least Signif	icant Byte of	the 16-bit TN	1R1			XXXX XXXX	46
0Fh	TMR1H	Holding r	egister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1			XXXX XXXX	46
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	46
11h	TMR2	TMR2 mo	odule's registe	r						0000 0000	50
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	50
13h	_	Unimplen	nented							_	_
14h	—	Unimplen	nented							_	_
15h	CCPR1L	Capture/0	Compare/PWN	/I register (LS	SB)					xxxx xxxx	61
16h	CCPR1H	Capture/0	Compare/PWN	/I register (M	SB)					xxxx xxxx	61
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	61
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	67
19h	TXREG	USART T	ransmit data	register						0000 0000	74
1Ah	RCREG	USART Receive data register							0000 0000	77	
1Bh	_	Unimplen	nented							—	_
1Ch	_	Unimplen	nented							—	_
1Dh	—	Unimplen	nented							—	—
1Eh	—	Unimplen	nented		1	1			1	—	—
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	53

TABLE 3-1: SPECIAL REGISTERS SUMMARY BANK 0

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

4.0 GENERAL DESCRIPTION

The PIC16F62X are 18-Pin FLASH-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully static, 8-bit microcontrollers.

All PICmicro[®] microcontrollers employ an advanced RISC architecture. The PIC16F62X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16F62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

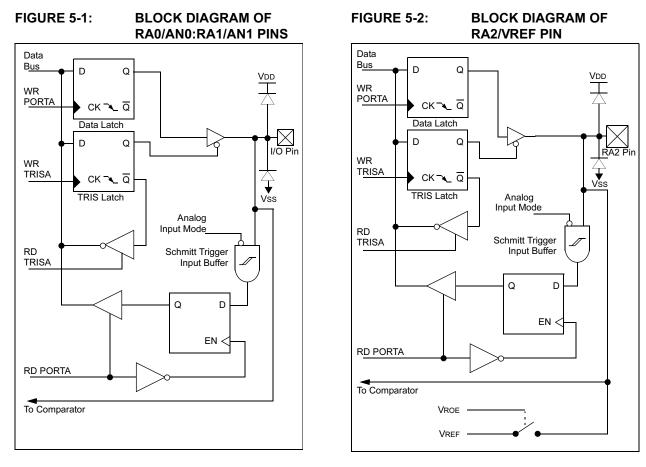
The PIC16F62X has eight oscillator configurations. The single pin ER oscillator provides a low cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, INTRC is a self-contained internal oscillator. The HS is for High Speed crystals. The EC mode is for an external clock source. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external interrupts, internal interrupts, and RESETS.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

Table 4-1 shows the features of the PIC16F62X midrange microcontroller families.

A simplified block diagram of the PIC16F62X is shown in Figure 2.1.

The PIC16F62X series fits in applications ranging from battery chargers to low power remote sensors. The FLASH technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F62X very versatile.


4.1 Development Support

The PIC16F62X family is supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

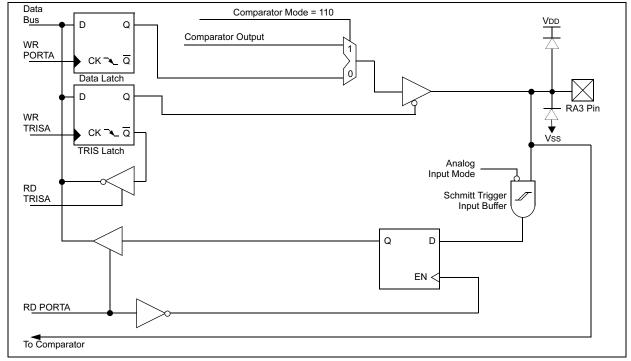

		PIC16F627	PIC16F628	PIC16LF627	PIC16LF628
Clock	Maximum Frequency of Operation (MHz)	20	20	4	4
	FLASH Program Memory (words)	1024	2048	1024	2048
Memory	RAM Data Memory (bytes)	224	224	224	224
	EEPROM Data Memory (bytes)	128	128	128	128
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Comparator(s)	2	2	2	2
Peripherals	Capture/Compare/PWM modules	1	1	1	1
	Serial Communications	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10
	I/O Pins	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Detect	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP			

TABLE 4-1:PIC16F62X FAMILY OF DEVICES

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16F62X Family devices use serial programming with clock pin RB6 and data pin RB7.

