

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627t-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.2 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 3-1). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 0											
00h	INDF	Addressir	ng this locatio	n uses conte	nts of FSR to	address data	a memory (n	ot a physica	l register)	xxxx xxxx	25
01h	TMR0	Timer0 M	odule's Regis	ter					• /	XXXX XXXX	43
02h	PCL	Program	Counter's (PC) Least Sign	ificant Byte					0000 0000	13
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
04h	FSR	Indirect d	ata memory a	ddress point	er				-	xxxx xxxx	25
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	29
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	34
07h	_	Unimplen	nented							_	
08h	_	Unimplen	nented							_	
09h	_	Unimplen	nented							_	
0Ah	PCLATH	_	_	_	Write buffer	for upper 5 b	oits of progra	im counter		0 0000	25
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	23
0Dh	_	Unimplen	Unimplemented						—	_	
0Eh	TMR1L	Holding r	Holding register for the Least Significant Byte of the 16-bit TMR1						XXXX XXXX	46	
0Fh	TMR1H	Holding r	egister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1			XXXX XXXX	46
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	46
11h	TMR2	TMR2 mo	odule's registe	r						0000 0000	50
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	50
13h	_	Unimplen	nented							_	_
14h	_	Unimplen	nented							_	_
15h	CCPR1L	Capture/0	Compare/PWN	/I register (LS	SB)					xxxx xxxx	61
16h	CCPR1H	Capture/0	Compare/PWN	/I register (M	SB)					xxxx xxxx	61
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	61
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	67
19h	TXREG	USART T	ransmit data	register						0000 0000	74
1Ah	RCREG	USART F	JSART Receive data register						0000 0000	77	
1Bh	_	Unimplen	nented							—	_
1Ch	_	Unimplen	nented							—	_
1Dh	—	Unimplen	nented							—	—
1Eh	—	Unimplen	nented	_	1	1			1	—	—
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	53

TABLE 3-1: SPECIAL REGISTERS SUMMARY BANK 0

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

4.0 GENERAL DESCRIPTION

The PIC16F62X are 18-Pin FLASH-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully static, 8-bit microcontrollers.

All PICmicro[®] microcontrollers employ an advanced RISC architecture. The PIC16F62X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16F62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F62X has eight oscillator configurations. The single pin ER oscillator provides a low cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, INTRC is a self-contained internal oscillator. The HS is for High Speed crystals. The EC mode is for an external clock source. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external interrupts, internal interrupts, and RESETS.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

Table 4-1 shows the features of the PIC16F62X midrange microcontroller families.

A simplified block diagram of the PIC16F62X is shown in Figure 2.1.

The PIC16F62X series fits in applications ranging from battery chargers to low power remote sensors. The FLASH technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F62X very versatile.

4.1 Development Support

The PIC16F62X family is supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

		PIC16F627	PIC16F628	PIC16LF627	PIC16LF628
Clock	Maximum Frequency of Operation (MHz)	20	20	4	4
	FLASH Program Memory (words)	1024	2048	1024	2048
Memory	RAM Data Memory (bytes)	224	224	224	224
	EEPROM Data Memory (bytes)	128	128	128	128
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Comparator(s)	2	2	2	2
Peripherals	Capture/Compare/PWM modules	1	1	1	1
	Serial Communications	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10
	I/O Pins	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Detect	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP			

TABLE 4-1:PIC16F62X FAMILY OF DEVICES

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16F62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST	_	USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	ТХ	_	CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	_	XTAL	Timer1 Oscillator Output
	T1CKI	ST	—	Timer1 Clock Input
	PGC	ST	_	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not TTL = TTL	used	CM(I OD	OS = CMOS = Input = Open	S Output P = Power ST = Schmitt Trigger Input Drain Output AN = Analog

PORTE FUNCTIONS

SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾ TABLE 5-4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTB.

Timer Resource

Timer1

Timer1

Timer2

CCP MODE - TIMER

RESOURCE

11.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 11-1 shows the timer resources of the CCP Module modes.

