

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627t-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.2.2.1 STATUS Register

The STATUS register, shown in Register 3-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory (SRAM).

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects affect any the Z, DC or C bits, then the write to these three bits is Summary.

disabled. These bits are set <u>or cleared according</u> to the device logic. Furthermore, the Tand PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, **CLRF STATUS** will clear the upper-three bits and set the Z bit. This leaves the STATUS register as **000uu1uu** (where**u** = unchanged).

It is recommended, therefore, that **BCF BSF SAPF** and **MOVF** instructions are used to alter the STATUS register because these instructions do not affect any STATUS bit. For other instructions, not affecting any STATUS bits, see the Instruction Set

Note 1: The <u>C</u> and <u>DC</u> bits operate as a Borrow and <u>Digit</u> Borrowout bit, respectively, in subtraction. See th**SUBL** and **SUBF** instructions for examples.

REGISTER 3-1: STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-O	R/W-O	R/W-O	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RPO	TO	PD	Z	DC	С
	bit 7							bit O
bit 7	IRP: Regis 1 = Bank 2 0 = Bank (ter Bank Se 2, 3 (100h 0, 1 (00h -	elect bit (u - 1FFh) FFh)	used for ind	direct address	ing)		
it 6-5	RP1:RP0: 00 = Bank 01 = Bank 10 = Bank 11 = Bank	Register Ba 0 (00h - 7 1 (80h - F 2 (100h - 3 (180h -	ank Select 7Fh) Fh) 17Fh) 1FFh)	bits (used	for direct add	Iressing)		
oit 4	TO: Timeo 1 = After 0 = A WDT	ut bit power-u ß,L F timeout c	RDT instr	uction, 🕄	EEP instructio	n		
it 3	PD : Power 1 = After 0 = By exe	r-down bit power-up c ecution of	or by Cl eri I S4.EEP ins	DT instruc	tion			
it 2	Z: Zero bit 1 = The re 0 = The re	sult of an esult of an	arithmetic arithmetic	or logic o or logic o	peration is zer peration is no	o t zero		
vit 1	 DC: Digit of is reversed 1 = A carr 0 = No car 	carry/borro d) ry-out from rry-out frou	boit ADDF , the 4th lo m the 4th	ADDLSUB	LSUBF ins it of the resul bit of the res	structions) t occurred ult	(for borr b h	ne polarity
it O	C: Carry/b 1 = A carr 0 = No car Note 1: F	oorrovoit AL y-out from rry-out from or borrowt complement	DDF , ADDL the Most m the Mos he polarity of the se	SUBLSUB Significan st Significa is reverse cond opera	F instruct t bit of the re nt bit of the r d. A subtracti and. For rot RR	ions) sult occurr esult occur on is execu F (RLF) ins	ed red ited by adc structions,	ling the two this bit is
	legend:	baded with	either the	e high or lo	w order bit of	the source	e register.]
	R = Reada	ble bit	W =	Writable b	it U = Uni	mplemente	d bit, read	as O
	-n = Value	at POR	1 =	Bit is set	0 = E	Bit is cleare	d x = B	it is unknov

FIGURE 5-6:

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

© 2003 Microchip Technology Inc.

TABLE 5-3: PU	RIBFUN	CHONS	1	
Name	Function	Input Type	Output Type	Description
RBO/INT	RBO	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST		External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	RX	ST		USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	ТΧ		CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	PGM	ST		Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Car be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10S0		XTAL	Timer1 Oscillator Output
	T1CKI	ST		Tmer1 Clock Input
	PGC	ST		I¢SP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SI	XTAL		Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Ou = Not TTL = TTL	itput used Input	C I OD	CMOS = CM = Inpu = Oper	IOS OutputP = PowertST = Schmitt Trigger InputDrain OutputAN = Analog

TABLE 5-3:PORTB FUNCTIONS

 TABLE 5-4:
 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 I	Bit 2 E	it1 B	it O	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	սսսս սսս	u
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown

Note 1: Shaded bits are not used by PORTB.

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will = 1011), this signal will reset Timer1.

continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP **Trigger Output**

If the CCP1 module is configured in Compare mode to generate a special event trigger (CCP1M3:CCP1M0

Note:	The specia	al event	triggei	rs from th	ne CC	P1
	module v	vill not	set	interrupt	flag	bit
	TMR1IF (P	9IR1<0>).				

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to OOh on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER TABLE 7-2:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 I	Bit 1	∋it O	Value on POR	Value on all other RESETS
0Bh8Bh 10Bh18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000 0	000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 000 0	000 000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 000 0	000 000
0Eh	TMR1L	Holding	Holding register or the Least Signiicant Byte o the 16it TMR1 register							սսսս սսս	u
0Fh	TMR1H	Holding	olding register or the Most Signiicant Byte o the 16it TMR1 register uuuu uuu							u	
10h	T1CON		-	1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000 uu	uuuu

Legend: = unknown,u = unchanged, = unimplemented read as 0. Shaded cells are not used y the Timer1 module. The code example in Example 9-1 depicts the steps required to configure the Comparator module. RA3 and RA4 are configured as digital output. RAO and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 9-1: INITIALIZING COMPARATOR MODULE

EU	0X20
FLAGREG	Init flag register
PORTA	Init PORTA
CMCON	Load comparator its
0C0	Mask comparator its
FLAGREGF	Store its in flag register
003	Init comparator mode
CMCON	CM2:0 = 011
STATUSRP0	Select Bank1
007	Initialize data direction
TRISA	Set RA2:0 as inputs
	RA4:3 as outputs
	TRISA7:5 always read 0
STATUSRP0	Select Bank 0
DELAY10	10 s delay
CMCONF	Read CMCOL den dchang econdition
PIR1CMIF	Clear pending interrupts
STATUSRP0	Select Bank 1
PIE1CMIE	Enale comparator interrupts
STATUSRP0	Select Bank 0
INTCONPEIE	Enale peripheral interrupts
INTCONGIE	Gloal interrupt enale
	G EU FLAGREG PORTA CMCON 0C0 FLAGREGF 003 CMCON STATUSRP0 007 TRISA STATUSRP0 DELAY10 CMCONF PIR1CMIF STATUSRP0 PIE1CMIE STATUSRP0 INTCONPEIE INTCONGIE

9.2 Comparator Operation

A single comparator is shown in Figure 9-2 along with the relationship between the analog input levels and the digital output. When the analog inputNatiV less than the analog inputN, the output of the comparator is a digital low level. When the analog inputINAT MS greater than the analog inputIN-V the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 9-2 represent the uncertainty due to input offsets and response time.

9.3 Comparator Reference

An external or internal reference signal may be used depending on the Comparator Operating mode. The analog signal that is present ant-Vs compared to the signal at Vn+, and the digital output of the comparator is adjusted accordingly (Figure 9-2).

FIGURE 9-2:

SINGLE COMPARATOR

9.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be betweess Vand VbD, and can be applied to either pin of the comparator(s).

9.3.2 INTERNAL REFERENCE SIGNAL

The Comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 10.0, Voltage Reference Manual, contains a detailed description of the Voltage Reference module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:O>=010 (Figure 9-1). In this mode, the internal voltage reference is applied to the Voltage reference.

9.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise the maximum delay of the comparators should be used (Table 17-1).

11.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 11-1: PWM DUTY CYCLE

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) Tosc (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 , concatenated with an internal 2-bit Q clock or 2 bits of `the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

EQUATION 11-2: MAXIMUM PWM RESOLUTION

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

For an example on the PWM period and duty cycle calculation, see the PICmicro Mid-Range Reference Manual (DS33023).

11.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	OxFF	OxFF	OxFF	Ox3F	Ox1F	Ox17
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 11-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Value on POR	Value on all other RESETS
0Bh8Bh 10Bh18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000 0	000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 000 0	000 000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 000 0	000 000
87h	TRISB	PORTB D	ata Directi	on Register						1111 1111	1111 1111
11h	TMR2	Timer2 m	odules reg	ister						0000 0000	0000 0000
92h	PR2	Timer2 m	odules per	iod register						1111 1111	1111 1111
12h	T2CON	т	OUTPS3 [·]	TOUTPS2	OUTPS1	TOUTPS0	TMR2ON	T2CKPS1	2CKPS0	000 0000	uuuu
15h	CCPR1L	CaptureC	CaptureComparePWM register1 (LSB)								u
16h	CCPR1H	CaptureC	CaptureComparePWM register1 (MSB)								u
17h	CCP1CON			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000 00	0000

Legend: = unknown,u = unchanged, = unimplemented read as 0. Shaded cells are not used y PWM and Timer2.

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 000 0	000 000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 00 00	00 00
19h	TXREG	USART Tra	nsmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 000 0	000 000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 010 0	000 010
99h	SPBRG	Baud Rate	Generato		0000 0000	0000 0000					

Legend: = unknown, = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

PIC16F62X

REGISTER 13-2:	EECON1 F	REGISTER	R (ADDRES	SS: 9Ch)		R/W-x R/W-0 WRERR WREN uny MCLR Reset, any ardware once write is vcle. RD is cleared in f U = Unimplemented t unimplemented t		
	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-x
		_	_	_	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7-4	Unimplem	ented: Rea	d as '0'					
bit 3	WRERR: E	EPROM Er	ror Flag bit					
	1 = A write normal 0 = The wr	operation is operation o ite operation	s premature or BOD Res n completed	ly terminate et) I	d (any MCLR F	Reset, any N	WDT Reset	during
bit 2	WREN: EE	PROM Writ	e Enable bi	t				
	1 = Allows 0 = Inhibits	write cycles write to the	s e data EEPF	ROM				
bit 1	WR: Write	Control bit						
	1 = Initiate: can on 0 = Write c	s a write cyo ly be set (no cycle to the o	cle. (The bit ot cleared) in data EEPRC	is cleared b n software. DM is compl	oy hardware ond ete	ce write is o	complete. T	he WR bit
bit 0	RD: Read (Control bit						
	1 = Initiate can on 0 = Does n	s an EEPRO ly be set (no lot initiate a	DM read (re ot cleared) in n EEPROM	ad takes on n software). read	e cycle. RD is c	leared in h	ardware. T	he RD bit
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '	0'
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is u	nknown

14.12 In-Circuit Serial Programming

The PIC16F62X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from N/ to VHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location OOh. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the Programming Specifications.

A typical in-circuit serial programming connection is shown in Figure 14-18.

FIGURE 14-18: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

14.13 Low Voltage Programming

The LVP bit of the configuration word, enables the low voltage programming. This mode allows the microcontroller to be programmed via ICSP using only a 5V source. This mode removes the requirement IBFI V obe placed on the MCLRpin. The LVP bit is normally erased to '1', which enables the low voltage programming. In this mode, the RB4/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. The device will enter Programming mode when a '1' is placed on the RB4/PGM pin. The HV Programming mode is still available by placimgHV on the MCLRpin.

Note 7	1: While in this mode, the RB4 pin can n	10
	longer be used as a general purpose /	0
	pin.	

2: VDD must be 5.0<u>V</u>10% during erase/ program operations while in low voltage Programming mode.

If Low voltage Programming mode is not used, the LVP bit can be programmed to a 'O', and RB4/PGM becomes a digital I/<u>O pin</u>. To program the devioted, V must be placed onto MCL&uring programming. The LVP bit may only be <u>programmed</u> when programming is entered with M4 on MCLR The LVP bit cannot be programmed when programming is entered with RB4/PGM.

It should be noted, that once the LVP bit is programmed to 0, High voltage Programming mode can be used to program the device.

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine
Syntax:	[<i>label</i>] BTFSS f,b	Syntax:	[<i>label</i>] CALL k
Operands:	0 f 127	Operands:	0 k 2047
	0 b < 7	Operation:	(PC)+ 1 TOS,
Operation:	skip if (f) = 1		k PC<10:0>, (PCLATH<4:3>) PC<12:11>
Status Affected	d: None	Status Affected	
Encoding:	01 11 ffff ffff	Encoding	
Description:	If bit 'b' in register 't' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and aNOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle
Words:	1	Manda	
Cycles:	1 ⁽²⁾	words:	
Example	HERE BTFSS REG1	Cycles:	
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE		PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE1
	if $FLAG<1> = 1$,	CLRF	Clear f
	PC = address TRUE	Syntax:	[label] CLRF f
		Operands:	0 f 127
		Operation:	OOh (f) 1 Z
		Status Affected	d: Z
		Encoding:	00 0001 1fff ffff
		Description:	The contents of register 'f' are cleared and the Z bit is set.
		Words:	1
		Cycles:	1
		Example	CLRF REG1
			Before Instruction REG1 = Ox5A After Instruction REG1 = OxOO Z = 1

	Demo Boards and Eval Kits Programmers Debugger Emulators Software Tools						10														
	MPLAB Integrated Development Environment	MPLAB C17 C Compiler	MPLAB C18 C Compiler	MPASM Assembler/ MPLINK Object Linker	MPLAB C30 C Compiler	MPLAB ASM30 Assembler/Linker/Librarian	MPLAB ICE 2000 In-Circuit Emulator	MPLAB ICE 4000 In-Circuit Emulator	MPLAB ICD 2 In-Circuit Debugger	PICSTART Plus Entry Level Development Programmer	PRO MATE II Universal Device Programmer	PICDEM 1 Demonstration Board	PICDEM.net Demonstration Board	PICDEM 2 Plus Demonstration Board	PICDEM 3 Demonstration Board	PICDEM 14A Demonstration Board	PICDEM 17 Demonstration Board	PICDEM 18R Demonstration Board	PICDEM LIN Demonstration Board	PICDEM USB Demonstration Board	contact the Microchip web site at w
PIC12CXXX	>			>			>	>		>	>										ww.micre
PIC12FXXX	>			>			>		>	>	>										ochip.co
PIC14000	>			>			>			>	>					>					im for in
PIC16C5X	>			>			>	>		>	>	>									formatic
X9C16C6X	>			>			>	>	* >	>	>			⁺,							in on ho
PIC16CXXX	>			>			>	>		>	>	>	<u> </u>	1		1			<u> </u>	1	w to use
PIC16C43X	>			>			>			>	>								>		the MP
PIC16F62X	>			>			**/			**^	**>										LAB ICD
X7281219	>			>			>	>	*^	>	>	∕†		^ +							In-Circu
XX20910Id	`			`` ``			· 、	>		`	>									-	uit Debu
6X1JðrJlq	`			`			`	>		`	<u> </u>	>									dger (D/
PIC16F8XX	``````````````````````````````````````	_		``````````````````````````````````````			``````````````````````````````````````		>	``````````````````````````````````````	<u>``</u>	`			_				>	>	/164001
PIC16C9XX	``````````````````````````````````````			>			`	>		>	<u>``</u>				>) with PI
X43713I9	>	>		>			>			>	>	>									C16C62
XX7371319	>	>		>			>	>		>	>						>				63, 64,
PIC18CXX2	>		>	>			>	>		>	>		>	>							65. 72. 7
P118CX01								>	>									>			73.74.7
PIC18FXXX	>		>	>			>	^	~	>	>			~							3. 77.
dsPIC30F					>	>		>	>												

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

DS40300C-page 126

FIGURE 17-4: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, -40 C TA 0 C, +70 C TA 85 C

17.3 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Z: TPPO								
Т								
F	Frequency	Т	Time					
Lowercase subscripts (pp) and their meanings:								
рр								
ck	CLKOUT	OSC	OSC1					
io	I/O port	tO	TOCKI					
mc	MCLR							
Uppercase	Uppercase letters and their meanings:							
S								
F	Fall	Р	Period					
Н	High	R	Rise					
I	Invalid (Hi-impedance)	V	Valid					
L	Low	Z	Hi-Impedance					

FIGURE 17-5: LOAD CONDITIONS

Note: The graphs and tables provided in this section are for design guidance and are not tested.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-16: MINIMUM, TYPICAL and MAXIMUM WDT PERIOD VS VDD (-40 C to +125 C)

© 2003 Microchip Technology Inc.