

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 1											
80h	INDF	Addressin register)	g this locatior	n uses cont	ents of FSF	to address	s data memo	ory (not a ph	nysical	XXXX XXXX	25
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20
82h	PCL	Program (Counter's (PC) Least Sig	nificant Byte	e				0000 0000	25
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
84h	FSR	Indirect da	ata memory a	ddress poir	nter					xxxx xxxx	25
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	29
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	34
87h	_	Unimplem	ented							_	_
88h	_	Unimplem	ented							_	
89h	_	Unimplem	ented							_	_
8Ah	PCLATH	_	_	_	Write buffe	er for upper	5 bits of pro	ogram count	ter	0 0000	25
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	21
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	22
8Dh	_	Unimplem	ented							_	_
8Eh	PCON	_	_	_	_	OSCF	_	POR	BOD	1-0x	24
8Fh	_	Unimplem	ented							_	_
90h	_	Unimplem	ented							_	
91h	_	Unimplem	ented							_	_
92h	PR2	Timer2 Pe	eriod Register							1111 1111	50
93h	_	Unimplem	ented							_	_
94h	_	Unimplem	ented							_	_
95h	_	Unimplem	ented							—	_
96h		Unimplem	ented							—	—
97h		Unimplem	ented							—	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	69
99h	SPBRG	Baud Rate	e Generator F	Register						0000 0000	69
9Ah	EEDATA	EEPROM	data register							xxxx xxxx	87
9Bh	EEADR	_	EEPROM a	ddress regi	ster			-		xxxx xxxx	87
9Ch	EECON1	_	—	_	_	WRERR	WREN	WR	RD	x000	87
9Dh	EECON2	EEPROM	control regist	er 2 (not a	physical reg	gister)					87
9Eh	—	Unimplem	1							_	_
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	59

TABLE 3-2:	SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

3.2.2.1 STATUS Register

The STATUS register, shown in Register 3-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory (SRAM).

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect any STATUS bit. For other instructions, not affecting any STATUS bits, see the "Instruction Set Summary".

Note 1: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrow out bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
	IRP	RP1	RP0	TO	PD	Z	DC	С					
	bit 7							bit 0					
bit 7	IRP : Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)												
bit 6-5	RP1:RP0 : Register Bank Select bits (used for direct addressing) 00 = Bank 0 (00h - 7Fh) 01 = Bank 1 (80h - FFh) 10 = Bank 2 (100h - 17Fh) <u>11</u> = Bank 3 (180h - 1FFh)												
bit 4	TO: Timeout bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT timeout occurred												
bit 3		-down bit ower-up or t cution of the	•		on								
bit 2		sult of an ari sult of an ari		• •	on is zero on is not zero								
bit 1	is reversed 1 = A carry	l) /-out from th	e 4th low or	rder bit of th	BLW, SUBWF ins e result occurre he result		for borrow t	the polarity					
bit 0	 0 = No carry-out from the 4th low order bit of the result C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 												
	 Note 1: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 												
	Legend:												
	R = Reada -n = Value			Vritable bit Bit is set	U = Unimple '0' = Bit is c		it, read as ' x = Bit is ui						

