

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5
2.0	PIC16F62X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	15
5.0	I/O Ports	29
6.0	Timer0 Module	43
7.0	Timer1 Module	46
8.0	Timer2 Module	50
9.0	Comparator Module	53
10.0	Voltage Reference Module	59
11.0	Capture/Compare/PWM (CCP) Module	61
12.0	Universal Synchronous/Asynchronous Receiver/ Transmitter (USART) Module	67
13.0	Data EEPROM Memory	87
14.0	Special Features of the CPU	91
15.0	Instruction Set Summary	. 107
16.0	Development Support	. 121
17.0	Electrical Specifications	. 127
18.0	DC and AC Characteristics Graphs and Tables	. 143
19.0	Packaging Information	. 157

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module. Additional information available in the PICmicro™ Mid Pange MCLL Eamily Reference

PICmicro™ Mid-Range MCU Family Reference Manual, DS31010A.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles. The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4,..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP.

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-1). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device. See Table 17-7.

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 11.0). Register 7-1 shows the Timer1 Control register.

For the PIC16F627 and PIC16F628, when the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/T1OSI and RB6/T1OSO/T1CKI pins become inputs. That is, the TRISB<7:6> value is ignored.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0
Unimplem	ented: Rea	d as '0'					
T1CKPS1:	T1CKPS0:	Timer1 Inpu	t Clock Pres	cale Select bits	;		
11 = 1:8 P I	rescale valu	е					
10 = 1:4 Pi	rescale valu	е					
01 = 1:2 Pi	rescale valu	e					
		e - 111 - 4 - 11 - 5 11					
110SCEN	: Timer1 Os	cillator Enat	ble Control bi	t			
1 = Oscillation	tor is enable	ed ff(1)					
	lor is situl o	nnol Clook Ir	nut Synahra	nization Contr	al bit		
TMD100 -			iput Synchio				
1 = Do not	<u>·</u> ⊥ svnchronize	external cl	ock input				
0 = Synchr	onize exterr	hal clock inp	ut				
TMRICS =	0	•					
This bit is ig	gnored. Tim	er1 uses the	e internal clo	ck when TMR1	CS = 0.		
TMR1CS:	Timer1 Cloc	k Source Se	elect bit				
1 = Externa	al clock from	n pin RB6/T	10SO/T1CK	(on the rising	edge)		
0 = Interna	I clock (Fos	c/4)					
TMR10N:	Timer1 On b	oit					
1 = Disable	es Timer1						
0 = Stops 7	limer1						
Note 1: T	he oscillato	r inverter ar	id feedback i	esistor are turi	ned off to e	liminate po	wer drain.
Legend:							
R = Reada	able bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '	0'
-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is u	nknown
	U-0 bit 7 Unimplem T1CKPS1: 11 = 1:8 Pf 10 = 1:4 Pf 01 = 1:2 Pf 00 = 1:1 Pf T1OSCEN 1 = Oscilla 0 = Oscilla 0 = Oscilla T1SYNC: 1 TMR1CS = 1 = Do not 0 = Synchr TMR1CS = 1 = Externa 0 = Interna	U-0 U-0 bit 7 Unimplemented: Rea T1CKPS1:T1CKPS0: 11 = 1:8 Prescale valu 10 = 1:4 Prescale valu 10 = 1:4 Prescale valu 00 = 1:1 Prescale valu 00 = 1:1 Prescale valu 00 = 1:1 Prescale valu 00 = 1:1 Prescale valu T1OSCEN: Timer1 Os 1 = Oscillator is enable 0 = Oscillator is enable 0 = Oscillator is shut or T1SYNC: Timer1 Os 1 = Do not synchronize 0 = Synchronize extern TMR1CS = 0 This bit is ignored. Tim TMR1CS: Timer1 Cloc 1 = External clock from 0 = Internal clock (Fos TMR1ON: Timer1 On th 1 = Disables Timer1 0 = Stops Timer1 Note 1: The oscillato Legend: R = Readable bit -n = Value at POR	U-0U-0R/W-0T1CKPS1bit 7Unimplemented: Read as '0'T1CKPS1:T1CKPS0: Timer1 Inpu11 = 1:8 Prescale value10 = 1:4 Prescale value01 = 1:2 Prescale value00 = 1:1 Prescale value00 = 1:1 