CCP1 Module

bit 5-4

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

Additional information on the CCP module is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

REGISTER 11-1: CCP1CON REGISTER (ADDRESS: 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

TABLE 11-1:

CCP Mode

Capture

Compare

PWM

bit 7-6 Unimplemented: Read as '0'

CCP1X:CCP1Y: PWM Least Significant bits

Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0 CCP1M3:CCP1M0: CCPx Mode Select bits

- 0000 = Capture/Compare/PWM off (resets CCP1 module)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (CCP1IF bit is set)
- 1001 = Compare mode, clear output on match (CCP1IF bit is set)
- 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)
- 1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2003 Microchip Technology Inc.

PIC16F62X

TER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)							
	R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
	SPEN RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	
	bit 7			·			bit 0	
bit 7	(Configures RB1/RX/D	SPEN : Serial Port Enable bit (Configures RB1/RX/DT and RB2/TX/CK pins as serial port pins when bits TRISB<2:17> are set) 1 = Serial port enabled						
bit 6	RX9: 9-bit Receive En	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception						
bit 5	SREN: Single Receive Asynchronous mode: Don't care Synchronous mode - r 1 = Enables single 0 = Disables single This bit is cleared a Synchronous mode - s	n <u>aster</u> : receive receive fter reception is	complete.					
	Unused in this mod							
bit 4	CREN: Continuous Receive Enable bit <u>Asynchronous mode</u> : 1 = Enables continuous receive 0 = Disables continuous receive <u>Synchronous mode</u> : 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive							
bit 3	Asynchronous mode 9 1 = Enables addres 0 = Disables addres Asynchronous mode 8							
bit 2	FERR: Framing Error I 1 = Framing error (Car 0 = No framing error	oit	reading RCF	REG register and	receive next	valid byte)		
bit 1	OERR: Overrun Error 1 = Overrun error (Car 0 = No overrun error		clearing bit C	REN)				
bit 0	RX9D: 9th bit of receiv	ed data (Can b	e PARITY bit)					
	Legend: R = Readable bit	W = V	Vritable bit	U = Unimpl	emented b	it, read as '	0'	

REGISTER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

12.2.2 ADEN USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-8. The data is received on the RB1/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (serial) Shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two-deep FIFO).

It is possible for two bytes of data to be received and transferred to the RCREG FIFO, and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 12-9:	ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

	BIT0 X BIT1 X _ STOP BIT ♦			
RCV SHIFT REG	(((
RCV BUFFER REG)) BIT8 = 0, DATA BYTE	BIT8 = 1, ADDRESS BYTE WORD 1		
READ RCV	((C	(п
BUFFER REG RCREG				
RCIF (INTERRUPT FLAG)		<u>_</u>	<u> </u>	¥
ADEN = 1 ^{'<u>1'</u> (ADDRESS MATCH ENABLE)}	<u>_</u>	<u> </u>	<u> </u>	<u>'1'</u>

FIGURE 12-10: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

FIGURE 12-11: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID DATA BYTE

14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOD)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. SLEEP
- 10. Code protection
- 11. ID Locations
- 12. In-circuit Serial Programming

The PIC16F62X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a Brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The ER oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h – 3FFFh), which can be accessed only during programming. See Programming Specification.

14.6 Interrupts

The PIC16F62X has 10 sources of interrupt:

- External Interrupt RB0/INT
- TMR0 Overflow Interrupt
- PORTB Change Interrupts (pins RB7:RB4)
- Comparator Interrupt
- USART Interrupt TX
- USART Interrupt RX
- CCP Interrupt
- TMR1 Overflow Interrupt
- TMR2 Match Interrupt
- EEPROM

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-15). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

- **Note 1:** Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

FIGURE 14-14: INTERRUPT LOGIC

	•				
ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ADDLW 0x15				
	Before Instruction W = 0x10 After Instruction W = 0x25				

