

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)
PIC16F627	3.0 - 5.5	(Note 1)	0.7
PIC16F628	3.0 - 5.5	(Note 1)	0.7
PIC16LF627	2.0 - 5.5	(Note 1)	0.7
PIC16LF628	2.0 - 5.5	(Note 1)	0.7
Note 1: If you change from the application.	is device to another devic	e, please verify oscillator cha	aracteristics in your

1.0 PIC16F62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F62X Product Identification System section (Page 167) at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

1.1 FLASH Devices

FLASH devices can be erased and reprogrammed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically-erasable FLASH is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus, or PRO MATE[®] II programmers.

1.2 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are standard FLASH devices but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

1.3 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN	—	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	—	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	—	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	—	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	—	Input port
	MCLR	ST	_	Master clear
	VPP	_	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST		External clock source input. ER biasing pin.
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	—	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port.
	TX	_	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM I/O
Legend: O = Output — = Not used TTL = TTL Inpu		I = In	MOS Output put pen Drain Outp	P = Power ST = Schmitt Trigger Input AN = Analog

TABLE 2-1: PIC16F62X PINOUT DESCRIPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 2											
100h	INDF	Addressin ister)	g this locatior	n uses cont	ents of FSF	to address	s data mem	ory (not a pl	hysical reg-	XXXX XXXX	25
101h	TMR0	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	43
102h	PCL	Program 0	Counter's (PC) Least Sig	nificant Byt	e				0000 0000	25
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
104h	FSR	Indirect da	ata memory a	ddress poir	nter	1	1			xxxx xxxx	25
105h	_	Unimplem	ented							_	_
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	34
107h	_	Unimplem	ented		•		•			_	_
108h	_	Unimplem	ented								_
109h	_	Unimplem	ented							_	_
10Ah	PCLATH		_	_	Write	buffer for u	pper 5 bits o	of program of	counter	0 0000	25
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
10Ch	_	Unimplem	ented							_	_
10Dh	_	Unimplem	ented							_	_
10Eh	_	Unimplem	ented							_	_
10Fh	_	Unimplem	ented							_	_
110h	_	Unimplem	ented							_	_
111h	_	Unimplem	ented							_	_
112h	_	Unimplem	ented							_	_
113h	_	Unimplem	ented							_	_
114h	_	Unimplem	ented							_	_
115h	_	Unimplem	ented							_	_
116h	_	Unimplem	ented								_
117h	—	Unimplem	ented								_
118h	—	Unimplem	ented								_
119h	—	Unimplem	ented								_
11Ah	_	Unimplem	ented								—
11Bh	_	Unimplem	ented								—
11Ch	_	Unimplem	ented							_	—
11Dh	_	Unimplem	ented							_	—
11Eh	_	Unimplem	ented							_	—
11Fh	—	Unimplem	ented							_	_

TABLE 3-3: SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented.

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 3-3:		REGISTER	(ADDRES	S: 0Bh, 8	Bh, 10Bh, 18	Bh)		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	T0IE	RBIE	T0IF	INTF	RBIF	
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
		s all unmas es all interru	•	ots				
bit 6	PEIE: Peri	oheral Interr	upt Enable	bit				
		s all unmas es all periph			S			
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit				
		s the TMR0 es the TMR0						
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit				
		s the RB0/II es the RB0/I						
bit 3	RBIE: RB I	Port Change	e Interrupt E	nable bit				
		s the RB po es the RB po						
bit 2	TOIF: TMR	0 Overflow	nterrupt Fla	ag bit				
		register has register did			eared in softwa	are)		
bit 1	INTF: RB0	/INT Externa	al Interrupt	Flag bit				
		30/INT exter 30/INT exter		•	must be cleare	d in softwaı	e)	
bit 0	RBIF: RB I	Port Change	Interrupt F	lag bit				
		at least one of the RB7:R			nanged state (n state	nust be clea	ared in softw	vare)
	Levendu							1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Detect.

Note: BOD is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOD is cleared, indicating a brown-out has occurred. The BOD STATUS bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 3-6: PCON REGISTER (ADDRESS: 0Ch)

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	_	—	—	OSCF	_	POR	BOD
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 OSCF: INTRC/ER oscillator frequency
 - 1 = 4 MHz typical⁽¹⁾
 - 0 = 37 KHz typical
- bit 2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset STATUS bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect STATUS bit

- 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)
 - **Note 1:** When in ER Oscillator mode, setting OSCF = 1 will cause the oscillator frequency to change to the frequency specified by the external resistor.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2003 Microchip Technology Inc.

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The spe	The special event triggers from the CCP1											
	module will not set interrupt flag bit												
	TMR1IF	(PIR	1<0>).									

