

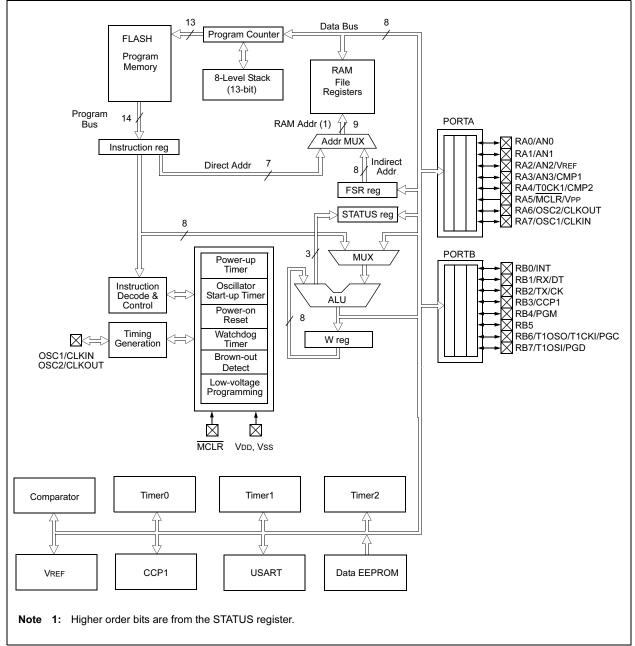
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

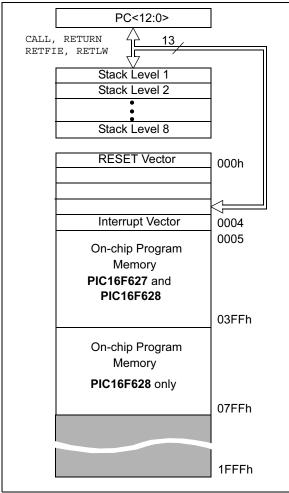

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627-20-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F62X

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN		Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	—	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	—	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	—	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	—	Input port
	MCLR	ST	_	Master clear
	VPP	_	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST		External clock source input. ER biasing pin.
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	—	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port.
	TX	_	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM I/O
Legend: O = Output — = Not used TTL = TTL Inpu		I = In	MOS Output put pen Drain Outp	P = Power ST = Schmitt Trigger Input AN = Analog


TABLE 2-1: PIC16F62X PINOUT DESCRIPTION

3.0 MEMORY ORGANIZATION

3.1 Program Memory Organization

The PIC16F62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the PIC16F627 and 2K x 14 (0000h - 07FFh) for the PIC16F628 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space (PIC16F627) or 2K x 14 space (PIC16F628). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 3-1).

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK

3.2 Data Memory Organization

The data memory (Figure 3-2) is partitioned into four banks, which contain the general purpose registers and the Special Function Registers (SFR). The SFR's are located in the first 32 locations of each Bank. Register locations 20-7Fh, A0h-FFh, 120h-14Fh, 170h-17Fh and 1F0h-1FFh are general purpose registers implemented as static RAM.

The Table below lists how to access the four banks of registers:

	RP1	RP0
Bank0	0	0
Bank1	0	1
Bank2	1	0
Bank3	1	1

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

3.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F62X. Each is accessed either directly or indirectly through the File Select Register FSR (See Section 3.4).

PIR1 Register 3.2.2.5

This register contains interrupt flag bits.

Note:	Interrupt flag bits get set when an interrupt condition occurs regardless of the state of					
	0					
	its corresponding enable bit or the global					
	enable bit, GIE (INTCON<7>). User					
	software should ensure the appropriate					
	interrupt flag bits are clear prior to enabling					
	an interrupt.					

