

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

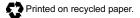
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.


dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

3.2.2 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 3-1). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 0											
00h	INDF	Addressir	ng this locatio	n uses conte	nts of FSR to	address data	a memory (n	ot a physica	l register)	xxxx xxxx	25
01h	TMR0	Timer0 M	odule's Regis	ter					• /	xxxx xxxx	43
02h	PCL	Program	Counter's (PC) Least Sign	ificant Byte					0000 0000	13
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
04h	FSR	Indirect d	ata memory a	ddress point	er				-	xxxx xxxx	25
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	29
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	34
07h	_	Unimplen	nented							_	
08h	_	Unimplen	nented							_	
09h	_	Unimplen	nented							_	
0Ah	PCLATH	_	_	_	Write buffer	for upper 5 b	oits of progra	im counter		0 0000	25
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	23
0Dh	_	Unimplen	nented							—	_
0Eh	TMR1L	Holding r	egister for the	Least Signif	icant Byte of	the 16-bit TN	1R1			XXXX XXXX	46
0Fh	TMR1H	Holding r	egister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1			XXXX XXXX	46
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	46
11h	TMR2	TMR2 mo	odule's registe	r						0000 0000	50
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	50
13h	_	Unimplen	nented							_	_
14h	—	Unimplen	nented							_	_
15h	CCPR1L	Capture/0	Compare/PWN	/I register (LS	SB)					xxxx xxxx	61
16h	CCPR1H	Capture/0	Compare/PWN	/I register (M	SB)					xxxx xxxx	61
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	61
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	67
19h	TXREG	USART T	ransmit data	register						0000 0000	74
1Ah	RCREG	USART F	Receive data r	egister						0000 0000	77
1Bh	_	Unimplen	nented							—	_
1Ch	_	Unimplen	nented							—	_
1Dh	—	Unimplen	nented							—	—
1Eh	—	Unimplen	nented		1	1			1	—	—
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	53

TABLE 3-1: SPECIAL REGISTERS SUMMARY BANK 0

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

3.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for								
	TMR0, assign the prescaler to the WDT								
	(PSA = 1). See Section 6.3.1								

REGISTER 3-2: OPTION REGISTER (ADDRESS: 81h, 181h)

101

110 111

Legend:

R = Readable bit

-n = Value at POR

1:64

1:128

1:256

			UBBILL	<i></i> ,,	,,										
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1							
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0							
	bit 7	bit 7 bit													
bit 7	RBPU : PO	RBPU: PORTB Pull-up Enable bit													
	1 = PORTE	 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values 													
bit 6	INTEDG: In	INTEDG: Interrupt Edge Select bit													
		 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 													
bit 5	TOCS: TM	R0 Clock Sc	ource Selec	t bit											
		ion on RA4/ I instruction		(CLKOUT)											
bit 4	TOSE: TMF	R0 Source E	Edge Select	bit											
		-			4/T0CKI pin 4/T0CKI pin										
bit 3	PSA: Pres	caler Assigr	ment bit												
		ller is assigr ller is assigr		/DT imer0 modu	le										
bit 2-0	PS2:PS0:	Prescaler R	ate Select k	oits											
	E	Bit Value T	MR0 Rate	WDT Rate											
	-	000 001	1:2 1:4	1:1 1:2											
		010 011 100	1 : 8 1 : 16 1 : 32	1:4 1:8 1:16											

1:32 1:64

1:128

W = Writable bit

'1' = Bit is set

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 3-3:	3: INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)												
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x					
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF					
	bit 7 bi												
bit 7	GIE: Globa	al Interrupt E	nable bit										
		s all unmas es all interru	•	ots									
bit 6	PEIE: Peri	oheral Interr	upt Enable	bit									
		s all unmas es all periph			S								
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit									
		s the TMR0 es the TMR0											
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit									
		s the RB0/II es the RB0/I											
bit 3	RBIE: RB I	Port Change	e Interrupt E	nable bit									
		s the RB po es the RB po											
bit 2	TOIF: TMR	0 Overflow	nterrupt Fla	ag bit									
		register has register did			eared in softwa	are)							
bit 1	INTF: RB0	/INT Externa	al Interrupt	Flag bit									
		30/INT exter 30/INT exter		•	must be cleare	d in softwaı	e)						
bit 0	RBIF: RB I	Port Change	Interrupt F	lag bit									
		at least one of the RB7:R			nanged state (n state	nust be clea	ared in softw	vare)					
	Levendu							1					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Detect.

