

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627-20e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 PIC16F62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F62X Product Identification System section (Page 167) at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

1.1 FLASH Devices

FLASH devices can be erased and reprogrammed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically-erasable FLASH is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus, or PRO MATE[®] II programmers.

1.2 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are standard FLASH devices but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

1.3 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 3											
180h	INDF	Addressin ister)	g this location	n uses cont	ents of FSF	R to address	s data mem	ory (not a pł	nysical reg-	XXXX XXXX	25
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20
182h	PCL	Program 0	Counter's (PC) Least Sig	nificant Byt	е				0000 0000	25
183h	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	19
184h	FSR	Indirect da	ata memory a	ddress poi	nter					xxxx xxxx	25
185h		Unimplem	ented							—	_
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	34
187h	_	Unimplem	ented							—	—
188h	_	Unimplem	ented							—	—
189h	_	Unimplem	ented							—	—
18Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram coun	ter	0 0000	25
18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000	21
18Ch		Unimplem	ented							_	—
18Dh		Unimplem	ented							_	—
18Eh		Unimplem	ented							—	—
18Fh		Unimplem	ented							—	—
190h		Unimplem	ented							—	—
191h		Unimplem	ented							—	—
192h		Unimplem	ented							—	—
193h		Unimplem	ented							—	—
194h		Unimplem	ented							—	—
195h	—	Unimplem	ented							_	—
196h	—	Unimplem	ented							_	—
197h		Unimplem	ented							—	—
198h		Unimplem	ented							—	—
199h		Unimplem	ented							—	—
19Ah		Unimplem	ented							—	—
19Bh		Unimplem	ented							—	—
19Ch	_	Unimplem	ented							—	—
19Dh	_	Unimplem	ented							—	—
19Eh	_	Unimplem	ented							—	—
19Fh		Unimplem	ented							—	—

TABLE 3-4: SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

NOTES:

FIGURE 5-7: BLOCK DIAGRAM OF RA7/OSC1/CLKIN PIN

BAUD	Fosc = 20 MHz		SPBRG 16 MHz			SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA			NA			NA		
1.2	NA			NA		_	NA		_
2.4	NA			NA		_	NA		_
9.6	NA			NA			9.766	+1.73%	255
19.2	19.53	+1.73%	255	19.23	+0.16%	207	19.23	+0.16%	129
76.8	76.92	+0.16%	64	76.92	+0.16%	51	75.76	-1.36%	32
96	96.15	+0.16%	51	95.24	-0.79%	41	96.15	+0.16%	25
300	294.1	-1.96	16	307.69	+2.56%	12	312.5	+4.17%	7
500	500	0	9	500	0	7	500	0	4
HIGH	5000	_	0	4000	_	0	2500	—	0
LOW	19.53	_	255	15.625	_	255	9.766	_	255

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	Fosc = 7.15909 MHz		SPBRG	SPBRG 5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	_
1.2	NA	_		NA	_	_	NA	_	_
2.4	NA			NA	_	_	NA		_
9.6	9.622	+0.23%	185	9.6	0	131	9.615	+0.16%	103
19.2	19.24	+0.23%	92	19.2	0	65	19.231	+0.16%	51
76.8	77.82	+1.32	22	79.2	+3.13%	15	75.923	+0.16%	12
96	94.20	-1.88	18	97.48	+1.54%	12	1000	+4.17%	9
300	298.3	-0.57	5	316.8	5.60%	3	NA	_	—
500	NA	—	—	NA	_	—	NA	—	—
HIGH	1789.8	_	0	1267	_	0	100	_	0
LOW	6.991		255	4.950	_	255	3.906		255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA			NA	_		0.303	+1.14%	26
1.2	NA		—	1.202	+0.16%	207	1.170	-2.48%	6
2.4	NA	—	—	2.404	+0.16%	103	NA	_	
9.6	9.622	+0.23%	92	9.615	+0.16%	25	NA	_	_
19.2	19.04	-0.83%	46	19.24	+0.16%	12	NA	_	_
76.8	74.57	-2.90%	11	83.34	+8.51%	2	NA	—	
96	99.43	+3.57%	8	NA	_	_	NA	_	—
300	298.3	0.57%	2	NA	_	_	NA	_	_
500	NA		—	NA	—	_		—	
HIGH	894.9		0	250	_	0	8.192	_	0
LOW	3.496		255	0.9766	—	255	0.032	_	255

12.2.2 ADEN USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-8. The data is received on the RB1/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (serial) Shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two-deep FIFO).