REGISTER 3-5:	PIR1 REG	ISTER (AD	DRESS:	0Ch)	
	R/W-0	R/W-0	R-0	R-0	

	R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0		
	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF		
	bit 7					I		bit 0		
bit 7	EEIF: EEP	ROM Write	Operation I	nterrupt Flag	a bit					
	1 = The write operation completed (must be cleared in software)0 = The write operation has not completed or has not been started									
bit 6	CMIF: Comparator Interrupt Flag bit									
	 1 = Comparator output has changed 0 = Comparator output has not changed 									
bit 5	RCIF: USA	RT Receive	Interrupt F	lag bit						
			e buffer is f e buffer is e							
bit 4										
DIL 4			t Interrupt F nit buffer is	-						
			nit buffer is							
bit 3	Unimplem	ented: Rea	d as '0'							
bit 2	CCP1IF: C	CP1 Interru	pt Flag bit							
	0 = No T	IR1 register MR1 regist	r capture oc er capture c		at be cleared in	software)				
	<u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred									
	<u>PWM Mode</u> Unused	<u>-</u> in this mode	9							
bit 1	TMR2IF: T	MR2 to PR2	2 Match Inte	errupt Flag b	it					
	TMR2IF : TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred									
bit 0	TMR1IF: T	MR1 Overf	low Interrup	t Flag bit						
	TMR1IF : TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow									
	Legend:									
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '()'		
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown		

5.0 I/O PORTS

The PIC16F62X have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is an 8-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. RA5 is a Schmitt Trigger input only and has no output drivers. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

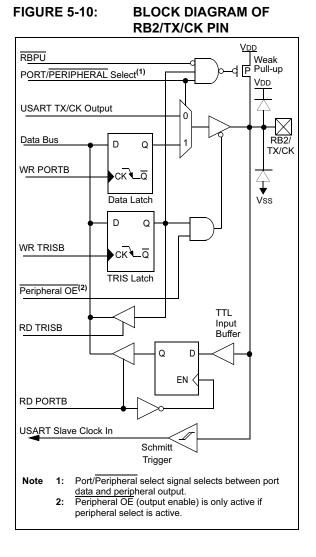
A '1' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

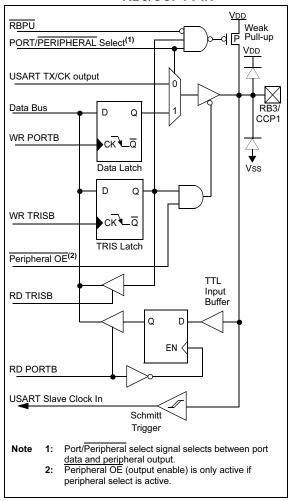
The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

Note: RA5 shares function with VPP. When VPP voltage levels are applied to RA5, the device will enter Programming mode.

- **Note 1:** On RESET, the TRISA register is set to all inputs. The digital inputs are disabled and the comparator inputs are forced to ground to reduce current consumption.
 - 2: TRISA<6:7> is overridden by oscillator configuration. When PORTA<6:7> is overridden, the data reads '0' and the TRISA<6:7> bits are ignored.


TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high impedance output. The user must configure TRISA<2> bit as an input and use high impedance loads.


In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: Initializing PORTA

CLRF	PORTA	;Initialize PORTA by ;setting output data latches
MOVLW		;Turn comparators off and
MOVWF	CMCON	;enable pins for I/O ;functions
BCF	STATUS,	RP1
BSF	STATUS,	RP0;Select Bank1
MOVLW	0x1F	;Value used to initialize ;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs ;TRISA<5> always ;read as `1'. ;TRISA<7:6> ;depend on oscillator mode

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). Use the instruction sequences, shown in Example 6-1, when changing the prescaler assignment from Timer0 to WDT, to avoid an unintended device RESET.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCF	STATUS, RPO	;Skip if already in ;Bank 0
CLRWDT		;Clear WDT
		•
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111'b	;These 3 lines
		;(5, 6, 7)
MOVWF	OPTION_REG	;are required only
		;if desired PS<2:0>
		;are
CLRWDT		;000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION_REG	;desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new ;prescale value and ;clock source
MOVWF BCF	OPTION_REG STATUS, RP0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 m	odule regis	ster						xxxx xxxx	uuuu uuuu
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION ⁽²⁾	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

REGISTERS ASSOCIATED WITH TIMER0

Note 1: Shaded bits are not used by TMR0 module.

TABLE 6-1:

2: Option is referred by OPTION REG in MPLAB.

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The spe	cial e	event	trigg	ers from tl	he CC	CP1	
	module	will	not	set	interrupt	flag	bit	
	TMR1IF (PIR1<0>).							

