

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1:PIC16F62X PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt- on-pin change. When low voltage program- ming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSO	—	XTAL	Timer1 oscillator output.
	T1CKI	ST	—	Timer1 clock input.
	PGC	ST	—	ICSP™ Programming Clock.
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 oscillator input. Wake-up from SLEEP on pin change. Can be software programmed for internal weak pull-up.
	PGD	ST	CMOS	ICSP Data I/O
Vss	Vss	Power	—	Ground reference for logic and I/O pins
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins
Legend: O = Output — = Not used TTL = TTL Input		CMOS = C I = In OD = O	MOS Output put	P = Power ST = Schmitt Trigger Input

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 1											
80h	INDF	Addressin register)	g this locatior	n uses cont	ents of FSF	R to address	s data memo	ory (not a pl	nysical	XXXX XXXX	25
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20
82h	PCL	Program (Counter's (PC) Least Sig	nificant Byte	e			•	0000 0000	25
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
84h	FSR	Indirect da	ata memory a	ddress poir	nter			1	•	XXXX XXXX	25
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	29
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	34
87h	_	Unimplem	ented							—	—
88h	—	Unimplem	ented							—	_
89h	—	Unimplem	ented							—	_
8Ah	PCLATH		_		Write buffe	er for upper	5 bits of pro	ogram coun	ter	0 0000	25
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	22
8Dh	—	Unimplem	ented						•	—	_
8Eh	PCON	_	_	_	_	OSCF	_	POR	BOD	1-0x	24
8Fh	—	Unimplem	ented							—	—
90h	_	Unimplem	ented							—	_
91h	—	Unimplem	ented							—	—
92h	PR2	Timer2 Pe	riod Register							1111 1111	50
93h	—	Unimplem	ented							—	—
94h	—	Unimplem	ented							—	—
95h	—	Unimplem	ented							—	—
96h	—	Unimplem	ented							_	—
97h	—	Unimplem	ented			-				_	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	69
99h	SPBRG	Baud Rate	e Generator F	Register						0000 0000	69
9Ah	EEDATA	EEPROM	data register							xxxx xxxx	87
9Bh	EEADR	—	EEPROM a	ddress regi	ster	-				xxxx xxxx	87
9Ch	EECON1	—	—	_	—	WRERR	WREN	WR	RD	x000	87
9Dh	EECON2	EEPROM	control regist	ter 2 (not a	physical reg	gister)					87
9Eh	_	Unimplem	ented							—	—
9Fh	VRCON	VREN	VROE	VRR	-	VR3	VR2	VR1	VR0	000- 0000	59

|--|

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

NOTES:

FIGURE 5-3: BLOCK DIAGRAM OF THE RA3/AN3 PIN

BLOCK DIAGRAM OF THE RA5/MCLR/VPP PIN

FIGURE 5-6:

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

FIGURE 5-7: BLOCK DIAGRAM OF RA7/OSC1/CLKIN PIN

Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	—	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	ТΧ	—	CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	PGM	ST	—	Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	—	XTAL	Timer1 Oscillator Output
	T1CKI	ST	_	Timer1 Clock Input
	PGC	ST	_	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL		Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not	CM	OS = CMOS = Input	S Output P = Power ST = Schmitt Trigger Input	
TTL = TTL	OD	= Open	Drain Output AN = Analog	

PORTE FUNCTIONS

SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾ TABLE 5-4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTB.

NOTES:

The code example in Example 9-1 depicts the steps required to configure the Comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 9-1: INITIALIZING COMPARATOR MODULE

FLAG_REG	EQU	0X20
CLRF	FLAG_REG	;Init flag register
CLRF	PORTA	;Init PORTA
MOVF	CMCON, W	;Load comparator bits
ANDLW	0xC0	;Mask comparator bits
IORWF	FLAG_REG,F	;Store bits in flag register
MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY10	;10µs delay
MOVF	CMCON, F	;Read CMCONtoend change condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable

9.2 Comparator Operation

A single comparator is shown in Figure 9-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 9-2 represent the uncertainty due to input offsets and response time.

9.3 Comparator Reference

An external or internal reference signal may be used depending on the Comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 9-2).

SINGLE COMPARATOR

9.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between VSs and VDD, and can be applied to either pin of the comparator(s).

9.3.2 INTERNAL REFERENCE SIGNAL

The Comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10.0, Voltage Reference Manual, contains a detailed description of the Voltage Reference module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 9-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

9.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 17-1).

10.0 VOLTAGE REFERENCE MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Figure 10-1. The block diagram is given in Figure 10-1.

10.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD

voltage of 1.25V with VDD = 5.0V.

