

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

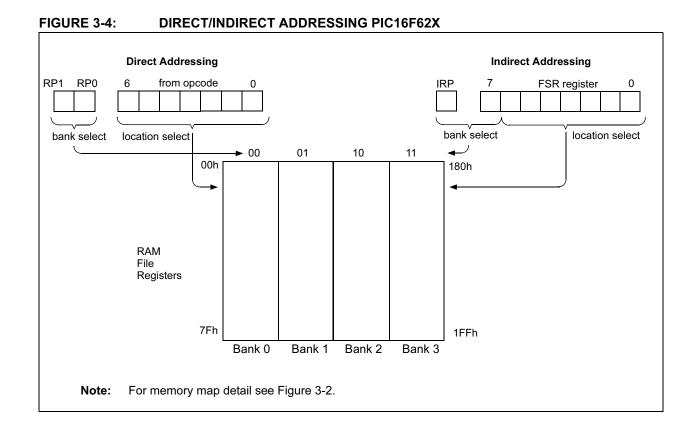
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 3-3:		REGISTER	(ADDRES	S: 0Bh, 8	Bh, 10Bh, 18	Bh)			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	
	bit 7							bit 0	
bit 7	GIE: Globa	al Interrupt E	nable bit						
		s all unmas es all interru	•	ots					
bit 6	PEIE: Peri	oheral Interr	upt Enable	bit					
		s all unmas es all periph			S				
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit					
		s the TMR0 es the TMR0							
bit 4	INTE: RB0/INT External Interrupt Enable bit								
		s the RB0/II es the RB0/I							
bit 3	RBIE: RB Port Change Interrupt Enable bit								
		s the RB po es the RB po							
bit 2	TOIF: TMR	0 Overflow	nterrupt Fla	ag bit					
		register has register did			eared in softwa	are)			
bit 1	INTF: RB0	/INT Externa	al Interrupt	Flag bit					
		30/INT exter 30/INT exter		•	must be cleare	d in softwaı	e)		
bit 0	RBIF: RB I	Port Change	Interrupt F	lag bit					
		at least one of the RB7:R			nanged state (n state	nust be clea	ared in softw	vare)	
	Levendu							1	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	xxxu 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000

 TABLE 5-2:
 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA⁽¹⁾

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTA.

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

PORTB is multiplexed with the external interrupt, USART, CCP module and the TMR1 clock input/output. The standard port functions and the alternate port functions are shown in Table 5-3. Alternate port functions override TRIS setting when enabled.

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

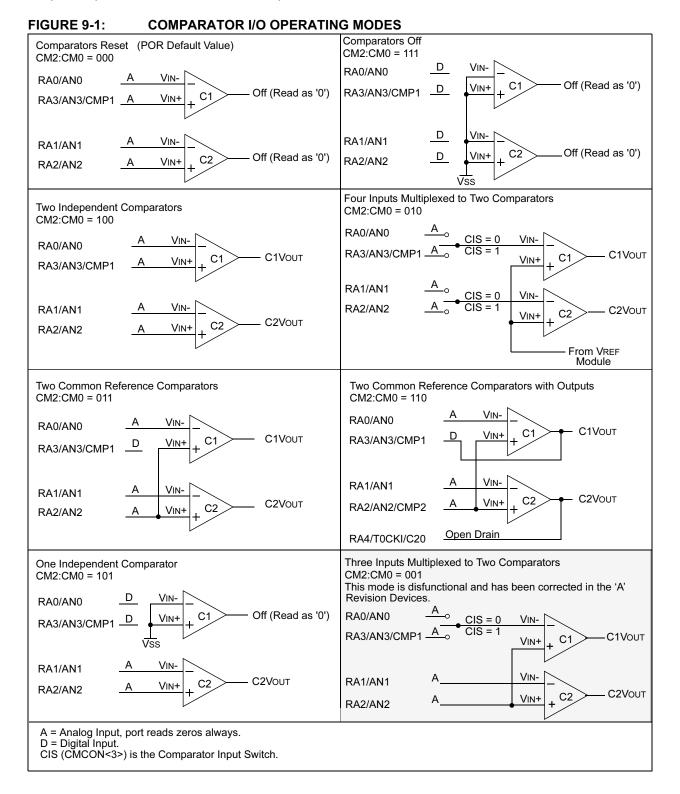
Four of PORTB's pins, RB<7:4>, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-onchange comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552)

Note:	If a change on the I/O pin should occur					
	when a read operation is being executed					
	(start of the Q2 cycle), then the RBIF inter-					
	rupt flag may not get set.					