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	I	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	I	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	egister for		xxxx xxxx	uuuu uuuu					
0Fh	TMR1H	Holding re	gister for		xxxx xxxx	uuuu uuuu					
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

11.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

11.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

11.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR		Value on all other RESETS		
0Bh/8Bh/ 10Bh/ 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u	
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000	
8Ch	PIE1	EEIE	CMIF	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000	
87h	TRISB	PORTB	Data Dii	rection Reg	ister					1111	1111	1111	1111	
0Eh	TMR1L	Holding	register	for the Lea	st Significar	nt Byte of the	e 16-bit TM	R1 registe	r	xxxx	xxxx	uuuu	uuuu	
0Fh	TMR1H	Holding	register	for the Mos	t Significan	t Byte of the	16-bit TM	R1register		xxxx	xxxx	uuuu	uuuu	
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu	
15h	CCPR1L	Capture/	Compa	re/PWM reg	gister1 (LSB	5)				xxxx	xxxx	uuuu	uuuu	
16h	CCPR1H	Capture/	Capture/Compare/PWM register1 (MSB)									uuuu	uuuu	
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000	

TABLE 11-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

PIC16F62X

CLRW	Clear W	COMF						
Syntax:	[label] CLRW	Syntax						
Operands:	None	Opera						
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$	Operat						
Status Affected:	Z	Status						
Encoding:	00 0001 0000 00	Encod						
Description:	W register is cleared. Zero b (Z) is set.	it Descri						
Words:	1							
Cycles:	1							
Example	CLRW	Words						
	Before Instruction							
	W = 0x5A After Instruction $W = 0x00$ $Z = 1$	Examp						

COMF	Complement f								
Syntax:	[<i>label</i>] COMF f,d								
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$								
Operation:	$(\overline{f}) \rightarrow (dest)$								
Status Affected:	Z								
Encoding:	00 1001 dfff ffff								
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example	COMF REG1, 0								
	Before Instruction REG1 = $0x13$ After Instruction REG1 = $0x13$ W = $0xEC$								

CLRWDT	Clear Wa	atchdo	g Timer		DECF	Decren	nent f				
Syntax:	[label]	CLRW	'DT		Syntax:	[<i>label</i>] DECF f,d					
Operands:	None				Operands:	$0 \le f \le f$	127				
Operation:	$00h \rightarrow W$					d ∈ [0,1	1]				
	$0 \rightarrow WD^{-1}$ $1 \rightarrow TO^{-1}$	T preso	caler,		Operation:	(f) - 1 –	→ (dest)				
	$1 \rightarrow \frac{10}{PD}$				Status Affected:	Z					
Status Affected:	TO, PD				Encoding:	00	0011	dfff	ffff		
Encoding:	00	0000	0110	0100	Description:		0	ster 'f'. If '			
Description:	CLRWDT							1 the resu			
	Watchdo the presc	0				stored back in register 'f'.					
	STATUS				Words:	1					
Words:	1				Cycles:	1					
Cycles:	1				Example	DECF	CNT,	1			
Example	CLRWDT					Before	Before Instruction				
·	Before In	structio	on				CNT = 7 =	0x01 0			
	V	VDT co	unter =	?		After Instruction					
	After Inst	truction	1				CNT =				
		VDT co		0x00			Z =	1			
			escaler =								
	P	0	=								
	Г	D	-	• •							

PIC16F62X

INCF	Increment f	INCFSZ	Increment f, Skip if 0					
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest)	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	Z	Status Affected:	None					
Encoding:	00 1010 dfff ffff	Encoding:	00 1111 dfff ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next					
Words:	1		instruction, which is already fetched, is discarded. A NOP is					
Cycles:	1							
Example	INCF REG1, 1		executed instead making it a					
	Before Instruction	\\/anda.	two-cycle instruction.					
	$\begin{array}{rcl} REG1 = & 0xFF \\ 7 & = & 0 \end{array}$	Words:	1					
	After Instruction	Cycles:	1 ⁽²⁾					
	$\frac{\text{REG1} = 0x00}{\text{Z}} = 1$	Example	HERE INCFSZ REG1, 1 GOTO LOOP CONTINUE • •					
			Before Instruction PC = address HERE					

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

-

RETLW	Return with Literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	$d \in [0,1]$ See description below
Status Affected:	None	Status Affected:	С
Encoding:	11 01xx kkkk kkkk	Encoding:	00 1101 dfff ffff
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1		
Cycles:	2	Words:	1
Example	CALL TABLE;W contains table	Cycles:	1
	 ;offset value ;W now has table 	-	
	value	Example	RLF REG1, 0 Before Instruction
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8		REG1 = 1110 0110 $C = 0$ After Instruction $REG1 = 1110 0110$ $W = 1100 1100$ $C = 1$
RETURN	Return from Subroutine		
Syntax:	[label] RETURN		
Operands:	None		
Operation:	$TOS \rightarrow PC$		
Status Affected:	None		
Encoding:	00 0000 0000 1000		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example	RETURN		
	After Interrupt PC = TOS		

16.9 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

16.10 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory, and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

16.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low cost, run-time development tool, connecting to the host PC via an RS-232 or high speed USB interface. This tool is based on the FLASH PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.