It is possible for two bytes of data to be received and transferred to the RCREG FIFO, and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 12-8: USART RECEIVE BLOCK DIAGRAM

FIGURE 12-9:	ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

RB1/RX/DT (PIN)START				
RCV SHIFT REG			((
RCV BUFFER REG	BIT8 = 0, DATA BYTE	BIT8 = 1, ADDRESS BYTE WORD 1		
READ RCV BUFFER REG RCREG	<u> </u>	S RCREG	<u> </u>	(
RCIF (INTERRUPT FLAG)			<u> </u>	¥
ADEN = 1 ^{'<u>1'</u> (ADDRESS MATCH ENABLE)}	<u>-</u>	<u></u> ;	<u> </u>	<u>'1'</u>
Note 1: This timing diagr (Receive Buffer)	am shows a data byte followed because ADEN = 1 and Bit 8 =	by an address byte. The data byte is no 0.	ot read into tl	he RCREG

FIGURE 12-10: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

FIGURE 12-11: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID DATA BYTE

12.3 USART Function

The USART function is similar to that on the PIC16C74B, which includes the BRGH = 1 fix.

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed so when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer. The ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if, and only, if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (='1'), all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = '1'). When ADEN is disabled (='0'), all data bytes are received and the 9th bit can be used as the PARITY bit.

The USART Receive Block Diagram is shown in Figure 12-8.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Steps to follow when setting up an Asynchronous or Synchronous Reception with Address Detect Enabled:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable asynchronous or synchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. Set bit RX9 to enable 9-bit reception.
- 5. Set ADEN to enable address detect.
- 6. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 9. If any error occurred, clear the error by clearing enable bit CREN if it was already set.
- If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

14.2.6 INTERNAL 4 MHz OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$, see "Electrical Specifications" section for information on variation over voltage and temperature.

14.2.7 CLKOUT

The PIC16F62X can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4 can be used for test purposes or to synchronize other logic.

14.3 Special Feature: Dual Speed Oscillator Modes

A software programmable Dual Speed Oscillator mode is provided when the PIC16F62X is configured in either ER or INTRC Oscillator modes. This feature allows users to dynamically toggle the oscillator speed between 4 MHz and 37 kHz. In ER mode, the 4 MHz setting will vary depending on the value of the external resistor. Also in ER mode, the 37 kHz operation is fixed and does not vary with resistor value. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

The OSCF bit in the PCON register is used to control Dual Speed mode. See Section 3.2.2.6, Register 3-4.

14.4 RESET

The PIC16F62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT Wake-up (SLEEP)
- f) Brown-out Detect (BOD)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT Wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 14-5. These bits are used in software to determine the nature of the RESET. See Table 14-8 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 14-6.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See Table 17-6 for pulse width specification.

14.5.5 TIMEOUT SEQUENCE

On power-up the timeout sequence is as follows: First PWRT timeout is invoked after POR has expired. Then OST is activated. The total timeout will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in ER mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no timeout at all. Figure 14-8, Figure 14-9 and Figure 14-10 depict timeout sequences.

Since the timeouts occur from the POR pulse, if MCLR is kept low long enough, the timeouts will expire. Then bringing MCLR high will begin execution immediately (see Figure 14-9). This is useful for testing purposes or to synchronize more than one PIC16F62X device operating in parallel.

Table 14-7 shows the RESET conditions for some special registers, while Table 14-8 shows the RESET conditions for all the registers.

14.5.6 POWER CONTROL (PCON) STATUS REGISTER

The Power Control/STATUS register, PCON (address 8Eh) has two bits.