FIGURE 5-3: BLOCK DIAGRAM OF THE RA3/AN3 PIN

Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST	_	USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	ТХ	_	CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	_	XTAL	Timer1 Oscillator Output
	T1CKI	ST	—	Timer1 Clock Input
	PGC	ST	_	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not TTL = TTL	used	CM(I OD	OS = CMOS = Input = Open	S Output P = Power ST = Schmitt Trigger Input Drain Output AN = Analog

PORTR FUNCTIONS

SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾ TABLE 5-4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTB.

6.3 Timer0 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no postscaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

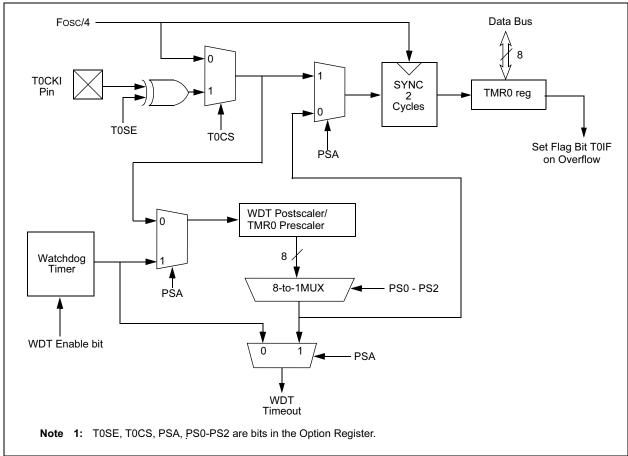


FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The spe	cial e	event	trigg	ers from tl	he CC	CP1
	module	will	not	set	interrupt	flag	bit
	TMR1IF	(PIR	1<0>).			

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

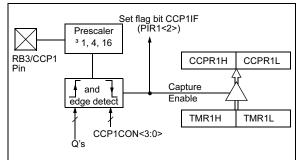
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	I	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	I	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	egister for	the Least Sig	gnificant Byte	of the 16-bit	TMR1 regist	er		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	gister for	the Most Sig	nificant Byte	of the 16-bit T	MR1 registe	er		xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

11.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the Interrupt Request Flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

11.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

TABLE 11-2:CAPTURE MODE OPERATION
BLOCK DIAGRAM

11.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

11.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

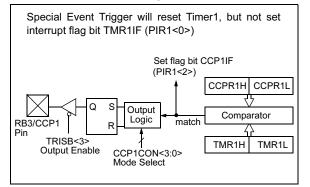
11.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 11-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value


11.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

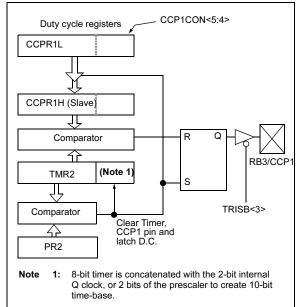
FIGURE 11-1: COMPARE MODE OPERATION BLOCK DIAGRAM

11.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.

Note: Clearing the CCP1CON register will force the RB3/CCP1 compare output latch to the default low level. This is not the data latch.

11.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<3> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTB I/O data
	latch.

Figure 11-2 shows a simplified block diagram of the CCP module in PWM mode.

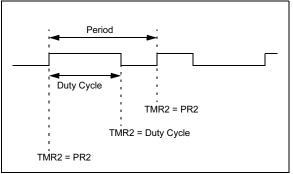

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 11.3.3.

FIGURE 11-2: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 11-3) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 11-3: PWM OUTPUT

11.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • Tosc • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 8.0) is not used in the determination of the PWM frequency. The postscaler could be used to have an interrupt occur at a different frequency than the PWM output.

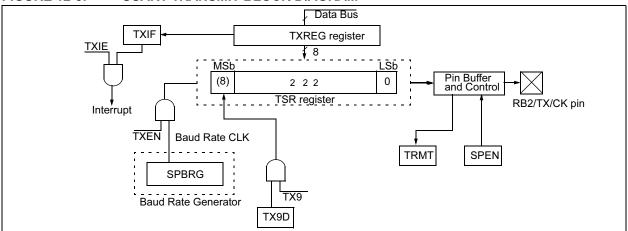
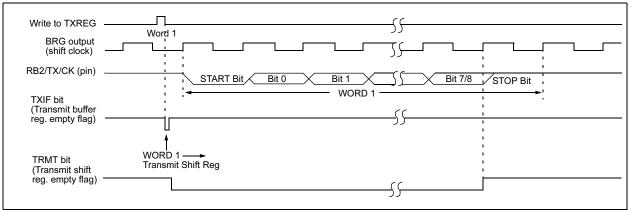

BAUD	Fosc = 20 M	Hz	SPBRG	16 MHz		SPBRG	10 MHz	SPBRG	
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16 MHz KBAUD ERROR		SPBRG	5.068 MHz		SPBRG	4 MHz	SPBRG	
RATE (K)			value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA		—	NA	—	_	NA	—	

BAUD	Fosc = 3.579	9 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA



Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, RPO	; Bank 1
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	EECON1, RD	; EE Read
MOVF	EEDATA, W	; W = EEDATA
BCF	STATUS, RPO	; Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

WOVWW SSN ; MOVWF EECON2 ; Write SSN ; MOVWF EECON2 ; WOVWF EECON2 ; Write AAh ; BSF EECON1,WR ; BSF EECON1,WR ; BSF INTCON, GIE ; Enable INTs.	Required Sequence	MOVLW AAh MOVWF EECON2 BSF EECON1,WR	; ; Write AAh ; Set WR bit ; begin write
---	----------------------	--	---

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

14.2.6 INTERNAL 4 MHz OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and 25°C, see "Electrical Specifications" section for information on variation over voltage and temperature.

14.2.7 CLKOUT

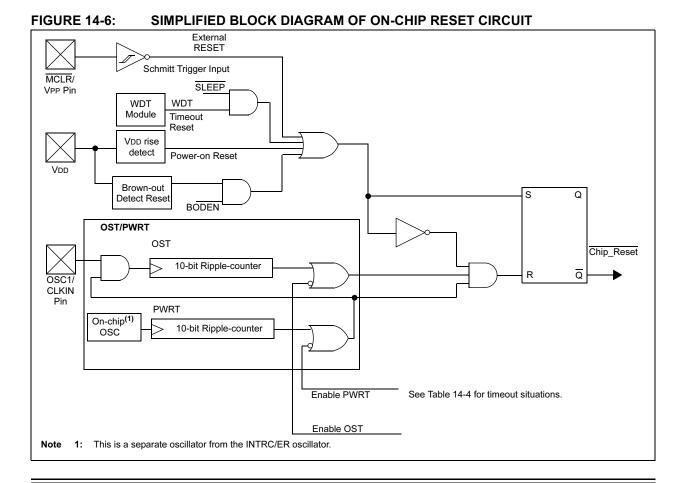
The PIC16F62X can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4 can be used for test purposes or to synchronize other logic.

14.3 Special Feature: Dual Speed Oscillator Modes

A software programmable Dual Speed Oscillator mode is provided when the PIC16F62X is configured in either ER or INTRC Oscillator modes. This feature allows users to dynamically toggle the oscillator speed between 4 MHz and 37 kHz. In ER mode, the 4 MHz setting will vary depending on the value of the external resistor. Also in ER mode, the 37 kHz operation is fixed and does not vary with resistor value. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

The OSCF bit in the PCON register is used to control Dual Speed mode. See Section 3.2.2.6, Register 3-4.

14.4 RESET


The PIC16F62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT Wake-up (SLEEP)
- f) Brown-out Detect (BOD)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT Wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 14-5. These bits are used in software to determine the nature of the RESET. See Table 14-8 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 14-6.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See Table 17-6 for pulse width specification.

15.0 INSTRUCTION SET SUMMARY

Each PIC16F62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F62X instruction set summary in Table 15-2 lists byte-oriented, bitoriented, and literal and control operations. Table 15-1 shows the opcode field descriptions.

For byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For literal and control operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLA TH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

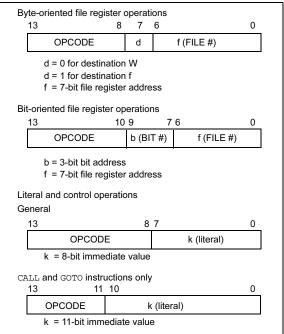
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

Figure 15-1 shows the three general formats that the instructions can have.


- Note 1: Any unused opcode is reserved. Use of any reserved opcode may cause unexpected operation.
 - 2: To maintain upward compatibility with future PICmicro[®] products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

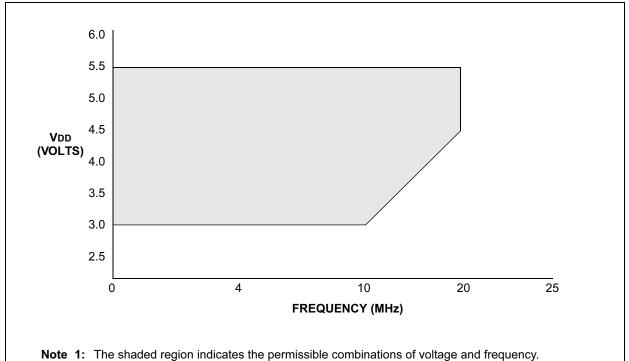
0xhh

where h signifies a hexadecimal digit.

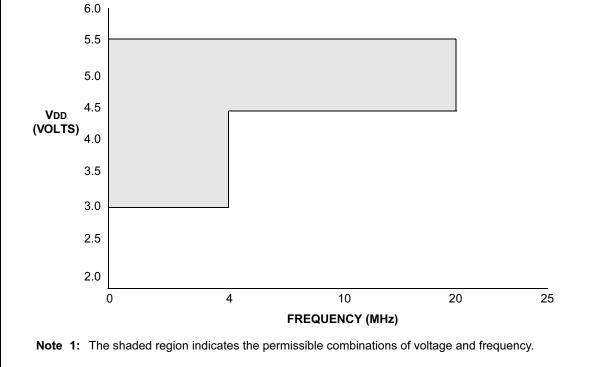
FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 15-2: PIC16F62X INSTRUCTION SET

Mnemonic, Operands		Description		14-Bit Opcode				Status	Notes
				MSb			LSb	Affected	Notes
BYTE-ORIE	NTED F	ILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	0.0	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	0.0	1110	dfff	ffff	-, -,	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FILE	EREGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	01	11bb		ffff		3
LITERAL AN	ND CON	TROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	0.0	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
	IX.			**	T0T0	VVVV	VIVIV	-	


Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.


3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16F62X

17.1 DC Characteristics: PIC16F62X-04 (Commercial, Industrial, Extended) PIC16F62X-20 (Commercial, Industrial, Extended) PIC16LF62X-04 (Commercial, Industrial)

PIC16LF62X-04 (Commercial, Industrial)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq Ta \leq +85^{\circ}C \mbox{ for industrial and} \\ & 0^{\circ}C \leq Ta \leq +70^{\circ}C \mbox{ for commercial} \end{array}$						
PIC16F62X-04 PIC16F62X-20 (Commercial, Industrial, Extended)				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic/Device	Min Typ† Max Units Conditions						
	IPD	Power Down Current* ^{(2), (3)}							
D020		PIC16LF62X	_	0.20 0.20	2.0 2.2	μΑ μΑ	VDD = 2.0 VDD = 5.5		
D020		PIC16F62X		0.20 0.20 0.20 2.70	2.2 5.0 9.0 15.0	μΑ μΑ μΑ μΑ	VDD = 3.0 VDD = 4.5* VDD = 5.5 VDD = 5.5 Extended		
D023	ΔIWDT ΔIBOD ΔICOMP ΔIVREF	WDT Current ⁽⁴⁾ Brown-out Detect Current ⁽⁴⁾ Comparator Current for each Comparator ⁽⁴⁾ VREF Current ⁽⁴⁾	 	6.0 75 30	15 125 50 135	μΑ μΑ μΑ	$\frac{V_{DD}}{BOD} = 3.0V$ BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V		
Daga	∆Iwdt	WDT Current ⁽⁴⁾	_	6.0	20 25	μΑ μΑ	VDD = 4.0V, Commercial, Industrial VDD = 4.0V, Extended		
D023		Brown-out Detect Current ⁽⁴⁾ Comparator Current for each Comparator ⁽⁴⁾	_	75 30	125 50	μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 4.0V		
	Δ IVREF	VREF Current ⁽⁴⁾	—		135	μA	VDD = 4.0V		