Note: BOD is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOD is cleared, indicating a brown-out has occurred. The BOD STATUS bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 3-6: PCON REGISTER (ADDRESS: 0Ch)

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	—	—	—	OSCF	_	POR	BOD
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 OSCF: INTRC/ER oscillator frequency
 - 1 = 4 MHz typical⁽¹⁾
 - 0 = 37 KHz typical
- bit 2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset STATUS bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect STATUS bit

- 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)
 - **Note 1:** When in ER Oscillator mode, setting OSCF = 1 will cause the oscillator frequency to change to the frequency specified by the external resistor.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.6 Comparator Interrupts

The Comparator Interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the Comparator Interrupt Flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	lf a	change	in	the	CMCON	register							
	(C1OUT or C2OUT) should occur when a												
	read	read operation is being executed (start of											
	the C	the Q2 cycle), then the CMIF (PIR1<6>)											
	interr	upt flag m	nay	not g	et set.								

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any write or read of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

9.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes-up from SLEEP, the contents of the CMCON register are not affected.

9.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the Comparator module to be in the comparator RESET mode, CM2:CM0 = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

9.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 9-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A source impedance of maximum 10 kΩ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

EXAMPLE 10-1: VOLTAGE REFERENCE CONFIGURATION

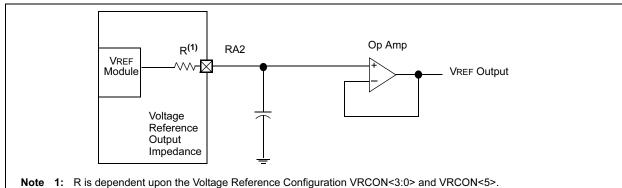
MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x07	; RA3-RA0 are
MOVWF	TRISA	; outputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank 0
CALL	DELAY10	; 10µs delay

10.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 10-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the Voltage Reference can be found in Table 17-2.

10.3 Operation During SLEEP

When the device wakes-up from SLEEP through an interrupt or a Watchdog Timer timeout, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.


10.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

10.5 Connection Considerations

The Voltage Reference module operates independently of the Comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 10-2 shows an example buffering technique.

FIGURE 10-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Note 1: — = Unimplemented, read as '0'.

12.0 UNIVERSAL SYNCHRONOUS/ ASYNCHRONOUS RECEIVER/ TRANSMITTER (USART) MODULE

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/ A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>), and bits TRISB<2:1>, have to be set in order to configure pins RB2/TX/CK and RB1/ RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R /W-0	R-1	, R/W-0
	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Cloc	k Source Sel	ect bit					
	Asynchronou Don't car							
		er mode (Clo	ck generated k from extern	internally from	m BRG)			
bit 6	1 = Selects 9	ansmit Enabl 9-bit transmis 3-bit transmis	sion					
bit 5	TXEN : Trans 1 = Transmit 0 = Transmit		_{oit} (1)					
bit 4	SYNC: USA 1 = Synchro 0 = Asynchro		ect bit					
bit 3	Unimpleme	nted: Read a	is '0'					
bit 2	BRGH: High	Baud Rate S	Select bit					
	Asynchronou 1 = High s 0 = Low s	speed						
	<u>Synchronou</u>	•						
bit 1	TRMT : Trans 1 = TSR em 0 = TSR full		gister STATU	S bit				
bit 0	TX9D : 9th bi	t of transmit	data. Can be	PARITY bit.				
	Note 1: S	REN/CREN	overrides TX	EN in SYNC	node.			
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimp	lemented b	oit, read as ')'
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is ur	nknown

BAUD	Fosc = 20 M	lHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA		_	NA		_	NA		_
1.2	NA	_	—	NA	_		NA	—	
2.4	NA	_	_	NA	_	_	NA	_	_
9.6	NA	_	_	NA	_	_	9.766	+1.73%	255
19.2	19.53	+1.73%	255	19.23	+0.16%	207	19.23	+0.16%	129
76.8	76.92	+0.16%	64	76.92	+0.16%	51	75.76	-1.36%	32
96	96.15	+0.16%	51	95.24	-0.79%	41	96.15	+0.16%	25
300	294.1	-1.96	16	307.69	+2.56%	12	312.5	+4.17%	7
500	500	0	9	500	0	7	500	0	4
HIGH	5000	_	0	4000	_	0	2500	_	0
LOW	19.53	_	255	15.625	_	255	9.766	_	255