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	I	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	I	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	egister for	the Least Sig	gnificant Byte	of the 16-bit	TMR1 regist	er		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	Holding register for the Most Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

BAUD	Fosc = 20 M	Hz		16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	NA	_		NA	_	
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA	_	_	NA	_	_
300	312.5	+4.17%	0	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	312.5	_	0	250	_	0	156.3	_	0
LOW	1.221	—	255	0.977		255	0.6104		255

TABLE 12-4:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH=0)
-------------	------------------------------------	---------

BAUD	Fosc = 7.15	909 MHz	SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_	_	79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA		_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2	_	0	62.500	_	0
LOW	0.437	_	255	0.3094		255	3.906		255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	_	_
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	_	_
9.6	9.322	-2.90%	5	NA	_	_	NA	_	_
19.2	18.64	-2.90%	2	NA	_	_	NA	_	_
76.8	NA	_	_	NA	_	_	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
LOW	0.2185	_	255	0.0610	_	255	0.0020	_	255

REGISTER 13-2:	: EECON1 REGISTER (ADDRESS: 9Ch)									
	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-x		
	—	_	_	—	WRERR	WREN	WR	RD		
	bit 7							bit 0		
bit 7-4	Unimpleme	Unimplemented: Read as '0'								
bit 3	WRERR: E	WRERR: EEPROM Error Flag bit								
	normal	 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOD Reset) 0 = The write operation completed 								
bit 2	WREN: EE	WREN: EEPROM Write Enable bit								
	1 = Allows 0 = Inhibits			ROM						
bit 1	WR: Write	Control bit								
	can onl	y be set (no	ot cleared) ii		y hardware onc ete	e write is c	complete. T	he WR bit		
bit 0	RD: Read (Control bit								
	 1 = Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software). 0 = Does not initiate an EEPROM read 									
	Legend:									
	R = Readal	ole bit	W = V	Vritable bit	U = Unimple	emented bi	it, read as '(D'		
	-n = Value a	at POR	'1' = B	lit is set	'0' = Bit is c	leared	x = Bit is ur	nknown		

14.5.5 TIMEOUT SEQUENCE

On power-up the timeout sequence is as follows: First PWRT timeout is invoked after POR has expired. Then OST is activated. The total timeout will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in ER mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no timeout at all. Figure 14-8, Figure 14-9 and Figure 14-10 depict timeout sequences.

Since the timeouts occur from the POR pulse, if MCLR is kept low long enough, the timeouts will expire. Then bringing MCLR high will begin execution immediately (see Figure 14-9). This is useful for testing purposes or to synchronize more than one PIC16F62X device operating in parallel.

Table 14-7 shows the RESET conditions for some special registers, while Table 14-8 shows the RESET conditions for all the registers.

14.5.6 POWER CONTROL (PCON) STATUS REGISTER

The Power Control/STATUS register, PCON (address 8Eh) has two bits.

Bit0 is \overline{BOD} (Brown-out). \overline{BOD} is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{BOD} = 0$ indicating that a brown-out has occurred. The \overline{BOD} STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Detect	Wake-up	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Reset	from SLEEP	
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
ER, INTRC, EC	72 ms	_	72 ms	—	

TABLE 14-4: TIMEOUT IN VARIOUS SITUATIONS

IABLE 14	TABLE 14-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE							
POR	BOD	то	PD					
0	Х	1	1	Power-on Reset				
0	х	0	х	Illegal, TO is set on POR				
0	х	х	0	Illegal, PD is set on POR				
1	0	Х	Х	Brown-out Detect Reset				
1	1	0	u	WDT Reset				
1	1	0	0	WDT Wake-up				
1	1	u	u	MCLR Reset during normal operation				
1	1	1	0	MCLR Reset during SLEEP				

TABLE 14-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

Legend: u = unchanged, x = unknown.

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_	_	_	-	OSCF	Reset	POR	BOD	1-0x	u-uq

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect Reset and Watchdog Timer Reset during normal operation.

BCF	Bit Clear f	BTFSC	Bit Test f, Skip if Clear			
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0			
Status Affected:	None	Status Affected:	None			
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff			
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0' then the			
Words:	1		next instruction is skipped. If bit 'b' is '0' then the next			
Cycles:	1		instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.			
Example	BCF REG1, 7					
	Before Instruction REG1 = 0xC7 After Instruction					
	REG1 = 0x47	Words:	1			
		Cycles:	1 ⁽²⁾			
BSF	Bit Set f	Example	HERE BTFSC REG1 FALSE GOTO PROCESS_CODE			
Syntax:	[<i>label</i>]BSF f,b		TRUE •			
Operands:	$0 \le f \le 127$		•			
	$0 \le b \le 7$		Before Instruction			
Operation:	$1 \rightarrow (f \le b >)$		PC = address HERE After Instruction			
Status Affected:	None		if REG<1> = 0,			
Encoding:	01 01bb bfff ffff		PC = address TRUE			
Description:	Bit 'b' in register 'f' is set.		if REG<1>=1,			
Words:	1		PC = address FALSE			
Cycles:	1					