Bit0 is \overline{BOD} (Brown-out). \overline{BOD} is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{BOD} = 0$ indicating that a brown-out has occurred. The \overline{BOD} STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Detect	Wake-up from SLEEP	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Reset		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
ER, INTRC, EC	72 ms	—	72 ms	—	

TABLE 14-4: TIMEOUT IN VARIOUS SITUATIONS

TADLE 14										
POR	BOD	то	PD							
0	Х	1	1	Power-on Reset						
0	х	0	х	Illegal, TO is set on POR						
0	х	Х	0	Illegal, PD is set on POR						
1	0	Х	Х	Brown-out Detect Reset						
1	1	0	u	WDT Reset						
1	1	0	0	WDT Wake-up						
1	1	u	u	MCLR Reset during normal operation						
1	1	1	0	MCLR Reset during SLEEP						

TABLE 14-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

Legend: u = unchanged, x = unknown.

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_	_	_		OSCF	Reset	POR	BOD	1-0x	u-uq

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect Reset and Watchdog Timer Reset during normal operation.

FIGURE 14-16: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-10: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	LVP	BODEN	MCLRE	FOSC2	PWRTE	WDTE	FOSC1	FOSC0	uuuu uuuu	uuuu uuuu
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: -= Unimplemented location, read as "0", + = Reserved for future use

Note 1: Shaded cells are not used by the Watchdog Timer.

14.9 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators, and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated			
	by a WDT timeout does not drive MCLR			
	pin low.			

PIC16F62X

CLRW	Clear V	V				COMF
Syntax:	[label]	CLRW				Syntax
Operands:	None					Opera
Operation:	$\begin{array}{c} 00h \rightarrow 0\\ 1 \rightarrow Z \end{array}$	(W)				Opera
Status Affected:	Z					Status
Encoding:	00	0001	0000	0011		Encod
Description:	W regis (Z) is se	ter is cle et.	ared. Zer	o bit	1	Descri
Words:	1					
Cycles:	1					
Example	CLRW					Words
	Before	Instructio	on F A			Cycles
	After In	vv = 0x struction W = 0x Z = 1	5A 00			Examp

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	COMF REG1, 0
	Before Instruction REG1 = $0x13$ After Instruction REG1 = $0x13$ W = $0xEC$

CLRWDT	Clear Watchdog Timer	DECF	
Syntax:	[label] CLRWDT	Syntax:	
Operands:	None	Operands:	
Operation:	$00h \rightarrow WDT$ $0 \rightarrow \underline{W}DT \text{ prescaler,}$ $1 \rightarrow \underline{TO}$ $1 \rightarrow \overline{PD}$	Operation: Status Affecte	
Status Affected:	TO, PD	Encoding:	
Encoding:	00 0000 0110 0100	Description:	
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set Words:		
Words:	1	Cycles:	
Cycles:	1	Example	
Example	CLRWDT		
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1		

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0011 dfff ffff
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	DECF CNT, 1
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1

PIC16F62X

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	00 1100 dfff ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	RRF REG1, 0
	$\begin{array}{rcl} \text{Before Instruction} \\ \text{REG1} &= 1110 & 0110 \\ \text{C} &= 0 \\ \text{After Instruction} \\ \text{REG1} &= 1110 & 0110 \\ \text{W} &= 0111 & 0011 \\ \end{array}$

SLEEP

Syntax:	[label] SLEEP		
Operands:	None		
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$		
Status Affected:	TO, PD		
Encoding:	00 0000 0110 0011		
Description:	The power-down STATUS bit, PD is cleared. Timeout STATUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 14.9 for more details.		
Words:	1		
Cycles:	1		
Example:	SLEEP		

SUBLW	Subtract W from Literal		
Syntax:	[<i>label</i>] SUBLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$k - (W) \to (W)$		
Status Affected:	C, DC, Z		
Encoding:	11 110x kkkk kkkk		
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example 1:	SUBLW 0x02		
	Before Instruction		
	W = 1 C = ?		
	After Instruction		
	W = 1 C = 1; result is positive		
Example 2:	Before Instruction		
	W = 2 C = ?		
	After Instruction		
	W = 0 C = 1; result is zero		
Example 3:	Before Instruction		
	W = 3 C = ?		
	After Instruction		
	W = 0xFF C = 0; result is negative		