16.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify, and program PICmicro devices without a PC connection. It can also set code protection in this mode.

16.13 PICSTART Plus Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

	MPLAB Integrated Development Environment	MPLAB C17 C Compiler	MPLAB C18 C Compiler	MPASM Assembler/ MPLINK Object Linker	MPLAB C30 C Compiler	MPLAB ASM30 Assembler/Linker/Librarian	MPLAB ICE 2000 In-Circuit Emulator	MPLAB ICE 4000 In-Circuit Emulator	MPLAB ICD 2 In-Circuit Debugger	PICSTART Plus Entry Level Development Programmer	PRO MATE II Universal Device Programmer	PICDEM 1 Demonstration Board	PICDEM.net Demonstration Board	PICDEM 2 Plus Demonstration Board	PICDEM 3 Demonstration Board	PICDEM 14A Demonstration Board	PICDEM 17 Demonstration Board	PICDEM 18R Demonstration Board	PICDEM LIN Demonstration Board	PICDEM USB Demonstration Board
PIC12CXX	>			>			>	>		>	>									
PIC12FXX	>			>			>		>	>	>									
PIC14000	>			>			>			>	>					>				
PIC16C5	>			>			>	>		>	>	>								
PIC16C6	>			>			>	>	* ^	>	>			7						
PIC16CX)	>			>			>	>		>	>	>								
PIC16C4:	>			>			>			>	>								>	
PIC16F6	>			>			**`^			**^	**/									
PIC16C	>			>			>	>	*^	>	>	⁺,		,						
(2091019	>			>			>	>		>	>									
(7081019	>			>			>			>	>									>
PIC16C8	>			>			>	>		>	>	~								
PIC16F8X	>			>			>		^	~	>								~	^
Kecalouq	>			>			>	>		>	>				>					> - - -
PIC17C4	>	~		>			>			>	>	>								
KTOTIOI9	>	~		>			>	>		>	>						^			
PIC18CX	>		~	>			>	>		>	>		^	>						
PI18CX0								>	>									>		
PIC18FXX	>		~	>			>	>	>	>	>			>						
dsPIC30					>	>		>	>											

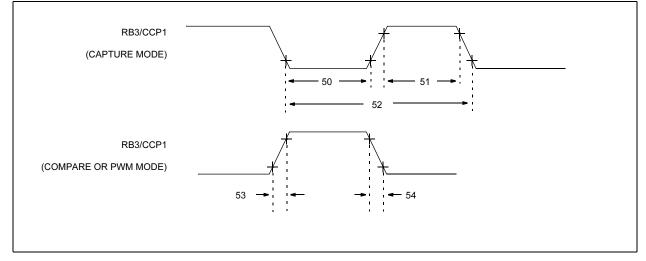
TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

DS40300C-page 126

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on MCLR and RA4 with respect to Vss	
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB	200 mA
Maximum current sourced by PORTA and PORTB	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-V	он) x Iон} + ∑(Vol x IoL)


† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Puls	e Width	0.5Tcy + 20	—		ns		
				With Prescaler	10	—	_	ns	
41*	TtOL	T0CKI Low Pulse	e Width	No Prescaler	0.5Tcy + 20	—	—	ns	
				With Prescaler	10	-	—	ns	
42*	Tt0P	T0CKI Period			Greater of: <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous, N	lo Prescaler	0.5Tcy + 20	—	—	ns	
		Time	Synchronous,	16F62X	15	-	—	ns	
			with Prescaler	16LF62X	25	—	—	ns	
			Asynchronous	16F62X	30	_	-	ns	
				16LF62X	50	—	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, N	lo Prescaler	0.5Tcy + 20	—	—	ns	
			Synchronous,	16F62X	15	—	—	ns	
			with Prescaler	16LF62X	25	—	—	ns	
			Asynchronous	16F62X	30	-	Ι	ns	
				16LF62X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	16F62X	Greater of: <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
				16LF62X	Greater of: <u>Tcy + 40</u> N	_	—	—	
			Asynchronous	16F62X	60	_	-	ns	
				16LF62X	100	—	—	ns	
	Ft1	Timer1 oscillator (oscillator enable			DC	-	200	kHz	
48	TCKEZtmr1	Delay from exter increment	nal clock edge to	o timer	2Tosc	-	7Tosc	_	