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 17-2). Example 10-1 shows an example of how to configure the Voltage Reference for an output

REGISTER 10-1:	VRCON REGISTER (ADDRESS: 9Fh)										
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VREN	VROE	Vrr	_	VR3	VR2	VR1	VR0			
	bit 7							bi			
bit 7	Vren: Vre	F Enable									
	1 = VREF circuit powered on0 = VREF circuit powered down, no IDD drain										
bit 6	VROE: VREF Output Enable										
	1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin										
bit 5	VRR: VREF Range selection										
	1 = Low Range 0 = High Range										
bit 4	Unimplem	ented: Rea	d as '0'								
bit 3-0	Vr<3:0> : ∖ When Vrr When Vrr	/REF value s = 1: VREF = = 0: VREF =	election 0 ⊴ = (VR<3:0>/ = 1/4 * VDD ·	≤ VR [3:0] ≤ ′ 24) * VDD + (VR<3:0>/	15 32) * Vdd						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-1: VOLTAGE REFERENCE BLOCK DIAGRAM

11.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

11.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

11.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu PC	e on DR	Valu all o RES	e on ther ETS
0Bh/8Bh/ 10Bh/ 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	EEIE	CMIF	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
87h	TRISB	PORTB	PORTB Data Direction Register							1111	1111	1111	1111
0Eh	TMR1L	Holding	register	for the Lea	st Significar	nt Byte of the	e 16-bit TM	R1 registe	r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	register	for the Mos	t Significan	t Byte of the	16-bit TM	R1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture	Capture/Compare/PWM register1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 11-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

NOTES:

PIC16F62X

ER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN: Seria (Configures 1 = Serial po 0 = Serial po	al Port Enable RB1/RX/DT a ort enabled ort disabled	e bit and RB2/TX/	CK pins as se	rial port pins wh	en bits TRISI	3<2:17> are	set)			
bit 6	RX9 : 9-bit R 1 = Selects 9 0 = Selects 9	RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception									
bit 5	SREN: Single Receive Enable bit Asynchronous mode: Don't care Synchronous mode - master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave: Unused in this mode										
bit 4	Unused in this mode CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive										
bit 3	ADEN: Addr Asynchronou 1 = Enabl 0 = Disab Asynchronou Unused ir Synchron Unused ir	ress Detect E us mode 9-bi es address d les address d us mode 8-bi n this mode ous mode n this mode	inable bit <u>t (RX9 = 1)</u> : letection, ena detection, all <u>t (RX9=0)</u> :	able interrupt a bytes are rece	ind load of the r ived, and ninth	eceive buffer bit can be us	when RSR< ed as PARIT	8> is set Ƴ bit			
bit 2	FERR: Fram 1 = Framing 0 = No frami	ning Error bit error (Can b ing error	e updated by	reading RCR	EG register and	receive next	valid byte)				
bit 1	OERR : Over 1 = Overrun 0 = No overr	OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error									
bit 0	RX9D : 9th b	it of received	data (Can b	e PARITY bit)							
	Legend:										
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	lemented b	it, read as '	0'			

REGISTER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Transmit Register						0000 0000	0000 0000		
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	G Baud Rate Generator Register					0000 0000	0000 0000			

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

14.2.6 INTERNAL 4 MHz OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$, see "Electrical Specifications" section for information on variation over voltage and temperature.

14.2.7 CLKOUT

The PIC16F62X can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4 can be used for test purposes or to synchronize other logic.

14.3 Special Feature: Dual Speed Oscillator Modes

A software programmable Dual Speed Oscillator mode is provided when the PIC16F62X is configured in either ER or INTRC Oscillator modes. This feature allows users to dynamically toggle the oscillator speed between 4 MHz and 37 kHz. In ER mode, the 4 MHz setting will vary depending on the value of the external resistor. Also in ER mode, the 37 kHz operation is fixed and does not vary with resistor value. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

The OSCF bit in the PCON register is used to control Dual Speed mode. See Section 3.2.2.6, Register 3-4.

14.4 RESET

The PIC16F62X differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT Wake-up (SLEEP)
- f) Brown-out Detect (BOD)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, MCLR Reset, WDT Reset and MCLR Reset during SLEEP. They are not affected by a WDT Wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 14-5. These bits are used in software to determine the nature of the RESET. See Table 14-8 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 14-6.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See Table 17-6 for pulse width specification.

TABLE 14-7: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during SLEEP	000h	0001 0uuu	1-uu
WDT Reset	000h	0000 uuuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Detect Reset	000h	000x xuuu	1-u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register Address		Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Detect Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT timeout 	
W		xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu	
INDF	00h	-	_	_	
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾	
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾	
FSR	04h	xxxx xxxx	นนนน นนนน	uuuu uuuu	
PORTA	05h	xxxx 0000	xxxx u000	xxxx 0000	
PORTB	06h	xxxx xxxx uuuu uuuu		uuuu uuuu	
T1CON	10h	00 0000uu uuuu		uu uuuu	
T2CON	12h	-000 0000	-000 0000	-uuu uuuu	
CCP1CON	17h	00 0000	00 0000	uu uuuu	
RCSTA	STA 18h 0000		0000 -00x	uuuu -uuu	
CMCON 1Fh		0000 0000	0000 0000	uu uuuu	
PCLATH 0Ah		0 0000	0 0000	u uuuu	
INTCON	N OBh 0000 000x 0000 000u		uuuu uqqq ⁽²⁾		
PIR1	0Ch	0000 -000	0000 -000	-q (2,5)	
OPTION	81h	1111 1111	1111 1111	uuuu uuuu	
TRISA	85h	11-1 1111	11 1111	uu-u uuuu	
TRISB	86h	1111 1111	1111 1111	uuuu uuuu	
PIE1	8Ch	0000 -000	0000 -000	uuuu -uuu	
PCON	8Eh	1-0x	1-uq ^(1,6)	uu	
TXSTA	98h	0000 -010	0000 -010	นนนน -นนน	
EECON1	9Ch	x000	q000	uuuu	
VRCON	9Fh	h 000-0000 000-0000 uuu		นนน- นนนน	