The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

9.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 9-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-1.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

EXAMPLE 10-1: VOLTAGE REFERENCE CONFIGURATION

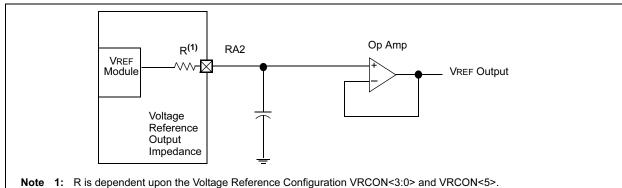
MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x07	; RA3-RA0 are
MOVWF	TRISA	; outputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank 0
CALL	DELAY10	; 10µs delay

10.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 10-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the Voltage Reference can be found in Table 17-2.

10.3 Operation During SLEEP

When the device wakes-up from SLEEP through an interrupt or a Watchdog Timer timeout, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.


10.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

10.5 Connection Considerations

The Voltage Reference module operates independently of the Comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 10-2 shows an example buffering technique.

FIGURE 10-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

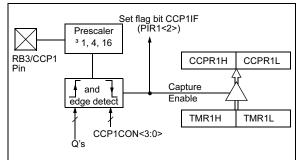
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Note 1: — = Unimplemented, read as '0'.

11.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the Interrupt Request Flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

11.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

TABLE 11-2:CAPTURE MODE OPERATION
BLOCK DIAGRAM

11.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

11.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

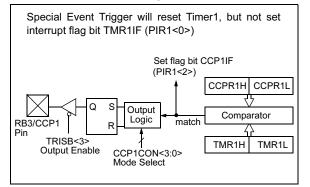
11.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 11-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

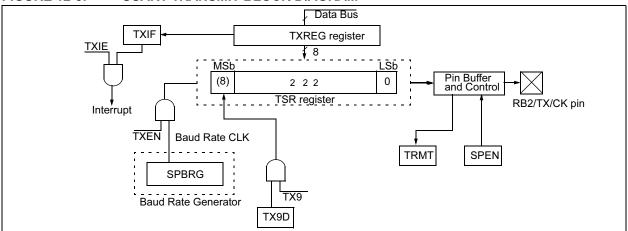

11.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

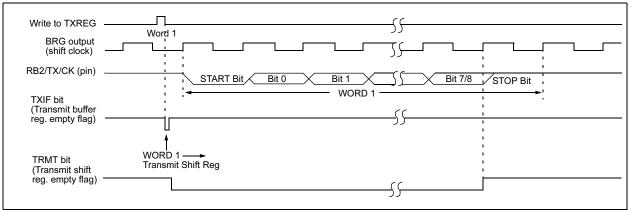
FIGURE 11-1: COMPARE MODE OPERATION BLOCK DIAGRAM


11.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.

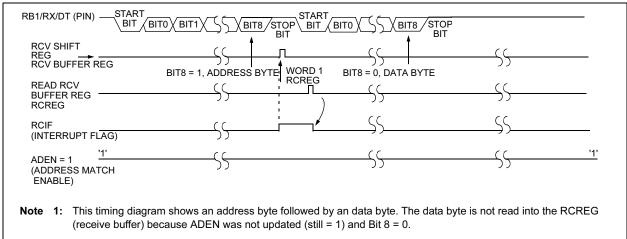
Note: Clearing the CCP1CON register will force the RB3/CCP1 compare output latch to the default low level. This is not the data latch.

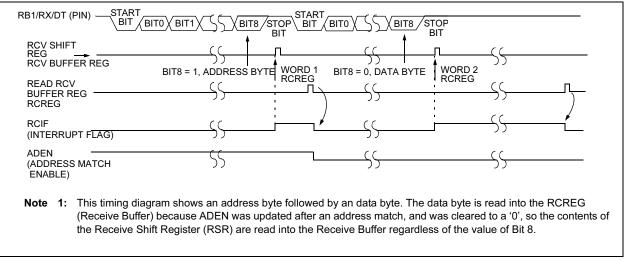
NOTES:



Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).