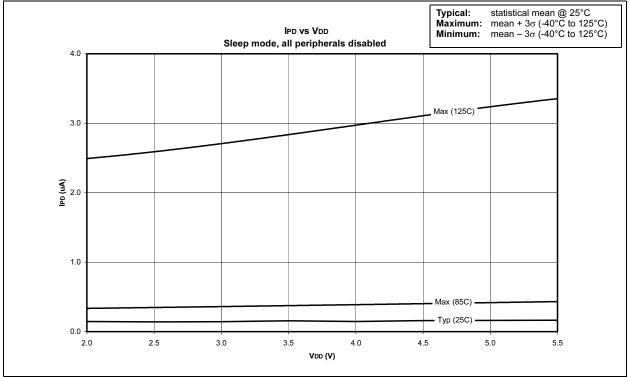
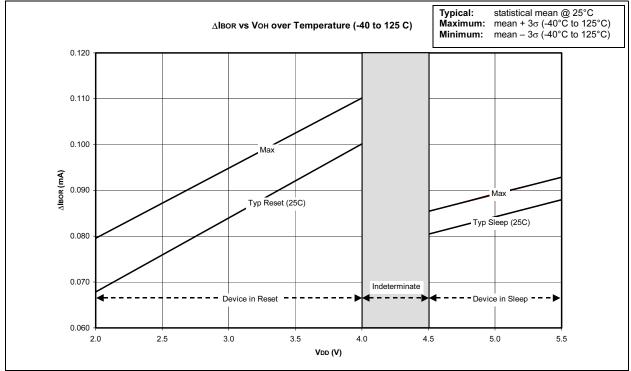
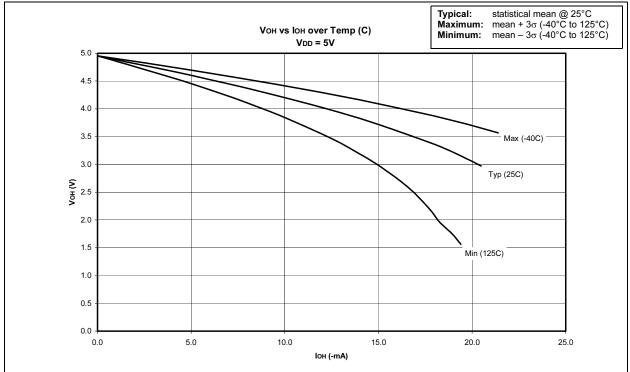
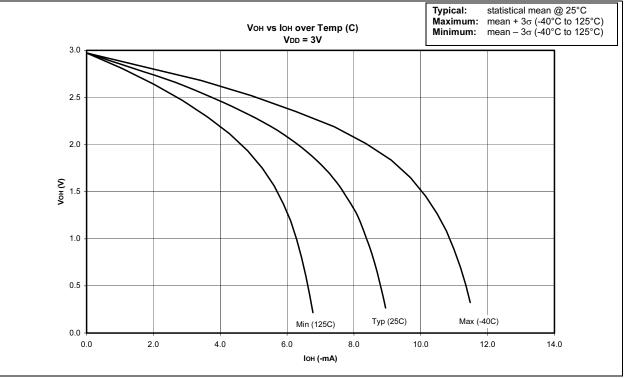

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-11: **CAPTURE/COMPARE/PWM TIMINGS**



Note: The graphs and tables provided in this section are for design guidance and are not tested.





Note: The graphs and tables provided in this section are for design guidance and are not tested.