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	Fosc = 7.15	909 MHz	SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	_
1.2	NA	_	_	NA	_	_	NA	_	_
2.4	NA			NA	_		NA		_
9.6	9.622	+0.23%	185	9.6	0	131	9.615	+0.16%	103
19.2	19.24	+0.23%	92	19.2	0	65	19.231	+0.16%	51
76.8	77.82	+1.32	22	79.2	+3.13%	15	75.923	+0.16%	12
96	94.20	-1.88	18	97.48	+1.54%	12	1000	+4.17%	9
300	298.3	-0.57	5	316.8	5.60%	3	NA		—
500	NA	_	_	NA		_	NA	_	_
HIGH	1789.8		0	1267	_	0	100	_	0
LOW	6.991		255	4.950	_	255	3.906	_	255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA		_	NA			0.303	+1.14%	26
1.2	NA	—	—	1.202	+0.16%	207	1.170	-2.48%	6
2.4	NA	_	_	2.404	+0.16%	103	NA	_	_
9.6	9.622	+0.23%	92	9.615	+0.16%	25	NA	_	_
19.2	19.04	-0.83%	46	19.24	+0.16%	12	NA	_	—
76.8	74.57	-2.90%	11	83.34	+8.51%	2	NA	—	_
96	99.43	+3.57%	8	NA		_	NA	_	—
300	298.3	0.57%	2	NA	_	_	NA	_	_
500	NA	_	—	NA				—	—
HIGH	894.9	_	0	250		0	8.192	_	0
LOW	3.496	_	255	0.9766		255	0.032	_	255

14.2.6 INTERNAL 4 MHz OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and 25°C, see "Electrical Specifications" section for information on variation over voltage and temperature.

14.2.7 CLKOUT

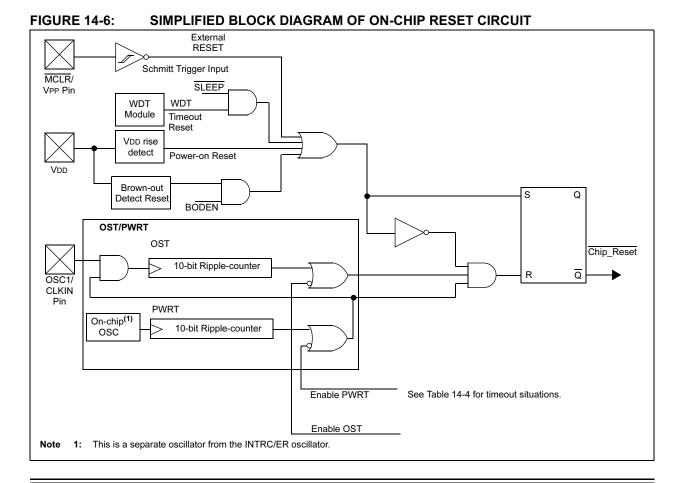
The PIC16F62X can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4 can be used for test purposes or to synchronize other logic.

14.3 Special Feature: Dual Speed Oscillator Modes

A software programmable Dual Speed Oscillator mode is provided when the PIC16F62X is configured in either ER or INTRC Oscillator modes. This feature allows users to dynamically toggle the oscillator speed between 4 MHz and 37 kHz. In ER mode, the 4 MHz setting will vary depending on the value of the external resistor. Also in ER mode, the 37 kHz operation is fixed and does not vary with resistor value. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

The OSCF bit in the PCON register is used to control Dual Speed mode. See Section 3.2.2.6, Register 3-4.

14.4 RESET


The PIC16F62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT Wake-up (SLEEP)
- f) Brown-out Detect (BOD)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT Wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 14-5. These bits are used in software to determine the nature of the RESET. See Table 14-8 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 14-6.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See Table 17-6 for pulse width specification.