Prescale valueT1OSCEN: Timer1 Oscillator Enabled0 = Oscillator is enabled0 = Oscillator is shut off ⁽¹⁾ TISYNC: Timer1 Oscillator Enabled0 = Oscillator is shut off ⁽¹⁾ TISYNC: Timer1 External Clock InTMR1CS = 11 = Do not synchronize external clock inpTMR1CS = 0This bit is ignored. Timer1 uses theTMR1CS: Timer1 Clock Source Set1 = External clock (FOSC/4)TMR1ON: Timer1 On bit1 = Disables Timer10 = Stops Timer10 = Stops Timer1Note 1: The oscillator inverter andLegend:R = Readable bitN = Value at POR'1' = E	U-0U-0R/W-0R/W-0-T1CKPS1T1CKPS0bit 7Unimplemented: Read as '0'T1CKPS1:T1CKPS0: Timer1 Input Clock Prese11 = 1:8 Prescale value10 = 1:4 Prescale value01 = 1:2 Prescale value00 = 1:1 Prescale valueT1OSCEN: Timer1 Oscillator Enable Control bit1 = Oscillator is enabled0 = Oscillator is enabled0 = Oscillator is shut off ⁽¹⁾ TISYNC: Timer1 External Clock Input SynchroTMR1CS = 11 = Do not synchronize external clock input0 = Synchronize external clock inputTMR1CS = 0This bit is ignored. Timer1 uses the internal clockTMR1CS: Timer1 Clock Source Select bit1 = External clock from pin RB6/T1OSO/T1CKI0 = Internal clock (FOSC/4)TMR1ON: Timer1 On bit1 = Disables Timer10 = Stops Timer1Note 1: The oscillator inverter and feedback representationLegend:R = Readable bitM = Writable bit-n = Value at POR'1' = Bit is set	U-0U-0R/W-0R/W-0R/W-0T1CKPS1T1CKPS0T1OSCENbit 7Unimplemented: Read as '0'T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits11 External Input Clock Prescale Select bits11 External Value00 = 1:1 Prescale value01 = 0 scillator is enabled0 = 0 scillator is enabled0 = 0 scillator is enabled0 = 0 scillator is shut off ⁽¹⁾ TTSYNC: Timer1 External Clock Input Synchronization ControlTMR1CS = 11 = Do not synchronize external clock input0 synchronize external clock input0 Synchronize external clock inputTMR1CS = 0This bit is ignored. Timer1 uses the internal clock when TMR1TMR1CS: Timer1 Clock Source Select bit1 = External clock from pin RB6/T1OSO/T1CKI (on the rising 0 = Internal clock (FOSC/4)TMR1ON: Timer1 On bit1 = Disables Timer10 = Stops Timer1Note 1: The oscillator inverter and feedback resistor are turn Legend: R = Readable bitW = Writable bitU = Unimple -n = Value at POR'1' = Bit is set'0' = Bit is c	U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — — T1CKPS1 T1CKPS0 T1OSCEN T1SYNC bit 7 Unimplemented: Read as '0' T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 0 = 1:4 Prescale value 0 = 1:4 Prescale value 0 = 1:1 Prescale value 0 = 0 Scillator is enabled 0 = 0 Scillator is enabled 0 = 0 Scillator is enabled 0 = 0 Sillator is shut off ⁽¹⁾ TISPNC: Timer1 External Clock Input Synchronization Control bit TMRICS = 1 1 = Do not synchronize external clock input 0 = Synchronize external clock input TIMET1 Clock Source Select bit 1 = External clock from pin RB6/T10SO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4) TMRION: Timer1 On bit 1 = Disables Timer1 <	U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS bit 7 Unimplemented: Read as '0' T1CKPS0: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 10 = 1:4 Prescale value 00 = 1:1 Prescale value 00 = 1:1 Prescale value 11 = 0 scillator Enable Control bit 11 = 0 scillator is enabled 0 = Oscillator is enabled 0 = Oscillator is shut off ⁽¹⁾ 11SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0 TMR1CS = 0. TMR1CS = 0. TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RB6/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4) TMR1ON: Timer1 On bit 1 = Disables Timer1 0 = Stops Timer1 0 = Stops Timer1 0 = Unimplemented bit, read as 'u-n = Value at POR

REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)

9.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 9-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-1.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

11.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

11.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

11.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu PC	e on DR	Value on all other RESETS	
0Bh/8Bh/ 10Bh/ 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	EEIE	CMIF	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
87h	TRISB	PORTB	Data Di	rection Reg	ister					1111	1111	1111	1111
0Eh	TMR1L	Holding	register	for the Lea	st Significar	nt Byte of the	e 16-bit TM	R1 registe	r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	register	for the Mos	t Significan	t Byte of the	16-bit TM	R1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/Compare/PWM register1 (LSB)								xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)								xxxx	xxxx	uuuu	uuuu
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 11-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

11.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 11-1: PWM DUTY CYCLE

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

EQUATION 11-2: MAXIMUM PWM RESOLUTION

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

For an example on the PWM period and duty cycle calculation, see the PICmicro[™] Mid-Range Reference Manual (DS33023).

11.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 11-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
87h	TRISB	PORTB D	ata Directior	Register						1111 1111	1111 1111
11h	TMR2	Timer2 mo	odule's regis	ter						0000 0000	0000 0000
92h	PR2	Timer2 mo	odule's perio	d register						1111 1111	1111 1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	uuuu
15h	CCPR1L	Capture/Compare/PWM register1 (LSB)								xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PW		xxxx xxxx	uuuu uuuu					
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

BAUD	Fosc = 20 M	lHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA			NA			NA		
1.2	NA			NA		_	NA	_	_
2.4	NA			NA		_	NA	_	_
9.6	NA			NA			9.766	+1.73%	255
19.2	19.53	+1.73%	255	19.23	+0.16%	207	19.23	+0.16%	129
76.8	76.92	+0.16%	64	76.92	+0.16%	51	75.76	-1.36%	32
96	96.15	+0.16%	51	95.24	-0.79%	41	96.15	+0.16%	25
300	294.1	-1.96	16	307.69	+2.56%	12	312.5	+4.17%	7
500	500	0	9	500	0	7	500	0	4
HIGH	5000	_	0	4000	_	0	2500	—	0
LOW	19.53	_	255	15.625	_	255	9.766	_	255

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	Fosc = 7.15	909 MHz	SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	_
1.2	NA	_		NA	_	_	NA	_	_
2.4	NA			NA	_	_	NA		_
9.6	9.622	+0.23%	185	9.6	0	131	9.615	+0.16%	103
19.2	19.24	+0.23%	92	19.2	0	65	19.231	+0.16%	51
76.8	77.82	+1.32	22	79.2	+3.13%	15	75.923	+0.16%	12
96	94.20	-1.88	18	97.48	+1.54%	12	1000	+4.17%	9
300	298.3	-0.57	5	316.8	5.60%	3	NA	_	—
500	NA	—	—	NA	_	—	NA	—	—
HIGH	1789.8	_	0	1267	_	0	100	_	0
LOW	6.991		255	4.950	_	255	3.906		255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA			NA	_		0.303	+1.14%	26
1.2	NA		—	1.202	+0.16%	207	1.170	-2.48%	6
2.4	NA	—	—	2.404	+0.16%	103	NA	_	
9.6	9.622	+0.23%	92	9.615	+0.16%	25	NA	_	_
19.2	19.04	-0.83%	46	19.24	+0.16%	12	NA	_	_
76.8	74.57	-2.90%	11	83.34	+8.51%	2	NA	—	
96	99.43	+3.57%	8	NA	_	_	NA	_	—
300	298.3	0.57%	2	NA	_	_	NA	_	_
500	NA		—	NA	—	_		—	
HIGH	894.9		0	250	_	0	8.192	_	0
LOW	3.496		255	0.9766	—	255	0.032	_	255