FIGURE 12-9:	ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

	BIT0 X BIT1 X _ STOP BIT ♦			
RCV SHIFT REG	(((
RCV BUFFER REG)) BIT8 = 0, DATA BYTE	BIT8 = 1, ADDRESS BYTE WORD 1		
READ RCV	(((C	(п
BUFFER REG RCREG				
RCIF (INTERRUPT FLAG)		<u>_</u>	<u> </u>	¥
ADEN = 1 ^{'<u>1'</u> (ADDRESS MATCH ENABLE)}	<u>_</u>	<u> </u>	<u> </u>	<u>'1'</u>

FIGURE 12-10: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

FIGURE 12-11: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID DATA BYTE

REGISTER 13-2:	EECON1 REGISTER (ADDRESS: 9Ch)							
	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-x
	—	_	_	—	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7-4	Unimpleme	Unimplemented: Read as '0'						
bit 3	WRERR: E	EPROM Er	ror Flag bit					
	normal	operation is operation o te operatior	r BOD Res	et)	d (any MCLR R	eset, any \	WDT Reset	during
bit 2	WREN: EE	PROM Write	e Enable bi	t				
	1 = Allows 0 = Inhibits			ROM				
bit 1	WR: Write	Control bit						
	can onl	y be set (no	ot cleared) ii		y hardware onc ete	e write is c	complete. T	he WR bit
bit 0	RD: Read (Control bit						
	 1 = Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software). 0 = Does not initiate an EEPROM read 							
	Legend:							
	R = Readal	ole bit	W = V	Vritable bit	U = Unimple	emented bi	it, read as '(D'
	-n = Value a	at POR	'1' = B	lit is set	'0' = Bit is c	leared	x = Bit is ur	nknown

TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
9Ah	EEDATA	EEPROM	EPROM data register						XXXX XXXX	uuuu uuuu	
9Bh	EEADR	EEPROM	address	register						XXXX XXXX	uuuu uuuu
9Ch	EECON1	_	_		_	WRERR	WREN	WR	RD	x000	q000
9Dh	EECON2 ⁽¹⁾	EEPROM	EEPROM control register 2								

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

Note 1: EECON2 is not a physical register

REGISTER 14-1: CONFIGURATION WORD

CP1	CP0	CP1	CP0	_	CPD	LVP	BODEN	MCLRE	FOSC2	PWRTE	WDTE	F0SC1	F0SC0
bit 13			·										bit 0
bit 13-10:	Code 11 = 01 = 00 = Code 11 = 10 = 01 =	protection Program 0400h-07 0200h-07 0000h-07 protection Program Program 0200h-03	le Protection n for 2K prog memory cod 7FFh code p 7FFh code p 7FFh code p n for 1K prog memory cod 3FFh code p 3FFh code p	gram memore rotected rotected otected gram memore de protection de protection rotected	on off ory on off								
bit 9:													
bit 8:	CPD: 1 = Da	Unimplemented: Read as '0' CPD: Data Code Protection bit ⁽³⁾ 1 = Data memory code protection off 0 = Data memory code protected											
bit 7:	 LVP: Low Voltage Programming Enable RB4/PGM pin has PGM function, low voltage programming enabled RB4/PGM is digital I/O, HV on MCLR must be used for programming 												
bit 6:	BODEN: Brown-out Detect Reset Enable bit ⁽¹⁾ 1 = BOD Reset enabled 0 = BOD Reset disabled												
bit 5:	1 = R	A5/MCLF	MCLR pin fu pin functior pin functior	is MCLR		R internally	tied to VDD)					
bit 3:	1 = P	TEN : Pow WRT disa WRT ena		Enable bit	(1)								
bit 2:	1 = W	DT enab		Enable bit									
bit 4, 1-0:	 0 = WDT disabled FOSC2:FOSC0: Oscillator Selection bits⁽⁴⁾ 111 = ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN 100 = ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN 101 = INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 100 = INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 101 = EC: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 011 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN 010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 000 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 												
	Note	Er 2: Al 3: Th	nabling Brow nsure the Po I of the CP1: ne entire data hen MCLR i	wer-up Tim CP0 pairs a EEPROM	er is enab have to be I will be era	led anytime given the s ased when	Brown-ou same value the code p	t Detect Re to enable to rotection is	eset is enab the code pr turned off.	oled. rotection sc			WRTE.
Legend R = Readat					itable bit				ited bit, rea				

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0)'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

-

14.5.5 TIMEOUT SEQUENCE

On power-up the timeout sequence is as follows: First PWRT timeout is invoked after POR has expired. Then OST is activated. The total timeout will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in ER mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no timeout at all. Figure 14-8, Figure 14-9 and Figure 14-10 depict timeout sequences.

Since the timeouts occur from the POR pulse, if MCLR is kept low long enough, the timeouts will expire. Then bringing MCLR high will begin execution immediately (see Figure 14-9). This is useful for testing purposes or to synchronize more than one PIC16F62X device operating in parallel.

Table 14-7 shows the RESET conditions for some special registers, while Table 14-8 shows the RESET conditions for all the registers.