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

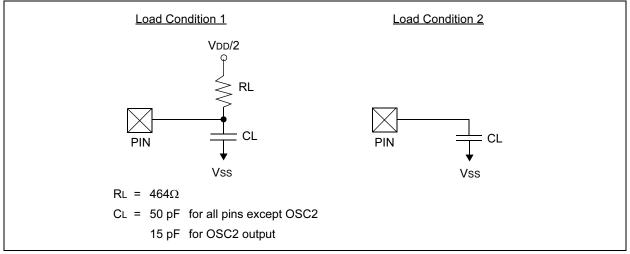
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

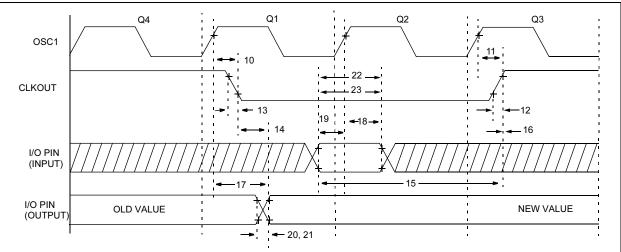
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

17.3 Timing Parameter Symbology

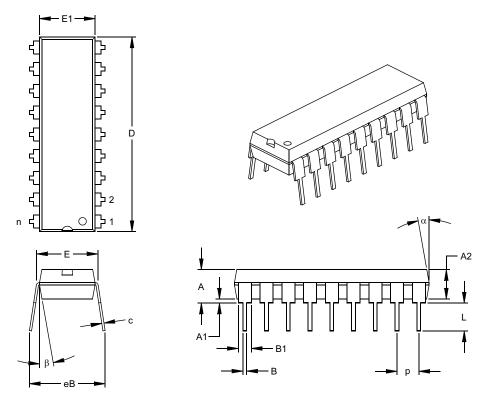

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS


2. TppS

2. TppS				
т				
F	Frequency	Т	Time	
Lowercas	se subscripts (pp) and their meanings:			
рр				
ck	CLKOUT	osc	OSC1	
io	I/O port	tO	TOCKI	
mc	MCLR			
Uppercas	se letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-Impedance	

FIGURE 17-5: LOAD CONDITIONS


Param No.	Sym	Characteristic		Min	Тур†	Max	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓	16F62X	—	75	200	ns
10A*			16LF62X	—	_	400	ns
11*	TosH2ckH	OSC1↑ to CLKOUT↑	16F62X	—	75	200	ns
11A*			16LF62X	—	_	400	ns
12*	TckR	CLKOUT rise time	16F62X	—	35	100	ns
12A*			16LF62X	—	_	200	ns
13*	TckF	CLKOUT fall time	16F62X	—	35	100	ns
13A*			16LF62X	—	_	200	ns
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	20	ns
15*	TioV2ckH	Port in valid before	16F62X	Tosc+200 ns	_	—	ns
		CLKOUT ↑	16LF62X	Tosc=400 ns	_	—	ns
16*	TckH2iol	Port in hold after CLKOUT \uparrow		0	_		ns
17*	TosH2ioV	OSC1↑ (Q1 cycle) to	16F62X	—	50	150*	ns
		Port out valid	16LF62X	—	_	300	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)		100 200	_	—	ns