TABLE 14-7: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during SLEEP	000h	0001 0uuu	1-uu
WDT Reset	000h	0000 uuuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Detect Reset	000h	000x xuuu	1-u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Detect Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT timeout
W		xxxx xxxx	սսսս սսսս	սսսս սսսս
INDF	00h	_	-	-
TMR0	01h	xxxx xxxx	uuuu uuuu	սսսս սսսս
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	xxxx xxxx	սսսս սսսս	uuuu uuuu
PORTA	05h	xxxx 0000	xxxx u000	xxxx 0000
PORTB	06h	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu
T1CON	10h	00 0000	uu uuuu	uu uuuu
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
CCP1CON	17h	00 0000	00 0000	uu uuuu
RCSTA	18h	0000 -00x	0000 -00x	uuuu -uuu
CMCON	1Fh	0000 0000	0000 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	0000 -000	0000 -000	-q (2,5)
OPTION	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	11-1 1111	11 1111	uu-u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
PIE1	8Ch	0000 -000	0000 -000	uuuu -uuu
PCON	8Eh	1-0x	1-uq ^(1,6)	uu
TXSTA	98h	0000 -010	0000 -010	uuuu -uuu
EECON1	9Ch	x000	q000	uuuu
VRCON	9Fh	000- 0000	000- 0000	սսս- սսսս

 TABLE 14-8:
 INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-7 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then Bit 6 = 1. All other interrupts generating a wake-up will cause Bit 6 = u.

6: If RESET was due to brown-out, then Bit 0 = 0. All other RESETS will cause Bit 0 = u.

PIC16F62X

BCF	Bit Clear f	BTFSC	Bit Test f, Skip if Clear
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0' then the
Words:	1		next instruction is skipped. If bit 'b' is '0' then the next
Cycles:	1		instruction fetched during the
Example	BCF REG1, 7		current instruction execution is
	Before Instruction REG1 = 0xC7 After Instruction		discarded, and a NOP is executed instead, making this a two-cycle instruction.
	REG1 = 0x47	Words:	1
		Cycles:	1 ⁽²⁾
BSF	Bit Set f	Example	HERE BTFSC REG1 FALSE GOTO PROCESS_CODE
Syntax:	[<i>label</i>]BSF f,b		TRUE •
Operands:	$0 \le f \le 127$		•
	$0 \le b \le 7$		Before Instruction
Operation:	$1 \rightarrow (f \le b >)$		PC = address HERE After Instruction
Status Affected:	None		if REG<1> = 0,
Encoding:	01 01bb bfff ffff		PC = address TRUE
Description:	Bit 'b' in register 'f' is set.		if REG<1>=1,
Words:	1		PC = address FALSE
Cycles:	1		

Example

BSF

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

PIC16F62X

CLRW	Clear W					COMF
Syntax:	[label]	CLRW			I	Syntax
Operands:	None					Opera
Operation:	$\begin{array}{l} 00h \rightarrow (V) \\ 1 \rightarrow Z \end{array}$	W)				Operat
Status Affected:	Z					Status
Encoding:	00	0001	0000	0011		Encod
Description:	W regist (Z) is set		ared. Zer	o bit	I	Descri
Words:	1					
Cycles:	1					
Example	CLRW					Words
	Before In					Cycles
	After Ins V	V = 0x truction V = 0x Z = 1				Examp

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	$(\overline{f}) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00 1001 dfff ffff				
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	COMF REG1, 0				
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC				

CLRWDT	Clear Watchdog Timer	DECF	Decrement f		
Syntax:	[label] CLRWDT	Syntax:	[<i>label</i>] DECF f,d		
Operands:	None	Operands:	$0 \leq f \leq 127$		
Operation:	$00h \rightarrow WDT$		d ∈ [0,1]		
	$0 \rightarrow \frac{\text{WDT}}{\text{TO}}$ prescaler,	Operation: (f) - 1 \rightarrow (dest)			
	$1 \rightarrow TO$ $1 \rightarrow PD$	Status Affected:	Z		
Status Affected:	TO, PD	Encoding:	00 0011 dfff ffff		
Encoding: Description:	00000001100100CLRWDT instruction resets the Watchdog Timer. It also resets	Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		
	the prescaler of the WDT. STATUS bits TO and PD are set.	Words:	1		
Words:	1	Cycles:	1		
Cycles:	1	Example	DECF CNT, 1		
Example	CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1		Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1		

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Encoding:	11 1000 kkkk kkk	k				
Description:	The contents of the W register OR'ed with the eight bit literal ' The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	IORLW 0x35					
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 0					

MOVLW	Move L	iteral to	w				
Syntax:	[label]	MOVL	Wk				
Operands:	$0 \le k \le 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Encoding:	11	00xx	kkkk	kkkk			
Description:	into W r		ral 'k' is lo The don't 0's.				
Words:	1						
Cycles:	1						
Example	MOVLW	0x5A					
		struction = 0x5/	4				