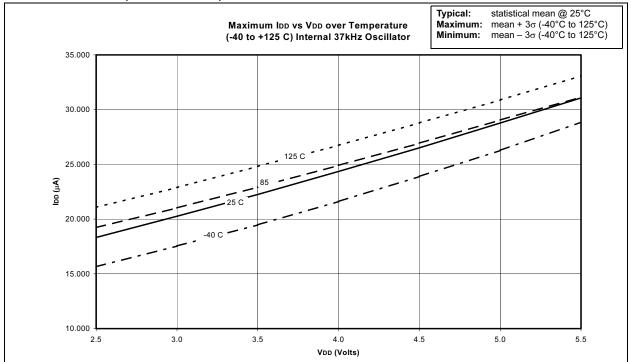
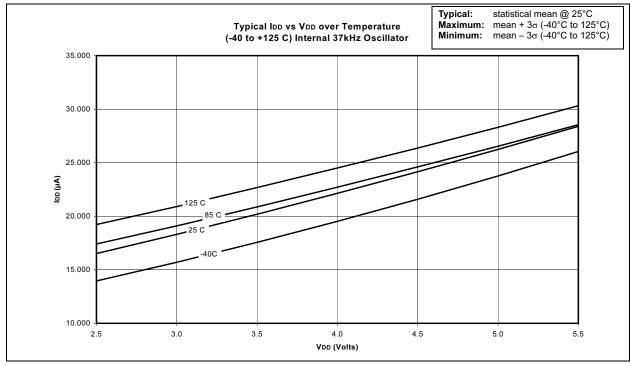


FIGURE 18-18: VOH VS IOH OVER TEMP (C) VDD = 5V



Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-24: MAXIMUM IDD vs VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 37 kHz OSCILLATOR

FIGURE 18-25: TYPICAL IDD VS VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 37 kHz OSCILLATOR

MOVLW	
MOVWF	116
NOP	
OPTION	
RETFIE	116
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	119
TRIS	119
XORLW	120
XORWF	120
Instruction Set Summary	
INT Interrupt	102
INTCON Register	21
Interrupt Sources	
Capture Complete (CCP)	62
Compare Complete (CCP)	63
TMR2 to PR2 Match (PWM)	64
Interrupts	101
Interrupts, Enable Bits	
CCP1 Enable (CCP1IE Bit)	62
Interrupts, Flag Bits	
CCP1 Flag (CCP1IF Bit)	62
IORLW Instruction	115
IORWF Instruction	

Μ

Memory Organization	
Data EEPROM Memory	
MOVF Instruction	
MOVLW Instruction	115
MOVWF Instruction	116
MPLAB C17 and MPLAB C18 C Compilers	122
MPLAB ICD In-Circuit Debugger	123
MPLAB ICE High Performance Universal In-Circuit	Emulator
with MPLAB IDE	123
MPLAB Integrated Development Environment Softw	vare 121
MPLINK Object Linker/MPLIB Object Librarian	122

Ν

0

OPTION Instruction	
OPTION Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	
Output of TMR2.	

Ρ

157
157
25
24
24
124
124
124
r 123
22

Pin Functions	
RC6/TX/CK	67–84
RC7/RX/DT	67–84
PIR1	23
PIR1 Register	23
Port RB Interrupt	102
PORTA	29
PORTB	•••••••••••••••••••••••••••••••••••••••
Power Control/Status Register (PCON)	97
Power-Down Mode (SLEEP)	104
Power-On Reset (POR)	96
Power-up Timer (PWRT)	96
PR2 Register	50
Prescaler	44
Prescaler, Capture	62
Prescaler, Timer2	
PRO MATE II Universal Device Programmer	123
Program Memory Organization	13
PROTECTION	89
PWM (CCP Module)	64
Block Diagram	64
CCPR1H:CCPR1L Registers	
Duty Cycle	65
Example Frequencies/Resolutions	65
Output Diagram	64
Period	64
Set-Up for PWM Operation	65
TMR2 to PR2 Match	64

Q

Q-Clock	65
Quick-Turnaround-Production (QTP) Devices	5

R

RC Oscillator	
Registers	
Maps	
PIC16C76	14
PIC16C77	
Reset	
RETFIE Instruction	116
RETLW Instruction	117
RETURN Instruction	117
RLF Instruction	117
RRF Instruction	118

s

Serial Communication Interface (SCI) Module, See	USART
Serialized Quick-Turnaround-Production (SQTP) De	vices 5
SLEEP Instruction	118
Software Simulator (MPLAB SIM)	122
Special	95
Special Event Trigger. See Compare	
Special Features of the CPU	91
Special Function Registers	15
Stack	25
Status Register	19
SUBLW Instruction	118
SUBWF Instruction	119
SWAPF Instruction	119

т

T1CKPS0 bit	
T1CKPS1 bit	
T1OSCEN bit	46