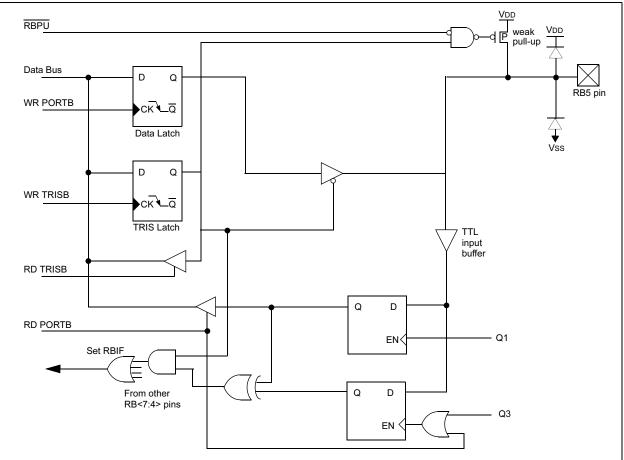
3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 3-3: INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)													
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x					
	GIE PEIE TOIE INTE RBIE TOIF INTF												
	bit 7												
bit 7	GIE: Global Interrupt Enable bit												
		s all unmas es all interru	•	ots									
bit 6	PEIE: Peri	oheral Interr	upt Enable	bit									
		s all unmas es all periph			S								
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit									
		s the TMR0 es the TMR0											
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit									
		s the RB0/II es the RB0/I											
bit 3	RBIE: RB I	Port Change	e Interrupt E	nable bit									
		s the RB po es the RB po											
bit 2	TOIF: TMR	0 Overflow	nterrupt Fla	ag bit									
		register has register did			eared in softwa	are)							
bit 1	INTF: RB0	/INT Externa	al Interrupt	Flag bit									
		30/INT exter 30/INT exter		•	must be cleare	d in softwaı	e)						
bit 0	RBIF: RB I	Port Change	Interrupt F	lag bit									
		at least one of the RB7:R			nanged state (n state	nust be clea	ared in softw	vare)					
	Levendu							1					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


3.2.2.4 PIE1 Register

This register contains interrupt enable bits.

51ER 3-4:	PIET REGISTER (ADDRESS: 8Ch)												
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE					
	bit 7							bit 0					
bit 7		EEIE: EE Write Complete Interrupt Enable Bit											
		 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt 											
bit 6	CMIE: Com	parator Inte	errupt Enab	le bit									
		 1 = Enables the comparator interrupt 0 = Disables the comparator interrupt 											
bit 5	RCIE: USA	RT Receive	e Interrupt E	Enable bit									
	1 = Enables 0 = Disable												
bit 4	TXIE: USAF	RT Transmi	t Interrupt E	Enable bit									
	1 = Enables 0 = Disable												
bit 3	Unimpleme	ented: Rea	d as '0'										
bit 2	CCP1IE: CO	CP1 Interru	pt Enable b	oit									
	1 = Enables 0 = Disable												
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enable	e bit								
				itch interrupt atch interrup									
bit 0	TMR1IE: T	MR1 Overfle	ow Interrup	t Enable bit									
	1 = Enables	s the TMR1	overflow in	nterrupt									
	0 = Disables the TMR1 overflow interrupt												
	Legend:												
	R = Readat	ole bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '	D'					
	-n = Value a	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown					

REGISTER 3-4: PIE1 REGISTER (ADDRESS: 8Ch)

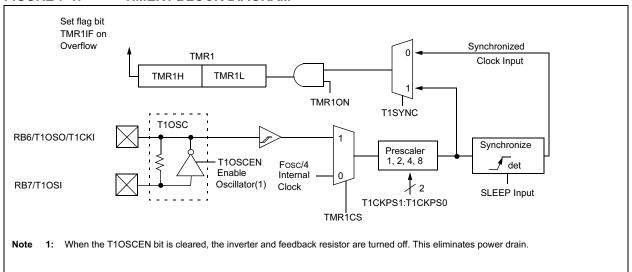
7.1 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

7.2 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on pin RB7/T1OSI when bit T1OSCEN is set or pin RB6/T1OSO/T1CKI when bit T1OSCEN is cleared.

If TISYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.


In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

7.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in Synchronized Counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifications, parameters 40, 42, 45, 46, and 47.

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

© 2003 Microchip Technology Inc.

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1											
	module will not set interrupt flag bit											
	TMR1IF	(PIR	1<0>).								