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction W = 0xA3
	After Instruction W = 0x03
	AND W with f
ANDWF Syntax:	[<i>label</i>] ANDWF f,d
	[<i>label</i>] ANDWF f,d 0 ≤ f ≤ 127
Syntax: Operands:	$ \begin{bmatrix} \textit{label} \end{bmatrix} \text{ ANDWF} f,d \\ 0 \le f \le 127 \\ d \in [0,1] $
Syntax:	[<i>label</i>] ANDWF f,d 0 ≤ f ≤ 127
Syntax: Operands: Operation:	[<i>label</i>] ANDWF f,d $0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest)
Syntax: Operands: Operation: Status Affected:	$\begin{bmatrix} label \end{bmatrix} \text{ ANDWF } f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(W) \text{ .AND. } (f) \rightarrow (dest)$ Z $00 \qquad 0101 dfff \qquad ffff$ AND the W register with register
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{bmatrix} label \end{bmatrix} \text{ ANDWF} f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .AND. (f) \rightarrow (dest) \\ Z \\ \hline 00 \qquad 0101 dfff \qquad ffff \\ AND the W register with register \\ 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register \\ \hline exactly a stored back in register \\ \hline e$
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{bmatrix} label \end{bmatrix} \text{ ANDWF} f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) \text{ .AND. } (f) \rightarrow (dest) \\ Z \\ \hline 00 \qquad 0101 dfff \qquad ffff \\ \text{AND the W register with register} \\ \text{'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. \\ \end{bmatrix}$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{bmatrix} label \end{bmatrix} \text{ ANDWF} f,d \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .AND. (f) \rightarrow (dest) \\ Z \\ \hline 00 & 0101 & dfff & ffff \\ AND the W register with register \\ 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. \\ 1 \\ \end{bmatrix}$

ADDWF	Add W and f						
Syntax:	[<i>label</i>] ADDWF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(W) + (f) \rightarrow (dest)						
Status Affected:	C, DC, Z						
Encoding:	00 0111 dfff ffff						
Description:	Add the contents of the W regis- ter with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ADDWF REG1, 0						
	Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z = 0 C = 0 DC = 0						

PIC16F62X

INCF	Increment f	INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (dest)	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	Z	Status Affected:	None			
Encoding:	00 1010 dfff ffff	Encoding:	00 1111 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a			
Words:	1					
Cycles:	1					
Example	INCF REG1, 1					
	Before Instruction		two-cycle instruction.			
	REG1 = 0xFF	Words:	1			
	Z = 0	Cycles:	1 ⁽²⁾			
REG1 =	After Instruction REG1 = 0x00 Z = 1	Example	HERE INCFSZ REG1, 1 GOTO LOOP CONTINUE • • •			
			Before Instruction PC = address HERE			

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

-

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Encoding:	00 0010 dfff ffff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example 1:	SUBWF REG1, 1
	Before Instruction REG1 = 3 $W = 2$ $C = ?$ After Instruction REG1 = 1 $W = 2$ $C = 1; result is positive$ $Z = DC = 1$
Example 2:	Before Instruction
	REG1 = 2 W = 2 C = ?
	After Instruction
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1
Example 3:	Before Instruction
	REG1 = 1 W = 2 C = ?
	After Instruction
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$

SWAPF	Swap Nibbles in f							
Syntax:	[label] SWAPF f,d							
Operands:	$0 \le f \le 127$ d $\in [0,1]$							
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)							
Status Affected:	None							
Encoding:	00 1110 dfff ffff							
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.							
Words:	1							
Cycles:	1							
Example	SWAPF REG1, 0							
	Before Instruction							
	REG1 = 0xA5							
	After Instruction							
	REG1 = 0xA5 W = 0x5A							
TRIS	Load TRIS Register							
Syntax:	[<i>label</i>] TRIS f							
Operands:	$5 \le f \le 7$							
Operation:	$(W) \rightarrow TRIS$ register f;							
Status Affected:	None							
Encoding:	00 0000 0110 0fff							
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.							
Words:	1							
Cycles:	1							
Example								
	To maintain upward compatibility with future PICmicro [®] products, do not use this instruction.							