The data on the RB1/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

FIGURE 12-1: RX PIN SAMPLING SCHEME. BRGH = 0

FIGURE 12-2: RX PIN SAMPLING SCHEME, BRGH = 1

FIGURE 12-3: RX PIN SAMPLING SCHEME, BRGH = 1

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-7 :	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION
---------------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -00	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00	x 0000 -00x
1Ah	RCREG	USART Re	ceive Re	egister						0000 000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -00	0000-0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -01	0 0000 -010
99h	SPBRG	Baud Rate	Generat	0000 000	0000 0000						

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

12.3 USART Function

The USART function is similar to that on the PIC16C74B, which includes the BRGH = 1 fix.

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed so when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer. The ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if, and only, if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (='1'), all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = '1'). When ADEN is disabled (='0'), all data bytes are received and the 9th bit can be used as the PARITY bit.

The USART Receive Block Diagram is shown in Figure 12-8.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Steps to follow when setting up an Asynchronous or Synchronous Reception with Address Detect Enabled:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable asynchronous or synchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. Set bit RX9 to enable 9-bit reception.
- 5. Set ADEN to enable address detect.
- 6. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 9. If any error occurred, clear the error by clearing enable bit CREN if it was already set.
- If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

NOTES:

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, H	RPO ;	Bank 1
MOVLW	CONFIG_AI	DDR ;	
MOVWF	EEADR	;	Address to read
BSF	EECON1, H	RD ;	EE Read
MOVF	EEDATA, V	vi ;	W = EEDATA
BCF	STATUS, H	RPO ;	Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

Required Sequence	BSF BSF MOVLW MOVWF MOVLW MOVWF BSF	STATUS, RP0 EECON1, WREN INTCON, GIE 55h EECON2 AAh EECCN2 EECON1,WR	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Bank 1 Enable write Disable INTs. Write 55h Write AAh Set WR bit begin write
	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

FIGURE 14-9: TIMEOUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 14-10: TIMEOUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

© 2003 Microchip Technology Inc.

TABLE 15-2: PIC16F62X INSTRUCTION SET

Mnemonic, Operands		Description	Cycles	14-Bit Opcode			Status	Notes	
		Description		MSb			LSb	Affected	Notes
BYTE-ORIE	NTED FI	LE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	—	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FILE	REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	01	11bb	bfff	ffff		3
LITERAL AN	ND CONT	ROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16F62X

BCF	Bit Cle	ar f				BTFSC	Bit Tes	t f, Skip il	Clear	
Syntax:	[label]	BCF	f,b			Syntax:	[label]	BTFSC	f,b	
Operands:	$0 \le f \le 0$ $0 \le b \le 0$	127 7				Operands:	$0 \le f \le c$ $0 \le b \le c$	127 7		
Operation:	$0 \rightarrow (f \leq$	b>)				Operation:	skip if (i	f) = 0		
Status Affected:	None					Status Affected:	None			
Encoding:	01	00bb	bfff	ffff]	Encoding:	01	10bb	bfff	ffff
Description:	Bit 'b' ir	register	r 'f' is clea	ared.	-	Description:	If bit 'b'	in register	'f' is '0' th	nen the
Words:	1						next ins	struction is	skipped.	
Cycles:	1						instruct	ion fetche	d during t	he
Example	BCF	REG1,	7				current	instruction	n executio	on is
	Before F	Instructio REG1	on = 0xC7				discard instead instruct	ed, and a , making t ion.	NOP is ex his a two	ecuted -cycle
	After In	struction	ι = 0x47			Words:	1			
	•		0, TT			Cycles:	1 ⁽²⁾			
505	D '' O (Example	HERE	BTFSC	REG1	
BSF	Bit Set	t					FALSE	GOTO	PROCES	S_CODE
Syntax:	[label]	BSF f	,b				IKUE	•		
Operands:	$0 \le f \le f$	127						•		
Onenetien	U ≤ D ≤	1					Before	Instruction		
Operation:	$I \rightarrow (I^{<})$	0>)					⊢ After In	struction	ITESS HEI	ΧE
	None			1	1		if	REG<1>	= 0,	
Encoding:	01	01bb	bfff	ffff]		F	PC = add	Iress TR	UE
Description:	Bit 'b' ir	ı register	r 'f' is set.					REG<1>	=1, tross EA	I CE
Words:	1						Г		11033 FA.	LOL
Cycles:	1									