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	I	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	I	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	egister for	the Least Sig	gnificant Byte	of the 16-bit	TMR1 regist	er		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	Holding register for the Most Significant Byte of the 16-bit TMR1 register								uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

REGISTER 8-1:														
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0						
	bit 7							bit 0						
bit 7	Unimplemented: Read as '0'													
bit 6-3	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits													
	0000 = 1:1	0000 = 1:1 Postscale Value												
	0001 = 1:2	0001 = 1:2 Postscale Value												
	•													
	•													
	1111 = 1:1	6 Postscale												
bit 2	TMR2ON:	Timer2 On bi	it											
	1 = Timer2	is on												
	0 = Timer2	is off												
bit 1-0	T2CKPS1:	T2CKPS0: T	imer2 Clock	Prescale Se	lect bits									
	00 = 1:1 P	rescaler Valu	е											
		rescaler Valu	-											
	1x = 1:16	Prescaler Val	ue											
														
	Legend:													

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

W = Writable bit

U = Unimplemented bit, read as '0'

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

R = Readable bit

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Period Register									1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

EXAMPLE 10-1: VOLTAGE REFERENCE CONFIGURATION

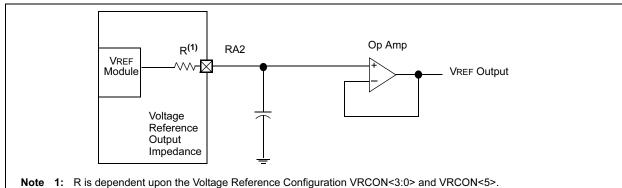
MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x07	; RA3-RA0 are
MOVWF	TRISA	; outputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank 0
CALL	DELAY10	; 10µs delay

10.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 10-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the Voltage Reference can be found in Table 17-2.

10.3 Operation During SLEEP

When the device wakes-up from SLEEP through an interrupt or a Watchdog Timer timeout, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.


10.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

10.5 Connection Considerations

The Voltage Reference module operates independently of the Comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

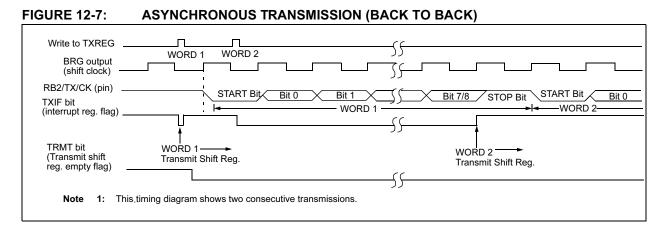
The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 10-2 shows an example buffering technique.

FIGURE 10-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Note 1: — = Unimplemented, read as '0'.


NOTES:

BAUD	Fosc = 20 M	Hz		16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	NA	_		NA	_	_
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA	_	_	NA	_	_
300	312.5	+4.17%	0	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	312.5	_	0	250	_	0	156.3	_	0
LOW	1.221	—	255	0.977		255	0.6104		255

TABLE 12-4:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH=0)
-------------	------------------------------------	---------

BAUD	Fosc = 7.15909 MHz		SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_	_	79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA		_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2	_	0	62.500	_	0
LOW	0.437	—	255	0.3094		255	3.906		255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	_	_
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	_	_
9.6	9.322	-2.90%	5	NA	_	_	NA	_	_
19.2	18.64	-2.90%	2	NA	_	_	NA	_	_
76.8	NA	_	_	NA	_	_	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
LOW	0.2185	_	255	0.0610	_	255	0.0020	_	255

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	N SPBRG Baud Rate Generator Register										0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

12.3 USART Function

The USART function is similar to that on the PIC16C74B, which includes the BRGH = 1 fix.