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0100 dfff ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	IORWF REG1, 0
	Before Instruction REG1 = 0x13 $W = 0x91$ After Instruction REG1 = 0x13 $W = 0x93$ $Z = 1$

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
	moved to a destination depen- dent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file regis- ter f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF REG1, 0
	After Instruction W= value in REG1 register Z = 1

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

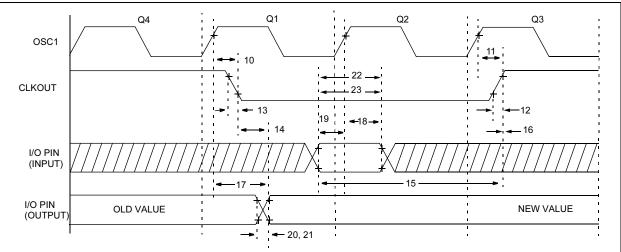
Ambient temperature under bias	40 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on MCLR and RA4 with respect to Vss	
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB	200 mA
Maximum current sourced by PORTA and PORTB	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-V	он) x Iон} + ∑(Vol x IoL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss

17.2 DC Characteristics: PIC16F62X (Commercial, Industrial, Extended) PIC16LF62X (Commercial, Industrial)

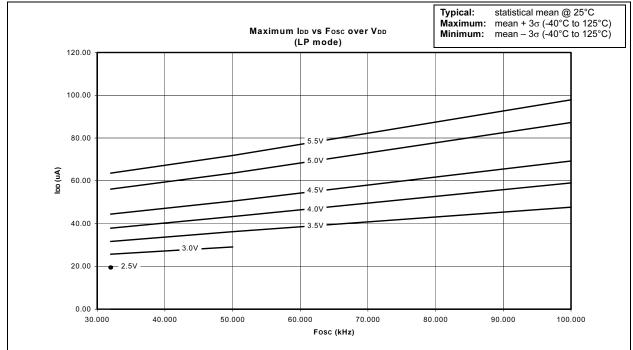
DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Operating voltage VDD range as described in DC spec Table 17-1 and Table 17-2								
Param. No.	Sym	Characteristic/Device	Min Typ† Max Unit Conditions							
	VIL	Input Low Voltage								
		I/O ports								
D030		with TTL buffer	Vss	_	0.8	V	VDD = 4.5V to 5.5V			
					0.15 VDD	V	otherwise			
D031		with Schmitt Trigger input	Vss		0.2 VDD	V				
D032		MCLR, RA4/T0CKI,OSC1 (in ER mode)	Vss	—	0.2 VDD	V	(Note1)			
D033		OSC1 (in XT and HS)	Vss	_	0.3 VDD	V				
		OSC1 (in LP)	Vss	_	0.6 Vdd - 1.0	V				
	Vін	Input High Voltage					•			
		I/O ports								
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V			
			.25 VDD + 0.8V		Vdd	V	otherwise			
D041		with Schmitt Trigger input	0.8 VDD	—	VDD	V				
D042		MCLR RA4/T0CKI	0.8 VDD	_	VDD	V				
D043 D043A		OSC1 (XT, HS and LP)	0.7 VDD 0.9 VDD		Vdd	V V	(Noto1)			
D043A		OSC1 (in ER mode)	50	200	400		(Note1) VDD = 5.0V, VPIN = VSS			
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS			
	lı∟	Input Leakage Current ^{(2), (3)}					•			
		I/O ports (Except PORTA)			±1.0	μΑ	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D060		PORTA	—	—	±0.5	μΑ	$VSS \le VPIN \le VDD$, pin at hi-impedance			
D061		RA4/T0CKI	—	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc			
							configuration			
	Vol	Output Low Voltage	1		1					
D080		I/O ports	—	—	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C			
			—	_	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C			
D083		OSC2/CLKOUT (ER only)		_	0.6 0.6	V V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C IOL=1.2 mA, VDD=4.5V, +125°C			
	Voн	Output High Voltage ⁽³⁾	1	1	0.0	v				
D090		I/O ports (Except RA4)	VDD - 0.7	_	_	V	Іон=-3.0 mA. VDD=4.5V40° to +85°С			
2000			VDD - 0.7 VDD - 0.7	_	_	v	IOH=-2.5 mA, VDD=4.5V, +125°C			
D092		OSC2/CLKOUT (ER only)	VDD - 0.7	_	_	v	IOH=-1.3 mA, VDD=4.5V, -40° to +85°C			
			VDD - 0.7	—	—	V	Іон=-1.0 mA, VDD=4.5V, +125°С			
D150	Vod	Open-Drain High Voltage			8.5	V	RA4 pin PIC16F62X, PIC16LF62X*			
		Capacitive Loading Specs on	Output Pins							
						-				
D100*	COSC2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In ER oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F62X be driven with external clock in ER mode.