Example

BSF

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[<i>label</i>] BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \le k \le 2047$
Operation: Status Affected:	0 ≤ b < 7 skip if (f) = 1 None	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>
Encoding:	01 11bb bfff ffff	Status Affected:	None
Description:	If bit 'b' in register 'f' is '1' then the	Encoding:	10 0kkk kkkk kkkk
	next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle
Words:	1		Instruction.
Cycles:	1 ⁽²⁾	Words:	1
Example	HERE BTFSS REG1	Cycles:	2
	FALSE GOTO PROCESS_CODE TRUE • •	Example	HERE CALL THERE Before Instruction PC = Address HERE
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address ENLSE		After Instruction PC = Address THERE TOS = Address HERE+1
	if FLAG<1> = 1,	CLRF	Clear f
	PC = address TRUE	Syntax:	[label] CLRF f
		Operands:	$0 \leq f \leq 127$
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
			_

Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Example	CLRF	REG1					
	Before I R After Ins R Z	Instructic EG1 = struction EG1 =	on = 0x5A = 0x00 = 1				

IORLW	Inclusiv	ve OR L	iteral wit	h W		
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OF	R. k \rightarrow (V	V)			
Status Affected:	Z					
Encoding:	11	1000	kkkk	kkkk		
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	IORLW	0x35				
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 0					

MOVLW	Move Literal to W							
Syntax:	[label]	MOVL	Wk					
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W)$							
Status Affected:	None							
Encoding:	11	00xx	kkkk	kkkk				
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.							
Words:	1							
Cycles:	1							
Example	MOVLW	0x5A						
	After Ins W	struction = 0x5/	4					

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .OR. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0100 dfff ffff						
Description:	register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.						
Words:	1						
Cycles:	1						
Example	IORWF REG1, 0						
	Before Instruction REG1 = 0x13 $W = 0x91$ After Instruction REG1 = 0x13 $W = 0x93$ $Z = 1$						

MOVF	Move f					
Syntax:	[<i>label</i>] MOVF f,d					
Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Encoding:	00 1000 dfff ffff					
Description:	moved to a destination depen- dent upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file regis- ter f itself. d = 1 is useful to test a file register since status flag Z is affected.					
Words:	1					
Cycles:	1					
Example	MOVF REG1, 0					
	After Instruction W= value in REG1 register Z = 1					

PIC16F62X

MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Encoding:	00 0000 1fff ffff				
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example	MOVWF REG1				
	Before Instruction REG1 = $0xFF$ W = $0x4F$ After Instruction REG1 = $0x4F$ W = $0x4F$				

OPTION	Load Op	otion Re	gister		
Syntax:	[label]	OPTIO	N		
Operands:	None				
Operation:	$(W) \rightarrow OPTION$				
Status Affected:	None				
Encoding:	00 0000 0110 0010				
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. Using only register instruction such as				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.				

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operation.			
Words:	1			
Cycles:	1			
Example	NOP			

RETFIE	Return from Interrupt			
Syntax:	[label] RETFIE			
Operands:	None			
Operation:	TOS \rightarrow PC, 1 \rightarrow GIE			
Status Affected:	None			
Encoding:	00 0000 0000 1001			
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two- cycle instruction.			
Words:	1			
Cycles:	2			
Example	RETFIE			
	After Interrupt PC = TOS GIE = 1			