Example

BSF

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

CLRW	Clear W					COMF
Syntax:	[label]	CLRW			I	Syntax
Operands:	None					Opera
Operation:	$\begin{array}{l} 00h \rightarrow (V) \\ 1 \rightarrow Z \end{array}$	W)				Operat
Status Affected:	Z					Status
Encoding:	00	0001	0000	0011		Encod
Description:	W regist (Z) is set		ared. Zer	o bit	I	Descri
Words:	1					
Cycles:	1					
Example	CLRW					Words
	Before In					Cycles
	After Ins V	V = 0x truction V = 0x Z = 1				Examp

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	$(\overline{f}) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00 1001 dfff ffff				
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	COMF REG1, 0				
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC				

CLRWDT	Clear Watchdog Timer	DECF	Decrement f
Syntax:	[label] CLRWDT	Syntax:	[<i>label</i>] DECF f,d
Operands:	None	Operands:	$0 \leq f \leq 127$
Operation:	$00h \rightarrow WDT$		d ∈ [0,1]
	$0 \rightarrow \frac{\text{WDT}}{\text{TO}}$ prescaler,	Operation:	(f) - 1 \rightarrow (dest)
	$1 \rightarrow TO$ $1 \rightarrow PD$	Status Affected:	Z
Status Affected:	TO, PD	Encoding:	00 0011 dfff ffff
Encoding: Description:	00000001100100CLRWDT instruction resets the Watchdog Timer. It also resets	Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
	the prescaler of the WDT. STATUS bits TO and PD are set.	Words:	1
Words:	1	Cycles:	1
Cycles:	1	Example	DECF CNT, 1
Example	CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1		Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1

INCF	Increment f	INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d $0 \le f \le 127$ $d \in [0,1]$			
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:				
Operation:	(f) + 1 \rightarrow (dest)	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	Z	Status Affected:	None			
Encoding:	00 1010 dfff ffff	Encoding:	00 1111 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already			
Words:	1					
Cycles:	1 fetched, is discarded.					
Example	INCF REG1, 1		executed instead making it a			
	Before Instruction		two-cycle instruction.			
	REG1 = 0xFF $Z = 0$ After Instruction $REG1 = 0x00$ $Z = 1$	Words:	1			
		Cycles:	1 ⁽²⁾			
		Example	HERE INCFSZ REG1, 1 GOTO LOOP CONTINUE • • •			
			Before Instruction PC = address HERE			

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

-

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - (W) \rightarrow (dest)			
Status Affected:	C, DC, Z			
Encoding:	00 0010 dfff ffff			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example 1:	SUBWF REG1, 1			
	Before Instruction REG1 = 3 $W = 2$ $C = ?$ After Instruction REG1 = 1 $W = 2$ $C = 1; result is positive$ $Z = DC = 1$			
Example 2:	Before Instruction			
	REG1 = 2 W = 2 C = ?			
	After Instruction			
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1			
Example 3:	Before Instruction			
	REG1 = 1 W = 2 C = ?			
	After Instruction			
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$			

SWAPF Swap Nibbles in f					
Syntax:	[label] SWAPF f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)				
Status Affected:	None				
Encoding:	00 1110 dfff ffff				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.				
Words:	1				
Cycles:	1				
Example	SWAPF REG1, 0				
Before Instruction REG1 = 0xA5					
	REG1 = 0xA5 W = 0x5A				
TRIS	Load TRIS Register				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \le f \le 7$				
Operation:	$(W) \rightarrow TRIS$ register f;				
Status Affected:	None				
Encoding:	00 0000 0110 0fff				
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
To maintain upward compatibility with future PICmicro [®] products, do not use this instruction.					

16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

16.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

16.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

Param No.	Sym	Characteristic		Min	Тур†	Max	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓	16F62X	—	75	200	ns
10A*			16LF62X	—		400	ns
11*	TosH2ckH	OSC1↑ to CLKOUT↑	16F62X	—	75	200	ns
11A*			16LF62X	—	_	400	ns
12*	TckR	CLKOUT rise time	16F62X	—	35	100	ns
12A*			16LF62X	—	_	200	ns
13*	TckF	CLKOUT fall time	16F62X	—	35	100	ns
13A*			16LF62X	—	_	200	ns
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	20	ns
15* TioV2c	TioV2ckH	Port in valid before	16F62X	Tosc+200 ns	_	—	ns
		CLKOUT ↑	16LF62X	Tosc=400 ns		—	ns
16*	TckH2iol	Port in hold after CLKOUT ↑		0			ns
17*	TosH2ioV	OSC1↑ (Q1 cycle) to	16F62X	—	50	150*	ns
		Port out valid	16LF62X	—		300	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)		100 200	_	—	ns

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-14: Alcomp vs VDD SLEEP MODE, COMPARATORS ENABLED