16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

16.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

16.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

17.1 DC Characteristics: PIC16F62X-04 (Commercial, Industrial, Extended) PIC16F62X-20 (Commercial, Industrial, Extended) PIC16LF62X-04 (Commercial, Industrial)

PIC16LF62X-04 (Commercial, Industrial)		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq Ta \leq +85^\circ C \mbox{ for industrial and} \\ & 0^\circ C \leq Ta \leq +70^\circ C \mbox{ for commercial} \end{array}$						
PIC16F62X-04 PIC16F62X-20 (Commercial, Industrial, Extended)			Operating (temperature	e -40°C 0°C ≤	≤ Ta ≤ +85° Ta ≤ +70°C	nless otherwise stated) Fa ≤ +85°C for industrial and ≤ +70°C for commercial and Fa ≤ +125°C for extended		
Param No.	Sym	Characteristic/Device	Min	Тур†	Мах	Units	Conditions	
	IPD	Power Down Current* ^{(2), (3)}						
D020		PIC16LF62X		0.20 0.20	2.0 2.2	μΑ μΑ	VDD = 2.0 VDD = 5.5	
D020		PIC16F62X	 	0.20 0.20 0.20 2.70	2.2 5.0 9.0 15.0	μΑ μΑ μΑ μΑ	VDD = 3.0 VDD = 4.5* VDD = 5.5 VDD = 5.5 Extended	
D023	ΔIWDT ΔIBOD ΔICOMP ΔIVREF	WDT Current ⁽⁴⁾ Brown-out Detect Current ⁽⁴⁾ Comparator Current for each Comparator ⁽⁴⁾ VREF Current ⁽⁴⁾	 	6.0 75 30	15 125 50 135	μΑ μΑ μΑ	$\frac{V_{DD}}{BOD} = 3.0V$ BOD enabled, VDD = 5.0V VDD = 3.0V VDD = 3.0V	
Daga	∆Iwdt	WDT Current ⁽⁴⁾	_	6.0	20 25	μΑ μΑ	VDD = 4.0V, Commercial, Industrial VDD = 4.0V, Extended	
D023		Brown-out Detect Current ⁽⁴⁾ Comparator Current for each Comparator ⁽⁴⁾	_	75 30	125 50	μΑ μΑ	BOD enabled, VDD = 5.0V VDD = 4.0V	
	Δ IVREF	VREF Current ⁽⁴⁾	—		135	μA	VDD = 4.0V	

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

DC Characteristics			Standard Operating Conditions (unless otherwise stated)					
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Data EEPROM Memory						
D120	ED	Endurance	1M*	10M	_	E/W	25°C at 5V	
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Vміn = Minimum operating voltage	
D122	TDEW	Erase/Write cycle time	_	4	8*	ms	vollago	
		Program FLASH Memory					•	
D130	Eр	Endurance	1000*	10000	_	E/W		
D131	Vpr	VDD for read	Vmin	_	5.5	V	VMIN = Minimum operating voltage	
D132	VPEW	VDD for erase/write	4.5	_	5.5	V	_	
D133	TPEW	Erase/Write cycle time		4	8*	ms		

TABLE 17-3: DC CHARACTERISTICS: PIC16F62X, PIC16LF62X

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.4 Timing Diagrams and Specifications

FIGURE 17-6: EXTERNAL CLOCK TIMING

FIGURE 18-16: MINIMUM, TYPICAL and MAXIMUM WDT PERIOD vs VDD (-40°C to +125°C)

© 2003 Microchip Technology Inc.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-18: VOH VS IOH OVER TEMP (C) VDD = 5V

PIC16F62X

K04-072 20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm

	Units	INCHES*			MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		20			20		
Pitch	р		.026			0.65		
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.278	.284	.289	7.06	7.20	7.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	ф	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

092002