SUBWF	Subtract W from f		
Syntax:	[<i>label</i>] SUBWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) - (W) \rightarrow (dest)		
Status Affected:	C, DC, Z		
Encoding:	00 0010 dfff ffff		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example 1:	SUBWF REG1, 1		
	Before Instruction REG1 = 3 $W = 2$ $C = ?$ After Instruction REG1 = 1 $W = 2$ $C = -1$; result is positive		
	Z = DC = 1		
Example 2:	Before Instruction REG1 = 2		
	W = 2 C = ?		
	After Instruction		
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1		
Example 3:	Before Instruction		
	REG1 = 1 W = 2 C = ?		
	After Instruction		
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$		

	Swap Nibbles in f			
Syntax:	[label]	SWAPF	f,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	(f<3:0>) - (f<7:4>) -	→ (dest< → (dest<	7:4>), 3:0>)	
Status Affected:	None			
Encoding:	00	1110	dfff	ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'			
Words:	1			
Cycles:	1			
Example	SWAPF	REG1,	0	
	Before In	struction		
	RE	G1 = 0	xA5	
	After Inst	ruction		
	RE W	EG1 = 0 = 0	xA5 x5A	
TRIS		S Registe	er	
TRIS Syntax:	Load TRIS	5 Registe TRIS f	ər	
TRIS Syntax: Operands:	Load TRIS [<i>label</i>] 5 ≤ f ≤ 7	S Registe TRIS f	er	
TRIS Syntax: Operands: Operation:	Load TRIS [<i>label</i>] $5 \le f \le 7$ (W) \rightarrow TR	S Registe TRIS f	er f;	
TRIS Syntax: Operands: Operation: Status Affected:	Load TRIS [<i>label</i>] $5 \le f \le 7$ (W) \rightarrow TR None	S Registe TRIS f	er f;	
TRIS Syntax: Operands: Operation: Status Affected: Encoding:	Load TRIS [label] $5 \le f \le 7$ (W) \rightarrow TR None 00	S Registe TRIS f RIS regist	er f;	Offf
TRIS Syntax: Operands: Operation: Status Affected: Encoding: Description:	Load TRIS [label] $5 \le f \le 7$ (W) \rightarrow TR None 00 The instruction PIC16C52 registers a writable, t address th	S Registe TRIS f RIS regist oction is s patibility X product are reada he user c hem.	er f; 110 0 supported with the ts. Since able and can direct	offf I for TRIS Iy
TRIS Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Load TRIS [label] $5 \le f \le 7$ (W) \rightarrow TR None 00 The instruction PIC16C52 registers a writable, t address th 1	S Registe TRIS f RIS regist 0000 0 uction is s patibility X product are reada he user c hem.	er f; 110 0 supported with the ts. Since able and can direct	offf for TRIS ly
TRIS Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Load TRIS [label] $5 \le f \le 7$ (W) \rightarrow TR None 00 The instruce code com PIC16C52 registers a writable, t address th 1 1	S Registe TRIS f RIS regist 00000 0 uction is s patibility X product are reada he user of hem.	er f; 110 0 supported with the ts. Since able and can direct	offf for TRIS ly
TRIS Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	Load TRIS [label] $5 \le f \le 7$ (W) \rightarrow TR None 00 0 The instruction PIC16C52 registers a writable, t address th 1 1	S Registe TRIS f RIS regist occor o uction is s patibility X product are reada he user o hem.	er f; 110 0 supported with the ts. Since able and can direct	offf for TRIS ly

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	-0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB	200 mA
Maximum current sourced by PORTA and PORTB	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-	-Voh) x Ioh} + Σ (Vol x Iol)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss

17.3 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

z. rppo				
Т				
F	Frequency	Т	Time	
Lowercas	e subscripts (pp) and their meanings:			
рр				
ck	CLKOUT	osc	OSC1	
io	I/O port	tO	TOCKI	
mc	MCLR			
Uppercase letters and their meanings:				
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-Impedance	

FIGURE 17-5: LOAD CONDITIONS

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-14: Alcomp vs VDD SLEEP MODE, COMPARATORS ENABLED

NOTES: