

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627t-20-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5
2.0	PIC16F62X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	15
5.0	I/O Ports	29
6.0	Timer0 Module	43
7.0	Timer1 Module	46
8.0	Timer2 Module	50
9.0	Comparator Module	53
10.0	Voltage Reference Module	59
11.0	Capture/Compare/PWM (CCP) Module	61
12.0	Universal Synchronous/Asynchronous Receiver/ Transmitter (USART) Module	67
13.0	Data EEPROM Memory	87
14.0	Special Features of the CPU	91
15.0	Instruction Set Summary	. 107
16.0	Development Support	. 121
17.0	Electrical Specifications	. 127
18.0	DC and AC Characteristics Graphs and Tables	. 143
19.0	Packaging Information	. 157

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

FIGURE 5-9: BLOCK DIAGRAM OF

9.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4/T0CK1 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 9-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4/T0CK1 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 9-3: COMPARATOR OUTPUT BLOCK DIAGRAM

10.0 VOLTAGE REFERENCE MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Figure 10-1. The block diagram is given in Figure 10-1.

10.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD

voltage of 1.25V with VDD = 5.0V.

if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 17-2). Example 10-1 shows an example of how to configure the Voltage Reference for an output

REGISTER 10-1:	VRCON REGISTER (ADDRESS: 9Fh)												
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	VREN	VROE	Vrr	_	VR3	VR2	VR1	VR0					
	bit 7	bit 7											
bit 7	Vren: Vre	F Enable											
	 1 = VREF circuit powered on 0 = VREF circuit powered down, no IDD drain 												
bit 6	VROE: VREF Output Enable												
	1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin												
bit 5	VRR: VREF Range selection												
	1 = Low Range 0 = High Range												
bit 4	Unimplemented: Read as '0'												
bit 3-0	Vr<3:0> : VREF value selection $0 \le Vr$ [3:0] ≤ 15 When Vrr = 1: VreF = (Vr<3:0>/ 24) * VDD When Vrr = 0: VreF = 1/4 * VDD + (Vr<3:0>/ 32) * VDD												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-1: VOLTAGE REFERENCE BLOCK DIAGRAM

NOTES:

FIGURE 12-9:	ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

RB1/RX/DT (PIN)START				
RCV SHIFT REG			((
RCV BUFFER REG	BIT8 = 0, DATA BYTE	BIT8 = 1, ADDRESS BYTE WORD 1		
READ RCV BUFFER REG RCREG	<u> </u>	S RCREG	<u> </u>	(
RCIF (INTERRUPT FLAG)			<u> </u>	¥
ADEN = 1 ^{'<u>1'</u> (ADDRESS MATCH ENABLE)}	<u>-</u>	<u></u> ;	<u> </u>	<u>'1'</u>
Note 1: This timing diagr (Receive Buffer)	am shows a data byte followed because ADEN = 1 and Bit 8 =	by an address byte. The data byte is no 0.	ot read into tl	he RCREG

FIGURE 12-10: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

FIGURE 12-11: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID DATA BYTE

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in Slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

1. Enable the synchronous master serial port by

setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART T	ransmit I	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	PBRG Baud Rate Generator Register									0000 0000

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive F	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

PIC16F62X

REGISTER 13-2:	EECON1 F	REGISTER	R (ADDRES	SS: 9Ch)									
	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-x					
		_	_	_	WRERR	WREN	WR	RD					
	bit 7							bit 0					
bit 7-4	Unimplem	ented: Rea	d as '0'										
bit 3	WRERR: E	WRERR: EEPROM Error Flag bit											
	1 = A write normal 0 = The wr	 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOD Reset) 0 = The write operation completed 											
bit 2	WREN: EE	WREN: EEPROM Write Enable bit											
	1 = Allows 0 = Inhibits	write cycles write to the	s e data EEPF	ROM									
bit 1	WR: Write	Control bit											
	1 = Initiate: can on 0 = Write c	s a write cyo ly be set (no cycle to the o	cle. (The bit ot cleared) in data EEPRC	is cleared b n software. DM is compl	oy hardware ond ete	ce write is o	complete. T	he WR bit					
bit 0	RD: Read (Control bit											
	 1 = Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software). 0 = Does not initiate an EEPROM read 												
	Legend:												
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '	0'					
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is u	nknown					

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS,	RP0	;	Bank 1
MOVLW	CONFIG_A	DDR	;	
MOVWF	EEADR		;	Address to read
BSF	EECON1,	RD	;	EE Read
MOVF	EEDATA,	W	;	W = EEDATA
BCF	STATUS,	RP0	;	Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

Required Sequence	BSF BSF MOVLW MOVWF MOVLW MOVWF BSF	STATUS, RP0 EECON1, WREN INTCON, GIE 55h EECON2 AAh EECCN2 EECON1,WR	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Bank 1 Enable write Disable INTs. Write 55h Write AAh Set WR bit begin write
	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOD)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. SLEEP
- 10. Code protection
- 11. ID Locations
- 12. In-circuit Serial Programming

The PIC16F62X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a Brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The ER oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h – 3FFFh), which can be accessed only during programming. See Programming Specification.

REGISTER 14-1: CONFIGURATION WORD

CP1	CP0	CP1	CP0	—	CPD	LVP	BODEN	MCLRE	FOSC2	PWRTE	WDTE	F0SC1	F0SC0	
bit 13													bit 0	
bit 13-10:	CP1: Code 11 = 10 = 01 = 00 =	CP1:CP0: Code Protection bits ⁽²⁾ Code protection for 2K program memory 11 = Program memory code protection off 10 = 0400h-07FFh code protected 01 = 0200h-07FFh code protected 00 = 0000h-07FFhcode protected Code protection for 1K program memory												
	Code protection for 1K program memory 11 = Program memory code protection off 10 = Program memory code protection off 01 = 0200h-03FFh code protected 00 = 0000h-03FFh code protected													
bit 9:	Unim	plemented	: Read as	'0'										
bit 8:	CPD: 1 = D 0 = D	Unimplemented: Read as '0' CPD: Data Code Protection bit ⁽³⁾ 1 = Data memory code protection off 0 = Data memory code protected												
bit 7:	LVP : 1 = R 0 = R	 a = Data memory code protected LVP: Low Voltage Programming Enable 1 = RB4/PGM pin has PGM function, low voltage programming enabled a = RB4/PGM is divital VO_HV on MCLR must be used for programming 												
bit 6:	BOD 1 = B 0 = B	EN: Brown- OD Reset o OD Reset o	out Detect enabled disabled	Reset Ena	ble bit ⁽¹⁾									
bit 5:	MCLI 1 = R 0 = R	RE: RA5/M A5/MCLR A5/MCLR	CLR pin fur oin function oin function	nction select is MCLR is digital Ir	ot nput, MCLF	R internally	tied to VDD							
bit 3:	PWR 1 = P 0 = P	TEN: Powe WRT disab WRT enab	er-up Timer Ied Ied	Enable bit	(1)									
bit 2:	WDT 1 = W 0 = W	EN : Watcho VDT enable VDT disable	dog Timer E d ed	Enable bit										
bit 4, 1-0:	FOSC 111 = 110 = 101 = 011 = 010 = 010 = 001 = 000 =	FOSC2:FOSC0: Oscillator Selection bits ⁽⁴⁾ 111 = ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN 110 = ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN 101 = INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 100 = INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 101 = EC: I/O function on RA6/OSC2/CLKOUT pin, L/C function on RA7/OSC1/CLKIN 011 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN 010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 011 = LC: I/O function: On RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 012 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 013 = LB oscillator: Low prover crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN												
	Note	1: Ena Ens 2: All d 3: The 4: Wh	abling Brow sure the Po of the CP1: e entire data en MCLR is	n-out Deter wer-up Tim CP0 pairs I a EEPROM s asserted i	ct Reset au ler is enabl have to be I will be era in INTRC o	itomatically ed anytime given the s ised when ir ER mode	v enables P Brown-out ame value the code pr e, the interna	ower-up Ti Detect Re- to enable t otection is al clock oso	mer (PWR ⁻ set is enab he code pro turned off. cillator is di	 F) regardles led. otection scl sabled. 	ss of the va	lue of bit F	WRTE.	
Legend														

-n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
	-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown				

-

FIGURE 14-2: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-3 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-3: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 EXTERNAL CLOCK IN

For applications, where a clock is already available elsewhere, users may directly drive the PIC16F62X provided that this external clock source meets the AC/DC timing requirements listed in Section 17.4. Figure 14-4 shows how an external clock circuit should be configured.

14.2.5 ER OSCILLATOR

For timing insensitive applications, the ER (External Resistor) Clock mode offers additional cost savings. Only one external component, a resistor to VSs, is needed to set the operating frequency of the internal oscillator. The resistor draws a DC bias current which controls the oscillation frequency. In addition to the resistance value, the oscillator frequency will vary from unit to unit, and as a function of supply voltage and temperature. Since the controlling parameter is a DC current and not a capacitance, the particular package type and lead frame will not have a significant effect on the resultant frequency.

Figure 14-5 shows how the controlling resistor is connected to the PIC16F62X. For REXT values below 10k, the oscillator operation becomes sensitive to temperature. For very high REXT values (e.g., 1M), the oscillator becomes sensitive to leakage and may stop completely. Thus, we recommend keeping REXT between 10k and 1M.

Table 14-3 shows the relationship between the resistance value and the operating frequency.

TABLE 14-3: RESISTANCE AND FREQUENCY RELATIONSHIP

Resistance	Frequency
0	10.4 MHz
1K	10 MHz
10K	7.4 MHz
20K	5.3 MHz
47K	3 MHz
100K	1.6 MHz
220K	800 kHz
470K	300 kHz
1M	200 kHz

The ER Oscillator mode has two options that control the unused OSC2 pin. The first allows it to be used as a general purpose I/O port. The other configures the pin as an output providing the Fosc signal (internal clock divided by 4) for test or external synchronization purposes.

16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

16.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

16.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

	Software Tools					Programmers Debugger Emulators Software Tools							stit Keval baseds and Eval Kits ד ד ש ד ש ד ש ד ש ד ש ד ש ד ש ד ש ד ש ד						10		
	MPLAB Integrated Development Environment	MPLAB C17 C Compiler	MPLAB C18 C Compiler	MPASM Assembler/ MPLINK Object Linker	MPLAB C30 C Compiler	MPLAB ASM30 Assembler/Linker/Librarian	MPLAB ICE 2000 In-Circuit Emulator	MPLAB ICE 4000 In-Circuit Emulator	MPLAB ICD 2 In-Circuit Debugger	PICSTART Plus Entry Level Development Programmer	PRO MATE II Universal Device Programmer	PICDEM 1 Demonstration Board	PICDEM.net Demonstration Board	PICDEM 2 Plus Demonstration Board	PICDEM 3 Demonstration Board	PICDEM 14A Demonstration Board	PICDEM 17 Demonstration Board	PICDEM 18R Demonstration Board	PICDEM LIN Demonstration Board	PICDEM USB Demonstration Board	contact the Microchip web site at w
PIC12CXXX	>			>			>	>		>	>										ww.micre
PIC12FXXX	>			>			>		>	>	>										ochip.co
PIC14000	>			>			>			>	>					>					im for in
PIC16C5X	>			>			>	>		>	>	>									formatic
X9C16C6X	>			>			>	>	* >	>	>		<u> </u>	⁺,					<u> </u>		in on ho
PIC16CXXX	>			>			>	>		>	>	>	<u> </u>	1		1			<u> </u>	1	w to use
PIC16C43X	>			>			>			>	>								>		the MP
PIC16F62X	>			>			**/			**^	**>										LAB ICD
X7281219	>			>			>	>	*^	>	>	∕†		^ +							In-Circu
XX20910Id	`			`` ``			· 、	>		`	>									-	uit Debu
6X1JðrJlq	`			`			`	>		`	<u> </u>	>									dger (D/
PIC16F8XX	``````````````````````````````````````	_		``````````````````````````````````````			``````````````````````````````````````		>	``````````````````````````````````````	<u>``</u>	`			_				>	>	/164001
PIC16C9XX	``````````````````````````````````````			>			`	>		>	<u>``</u>				>) with PI
X43713I9	>	>		>			>			>	>	>									C16C62
XX7371319	>	>		>			>	>		>	>						>				63, 64,
PIC18CXX2	>		>	>			>	>		>	>		>	>							65. 72. 7
P118CX01								>	>									>			73.74.7
PIC18FXXX	>		>	>			>	^	~	>	>			~							3. 77.
dsPIC30F					>	>		>	>												