14.5.6 POWER CONTROL (PCON) STATUS REGISTER

The Power Control/STATUS register, PCON (address 8Eh) has two bits.

Bit0 is \overline{BOD} (Brown-out). \overline{BOD} is unknown on Poweron Reset. It must then be set by the user and checked on subsequent RESETS to see if $\overline{BOD} = 0$ indicating that a brown-out has occurred. The \overline{BOD} STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BODEN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-out Detect	Wake-up	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Reset	from SLEEP	
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
ER, INTRC, EC	72 ms	_	72 ms	—	

TABLE 14-4: TIMEOUT IN VARIOUS SITUATIONS

IABLE 14	TABLE 14-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE							
POR	BOD	то	PD					
0	Х	1	1	Power-on Reset				
0	х	0	х	Illegal, TO is set on POR				
0	х	х	0	Illegal, PD is set on POR				
1	0	Х	Х	Brown-out Detect Reset				
1	1	0	u	WDT Reset				
1	1	0	0	WDT Wake-up				
1	1	u	u	MCLR Reset during normal operation				
1	1	1	0	MCLR Reset during SLEEP				

TABLE 14-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

Legend: u = unchanged, x = unknown.

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_	_	_	-	OSCF	Reset	POR	BOD	1-0x	u-uq

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect Reset and Watchdog Timer Reset during normal operation.

BCF	Bit Clear f	BTFSC	Bit Test f, Skip if Clear			
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0			
Status Affected:	None	Status Affected:	None			
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff			
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0' then the			
Words:	1		next instruction is skipped. If bit 'b' is '0' then the next			
Cycles:	1		instruction fetched during the			
Example	BCF REG1, 7		current instruction execution is			
	Before Instruction REG1 = 0xC7 After Instruction		discarded, and a NOP is executed instead, making this a two-cycle instruction.			
	REG1 = 0x47	Words:	1			
		Cycles:	1 ⁽²⁾			
BSF	Bit Set f	Example	HERE BTFSC REG1 FALSE GOTO PROCESS_CODE			
Syntax:	[<i>label</i>]BSF f,b		TRUE •			
Operands:	$0 \le f \le 127$		•			
	$0 \le b \le 7$		Before Instruction			
Operation:	$1 \rightarrow (f \le b >)$		PC = address HERE			
Status Affected:	None		After Instruction if REG<1> = 0,			
Encoding:	01 01bb bfff ffff		PC = address TRUE			
Description:	Bit 'b' in register 'f' is set.		if REG<1>=1,			
Words:	1		PC = address FALSE			
Cycles:	1					

Example

BSF

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF REG1
	Before Instruction REG1 = $0xFF$ W = $0x4F$ After Instruction REG1 = $0x4F$ W = $0x4F$

OPTION	Load Op	otion Re	gister			
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow C$	PTION				
Status Affected:	None					
Encoding:	00	0000	0110	0010		
Description:	loaded in This inst code cor products readable user can	n the OP ruction is npatibilit Since (e/writable directly	he W regi TION reg s supporte y with PIC OPTION i register, address i ruction su	ister. ed for C16C5X s a the t. Using		
Words:	1					
Cycles:	1					
Example						
		future P not use	vard com lCmicro [@] this			

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No oper	ation.	•			
Words:	1					
Cycles:	1					
Example	NOP					

RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE					
Operands:	None					
Operation:	TOS \rightarrow PC, 1 \rightarrow GIE					
Status Affected:	None					
Encoding:	00 0000 0000 1001					
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two- cycle instruction.					
Words:	1					
Cycles:	2					
Example	RETFIE					
	After Interrupt PC = TOS GIE = 1					

16.19 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

16.20 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

16.21 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

16.22 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and RFLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

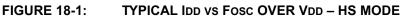
Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