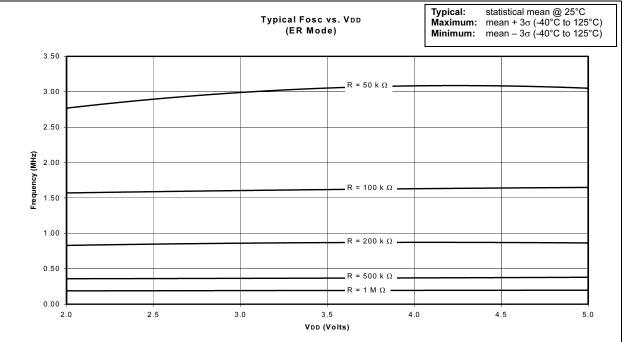
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.



Param No.	Sym	haracteristic		Min	Тур†	Max	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓	16F62X	—	75	200	ns
10A*			16LF62X	—	_	400	ns
11*	TosH2ckH	OSC1↑ to CLKOUT↑	16F62X	—	75	200	ns
11A*			16LF62X	—	_	400	ns
12*	TckR	CLKOUT rise time	16F62X	—	35	100	ns
12A*			16LF62X	—	_	200	ns
13*	TckF	CLKOUT fall time	16F62X	—	35	100	ns
13A*			16LF62X	—	_	200	ns
14*	TckL2ioV	CLKOUT ↓ to Port out valid		—	_	20	ns
15*	TioV2ckH	Port in valid before	16F62X	Tosc+200 ns	_	—	ns
		CLKOUT ↑	16LF62X	Tosc=400 ns	_	—	ns
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_		ns
17*	TosH2ioV	OSC1↑ (Q1 cycle) to	16F62X	—	50	150*	ns
		Port out valid	16LF62X	—	_	300	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	100 200	_	—	ns	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

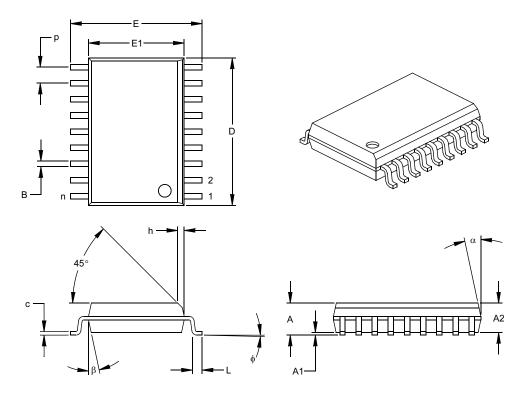


FIGURE 18-6: MAXIMUM IDD vs Fosc OVER VDD (LP MODE)

	Units	INCHES*			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18		
Pitch	р		.050			1.27		
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	E	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59	
Overall Length	D	.446	.454	.462	11.33	11.53	11.73	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle	¢	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent							
RE:	Reader Response								
Fron	n: Name								
	Company								
	Address								
	City / State / ZIP / Country								
	Telephone: ()	FAX: ()							
Appl	ication (optional):								
Wou	ld you like a reply?YN								
Devi	Device: PIC16F62X Literature Number: DS40300C								
Que	stions:								
1 \	What are the best features of this do	cument?							
-									
2.	How does this document meet your h	nardware and software development needs?							
-									
-									
3. I	Do you find the organization of this d	ocument easy to follow? If not, why?							
-									
-									
4.	What additions to the document do y	ou think would enhance the structure and subject?							
-									
5 \	What deletions from the document or	ould be made without affecting the overall usefulness?							
5.		Sud be made without anecting the overall usefulness?							
-									
6. I	s there any incorrect or misleading in	nformation (what and where)?							
-									
7. I	How would you improve this docume	nt?							
-									