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed so when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer. The ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if, and only, if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

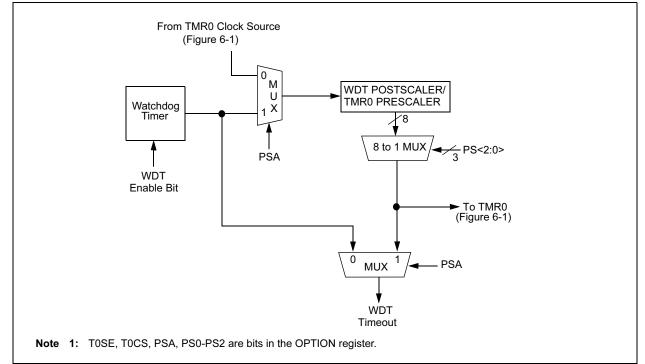
When ADEN is enabled (='1'), all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = '1'). When ADEN is disabled (='0'), all data bytes are received and the 9th bit can be used as the PARITY bit.

The USART Receive Block Diagram is shown in Figure 12-8.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Steps to follow when setting up an Asynchronous or Synchronous Reception with Address Detect Enabled:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable asynchronous or synchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. Set bit RX9 to enable 9-bit reception.
- 5. Set ADEN to enable address detect.
- 6. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 9. If any error occurred, clear the error by clearing enable bit CREN if it was already set.
- If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR			e on other ETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000	0000	0000	0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG Baud Rate Generator Register										0000	0000	0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

FIGURE 14-16: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-10: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	LVP	BODEN	MCLRE	FOSC2	PWRTE	WDTE	FOSC1	FOSC0	uuuu uuuu	uuuu uuuu
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: -= Unimplemented location, read as "0", + = Reserved for future use

Note 1: Shaded cells are not used by the Watchdog Timer.

14.9 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators, and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated				
	by a WDT timeout does not drive MCLR				
	pin low.				

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine		
Syntax:	[label] BTFSS f,b	Syntax:	[<i>label</i>] CALL k		
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$		
	0 ≤ b < 7	Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>		
Operation:	skip if (f) = 1				
Status Affected:	None	Status Affected:	None		
Encoding:	01 11bb bfff	TITI Croading	10 0kkk kkkk kkkk		
Description:	If bit 'b' in register 'f' is '1' next instruction is skipped If bit 'b' is '1', then the nex instruction fetched during current instruction execut discarded and a NOP is ex instead, making this a two instruction.	the ion, is xecuted	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle		
Words:	1		instruction.		
Cycles:	1 ⁽²⁾	Words:	1		
Example	HERE BTFSS REG1	Cycles:	2		
	FALSE GOTO PROCE TRUE •	SS_CODE Example	HERE CALL THERE		
	•		Before Instruction PC = Address HERE		
	• Before Instruction PC = address After Instruction if FLAG<1> = 0,		After Instruction PC = Address THERE TOS = Address HERE+1		
	PC = address if FLAG<1> = 1,	FALSE CLRF	Clear f		
	PC = address	TRUE Syntax:	[label] CLRF f		
		Operands:	$0 \le f \le 127$		
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
		Status Affected:	7		

Status Affected:	Z			
Encoding:	00	0001	lfff	ffff
Description:	The contents of register 'f' are cleared and the Z bit is set.			
Words:	1			
Cycles:	1			
Example	CLRF	REG1		
	R After In	Instructic REG1 = struction REG1 =	= 0x5A	

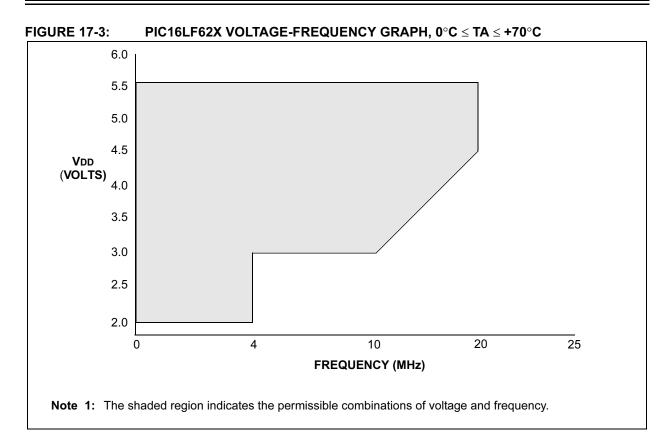
16.14 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include analog input, push button switches and eight LEDs.