 TABLE 14-8:
 INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-7 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then Bit 6 = 1. All other interrupts generating a wake-up will cause Bit 6 = u.

6: If RESET was due to brown-out, then Bit 0 = 0. All other RESETS will cause Bit 0 = u.

14.6.1 **RB0/INT INTERRUPT**

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.9 for details on SLEEP, and Figure 14-17 for timing of wake-up from SLEEP through RB0/INT interrupt.

14.6.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can enabled/disabled by setting/clearing T0IE he (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

14.6.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/ disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF inter-
	rupt flag may not get set.

14.6.4 COMPARATOR INTERRUPT

See Section 9.6 for complete description of comparator interrupts.

FIGURE 14-15: INT PIN INTERRUPT TIMING

4: For minimum width of INT pulse, refer to AC specs.

- 5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

14.9.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on \overline{MCLR} pin
- 2. Watchdog Timer Wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB Port change, or the Peripheral Interrupt (Comparator).

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up is cleared when SLEEP is invoked. TO bit is cleared if WDT Wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the

corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes-up from SLEEP, regardless of the source of wake-up.

FIGURE 14-17: WAKE-UP FROM SLEEP THROUGH INTERRUPT

		Q1 Q2 Q3 Q4;	Q1 Q2 Q3 Q4; (Q1 Q2 Q3 Q4			
	<u>tt-/</u> / \	/ <u>¦</u>		/ i			
INT pin	· · ·	I	I				
	Interrupt Latency	v					
	(Note 2)	, 1	→				
(INTCON<7>)	! !	<u> </u>	<u> </u>	<u>+</u>			
SLEEP	i i			1			
INSTRUCTION FLOW	· · ·	1	1	1			
PC X PC X PC+1 X PC+2	X PC+2 X	PC + 2	(<u>0004h X</u>	0005h			
Instruction { Inst(PC) = SLEEP Inst(PC + 1)	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)			
Instruction { Inst(PC - 1) SLEEP	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)			
Note 1: XT, HS or LP Oscillator mode assumed.							
2: TOST = 1024TOSC (drawing not to scale). Approximation	2: Tosτ = 1024Tosc (drawing not to scale). Approximately 1 μs delay will be there for ER Osc mode.						
 GIE = '1' assumed. In this case after wake- up, the pr in-line. 	rocessor jumps to the i	interrupt routine.	If GIE = '0', execu	ution will continue			
4: CLKOUT is not available in these Osc modes, but sl	nown here for timing re	eference.					

14.10 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: The entire data EEPROM and FLASH program memory will be erased when the code protection is turned off. The INTRC calibration data is not erased.

14.11 User ID Locations

Four memory locations (2000h-2003h) are designated as user ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. Only the Least Significant 4 bits of the user ID locations are used.

PIC16F62X

MOVWF	Move W to f			
Syntax:	[<i>label</i>] MOVWF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Encoding:	00 0000 1fff ffff			
Description:	Move data from W register to register 'f'.			
Words:	1			
Cycles:	1			
Example	MOVWF REG1			
	Before Instruction REG1 = $0xFF$ W = $0x4F$ After Instruction REG1 = $0x4F$ W = $0x4F$			

OPTION	Load Option Register			
Syntax:	[label] OPTION			
Operands:	None			
Operation:	$(W) \rightarrow C$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. Using only register instruction such as MOVWF.			
Words:	1			
Cycles:	1			
Example				
	To main ity with ucts, do instruct	tain upv future P not use ion.	vard com 'ICmicro [®] e this	ıpatibil- [®] prod-

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None	None				
Operation:	No operation					
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operation.					
Words:	1					
Cycles:	1					
Example	NOP					

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$				
Status Affected:	None				
Encoding:	00 0000 0000 1001				
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two- cycle instruction.				
Words:	1				
Cycles:	2				
Example	RETFIE				
	After Interrupt PC = TOS GIE = 1				

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-2: MAXIMUM IDD vs Fosc OVER VDD (HS MODE)

FIGURE 18-3: TYPICAL IDD VS FOSC OVER VDD (XT MODE)