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16F62X

K04-007 18-Lead Plastic Dual In-line (P) - 300 mil

s MIN .140	NOM 18 .100	MAX	MIN	NOM 18	MAX
-	.100			18	
-				10	
-				2.54	
	.155	.170	3.56	3.94	4.32
.115	.130	.145	2.92	3.30	3.68
.015			0.38		
.300	.313	.325	7.62	7.94	8.26
.240	.250	.260	6.10	6.35	6.60
.890	.898	.905	22.61	22.80	22.99
.125	.130	.135	3.18	3.30	3.43
.008	.012	.015	0.20	0.29	0.38
.045	.058	.070	1.14	1.46	1.78
.014	.018	.022	0.36	0.46	0.56
.310	.370	.430	7.87	9.40	10.92
5	10	15	5	10	15
F	10	15	5	10	15
	.240 .890 .125 .008 .045 .014	.240 .250 .890 .898 .125 .130 .008 .012 .045 .058 .014 .018 .310 .370 5 .10	.240 .250 .260 .890 .898 .905 .125 .130 .135 .008 .012 .015 .045 .058 .070 .014 .018 .022 .310 .370 .430 5 10 15	.240 .250 .260 6.10 .890 .898 .905 22.61 .125 .130 .135 3.18 .008 .012 .015 0.20 .045 .058 .070 1.14 .014 .018 .022 0.36 .310 .370 .430 7.87 5 10 15 5	.240 .250 .260 6.10 6.35 .890 .898 .905 22.61 22.80 .125 .130 .135 3.18 3.30 .008 .012 .015 0.20 0.29 .045 .058 .070 1.14 1.46 .014 .018 .022 0.36 0.46 .310 .370 .430 7.87 9.40 5 10 15 5 10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

MOVLW	
MOVWF	116
NOP	
OPTION	
RETFIE	116
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	119
TRIS	119
XORLW	120
XORWF	120
Instruction Set Summary	107
INT Interrupt	102
INTCON Register	21
Interrupt Sources	
Capture Complete (CCP)	62
Compare Complete (CCP)	63
TMR2 to PR2 Match (PWM)	64
Interrupts	101
Interrupts, Enable Bits	
CCP1 Enable (CCP1IE Bit)	62
Interrupts, Flag Bits	
CCP1 Flag (CCP1IF Bit)	62
IORLW Instruction	115
IORWF Instruction	

Μ

Memory Organization	
Data EEPROM Memory	
MOVF Instruction	
MOVLW Instruction	115
MOVWF Instruction	116
MPLAB C17 and MPLAB C18 C Compilers	122
MPLAB ICD In-Circuit Debugger	123
MPLAB ICE High Performance Universal In-Circuit	Emulator
with MPLAB IDE	123
MPLAB Integrated Development Environment Softw	vare 121
MPLINK Object Linker/MPLIB Object Librarian	122

Ν

0

OPTION Instruction	
OPTION Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	
Output of TMR2.	

Ρ

157
157
25
24
24
124
124
124
r 123
22

Pin Functions	
RC6/TX/CK	67–84
RC7/RX/DT	67–84
PIR1	23
PIR1 Register	23
Port RB Interrupt	102
PORTA	29
PORTB	•••••••••••••••••••••••••••••••••••••••
Power Control/Status Register (PCON)	97
Power-Down Mode (SLEEP)	104
Power-On Reset (POR)	96
Power-up Timer (PWRT)	96
PR2 Register	50
Prescaler	44
Prescaler, Capture	62
Prescaler, Timer2	
PRO MATE II Universal Device Programmer	123
Program Memory Organization	13
PROTECTION	89
PWM (CCP Module)	64
Block Diagram	64
CCPR1H:CCPR1L Registers	
Duty Cycle	65
Example Frequencies/Resolutions	65
Output Diagram	64
Period	64
Set-Up for PWM Operation	65
TMR2 to PR2 Match	64

Q

Q-Clock	65
Quick-Turnaround-Production (QTP) Devices	5

R

RC Oscillator	
Registers	
Maps	
PIC16C76	14
PIC16C77	
Reset	
RETFIE Instruction	116
RETLW Instruction	117
RETURN Instruction	117
RLF Instruction	117
RRF Instruction	118

s

Serial Communication Interface (SCI) Module, See	USART
Serialized Quick-Turnaround-Production (SQTP) De	vices 5
SLEEP Instruction	118
Software Simulator (MPLAB SIM)	122
Special	95
Special Event Trigger. See Compare	
Special Features of the CPU	91
Special Function Registers	15
Stack	25
Status Register	19
SUBLW Instruction	118
SUBWF Instruction	119
SWAPF Instruction	119

т

T1CKPS0 bit	
T1CKPS1 bit	
T1OSCEN bit	46