16.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

16.16 PICDEM 2 Plus Demonstration Board


The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

16.17 PICDEM 3 PIC16C92X Demonstration Board


The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

16.18 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

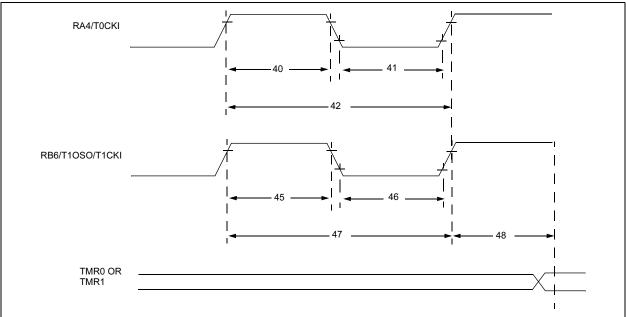
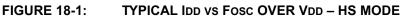
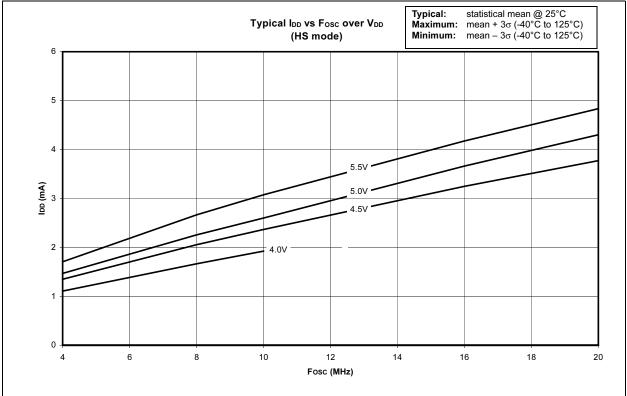
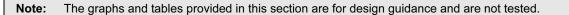


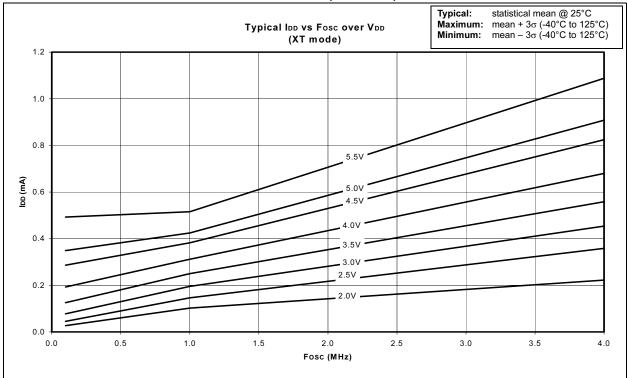
FIGURE 17-4: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA < 0°C, +70°C < TA \leq 85°C

© 2003 Microchip Technology Inc.




18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


In some graphs or tables, the data presented is outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.


The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'max or min.' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

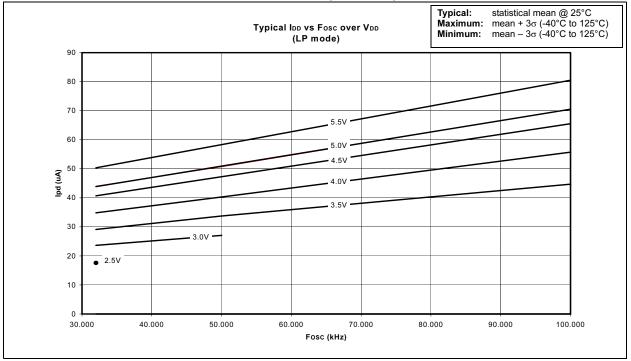


FIGURE 18-4: TYPICAL IDD vs Fosc OVER VDD (XT MODE)