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

DS40300C-page 126

17.1 DC Characteristics: PIC16F62X-04 (Commercial, Industrial, Extended) PIC16F62X-20 (Commercial, Industrial, Extended) PIC16LF62X-04 (Commercial, Industrial)

PIC16LF (Comm	62X-04 nercial, Ind	dustrial)	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
PIC16F6 PIC16F6 (Comm	2X-04 2X-20 ercial, Ind	dustrial, Extended)	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Sym	Characteristic/Device	Min	Тур†	Мах	Units	Conditions					
	Vdd	Supply Voltage										
D001		PIC16LF62X	2.0	_	5.5	V						
D001		PIC16F62X	3.0	_	5.5	V						
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	—	V	Device in SLEEP mode*					
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See section on Power-on Reset for details					
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05	—	_	V/ms	See section on Power-on Reset for details*					
D005	VBOD	Brown-out Detect Voltage	3.65 3.65	4.0	4.35 4.4	V V	BODEN configuration bit is set BODEN configuration bit is set, Extended					
	IDD	Supply Current ^{(2), (5)}		•			•					
D010 D013		PIC16LF62X		0.30 1.10 4.0	0.6 2.0 7.0	mA mA mA	Fosc = 4.0 MHz, VDD = 2.0 ⁽⁵⁾ Fosc = 4.0 MHz, VDD = 5.5* Fosc = 20.0 MHz, VDD = 5.5					
				3.80 — 20	6.0 2.0 30	mA mA μA	Fosc = 20.0 MHz, VDD = 4.5* Fosc = 10.0 MHz, VDD = 3.0 ⁽⁶⁾ Fosc = 32 kHz, VDD = 2.0					
D010 D013		PIC16F62X		0.60 1.10 4.0 3.80	0.7 2.0 7.0 6.0	mA mA mA	Fosc = 4.0 MHz, VDD = 3.0 Fosc = 4.0 MHz, VDD = 5.5* Fosc = 20.0 MHz, VDD = 5.5 Eosc = 20.0 MHz, VDD = 4.5*					
D014			_		2.0 30	mA μA	Fosc = 10.0 MHz , VDD = 4.3 Fosc = 10.0 MHz , VDD = 3.0^{*} (6) Fosc = 32 kHz , VDD = 3.0^{*}					

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

- The test conditions for all IDD measurements in active Operation mode are:
- OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,
- MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

6: Commercial temperature only.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4	MHz	XT and ER Osc mode, VDD = 5.0V
			DC	_	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾		_	4	MHz	ER Osc mode, VDD = 5.0V
			0.1	—	4	MHz	XT Osc mode
			1	_	20 200	MHz kHz	HS Osc mode LP Osc mode
			3.65	4	4.28	MHz	INTRC mode (fast), VDD = 5.0V
				37		kHz	INTRC mode (slow)
4	INTRC	Internal Calibrated RC	3.65	4.00	4.28	MHz	VDD = 5.0V
5	ER	External Biased ER Frequency	10 kHz		8 MHz		VDD = 5.0V
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT and ER Osc mode
			50	—	—	ns	HS Osc mode
			5	—	—	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250		_	ns	ER Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
			5			μs	LP Osc mode
				250		ns	INTRC mode (fast)
				27		μs	INTRC mode (slow)
2	Тсу	Instruction Cycle Time	1.0	TCY	DC	ns	Tcy = 4/Fosc
3	TosL, TosH	External CLKIN (OSC1) High External CLKIN Low	100 *		_	ns	XT oscillator, Tosc L/H duty cycle*

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-6: MAXIMUM IDD vs Fosc OVER VDD (LP MODE)

Note: The graphs and tables provided in this section are for design guidance and are not tested.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 **China - Shenzhen** Microchip Technology Consulting (Shanghai)

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-82966626 **China - Qingdao**

Rm. B503, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 **India** Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 **EUROPE** Austria Microchip Technology Austria GmbH Durisolstrasse 2

Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Microchip Ltd.

Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

12/05/02