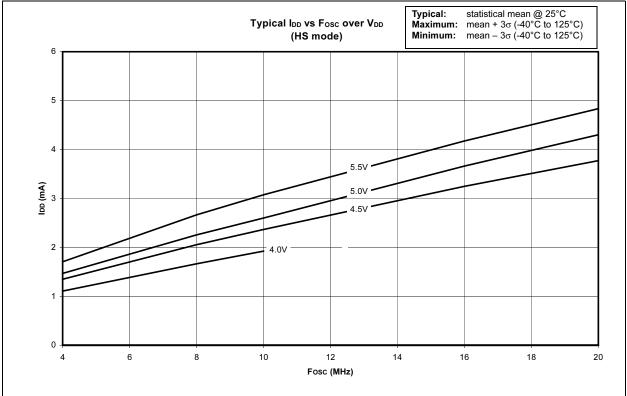
ABLE	1/-4.	EXTERNAL CLOCK TIMING			13		
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4	MHz	XT and ER Osc mode,
							VDD = 5.0V
			DC	_	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾			4		ER Osc mode, VDD = 5.0V
		Oscillator Frequency ?	0.1	_		MHz	
				_	4		
			1		20 200	MHz kHz	HS Osc mode LP Osc mode
			3.65	4	4.28	MHz	
			0.00	37	1.20	kHz	INTRC mode (slow)
4	INTRC	Internal Calibrated RC	3.65	4.00	4.28	MHz	
5	ER	External Biased ER Frequency	10 kHz		8 MHz		VDD = 5.0V
1	Tosc	External CLKIN Period ⁽¹⁾	250		_	ns	XT and ER Osc mode
			50	_		ns	HS Osc mode
			5	—	—	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250		—	ns	ER Osc mode
			250	_	10,000	ns	XT Osc mode
			50	_	1,000	ns	HS Osc mode
			5			μs	LP Osc mode
				250		ns	INTRC mode (fast)
				27		μs	INTRC mode (slow)
2	Тсу	Instruction Cycle Time	1.0	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	100 *	_	—	ns	XT oscillator, Tosc L/H duty
	TosH	External CLKIN Low					cycle*

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.


18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

In some graphs or tables, the data presented is outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'max or min.' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

T1SYNC bit
T2CKPS0 bit51
T2CKPS1 bit51
Timer0
TIMER0 (TMR0) Interrupt43
TIMER0 (TMR0) Module43
TMR0 with External Clock
Timer1
Special Event Trigger (CCP)
Switching Prescaler Assignment
Timer2
PR2 Register64
TMR2 to PR2 Match Interrupt 64
Timers
Timer1
Asynchronous Counter Mode48
Block Diagram
Capacitor Selection
External Clock Input
External Clock Input Timing
Operation in Timer Mode47
Oscillator49
Prescaler
Resetting of Timer1 Registers
Resetting Timer1 using a CCP Trigger Output 49
Synchronized Counter Mode
TMR1H
TMR1L
Timer2
Block Diagram
Module
Postscaler
Prescaler50
Timing Diagrams
Timer0 139
Timer0
Timer0 139
Timer0
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Transmission 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51
Timer0139Timer1139USART Asynchronous Master Transmission75USART RX Pin Sampling.73, 74USART Synchronous Reception84USART Synchronous Transmission82USART, Asynchronous Reception76Timing Diagrams and Specifications135TMR0 Interrupt102TMR1CS bit46TMR2ON bit51TOUTPS0 bit51TOUTPS1 bit51TOUTPS2 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TRIS Instruction119
Timer0139Timer1139USART Asynchronous Master Transmission75USART RX Pin Sampling.73, 74USART Synchronous Reception84USART Synchronous Reception82USART, Asynchronous Reception76Timing Diagrams and Specifications135TMR0 Interrupt102TMR1CS bit46TMR2ON bit51TOUTPS0 bit51TOUTPS1 bit51TOUTPS2 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TRIS Instruction119TRISA29
Timer0139Timer1139USART Asynchronous Master Transmission75USART RX Pin Sampling.73, 74USART Synchronous Reception84USART Synchronous Transmission82USART, Asynchronous Reception76Timing Diagrams and Specifications135TMR0 Interrupt102TMR1CS bit46TMR2ON bit51TOUTPS0 bit51TOUTPS1 bit51TOUTPS2 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TOUTPS3 bit51TRIS Instruction119
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TRIS Instruction 119 TRISB 34
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TRISA 29 TRISB 34 U U
Timer0139Timer1139USART Asynchronous Master Transmission75USART RX Pin Sampling.73, 74USART Synchronous Reception84USART Synchronous Reception82USART, Asynchronous Reception76Timing Diagrams and Specifications135TMR0 Interrupt102TMR1CS bit46TMR2ON bit51TOUTPS0 bit51TOUTPS1 bit51TOUTPS2 bit51TOUTPS3 bit51TOUTPS3 bit51TRIS Instruction119TRISA29TRISB34UUniversal Synchronous Asynchronous Receiver Transmitter
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TRIS 119 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TRISA 29 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling. 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TRIS 119 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR1ON bit 46 TOUTPS0 bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TUSB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67 Setting Up Reception 80
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR1ON bit 46 TM2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TRISA 29 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67 Setting Up Reception 80 Timing Diagram 78
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR1ON bit 46 TM2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TOUTPS1 bit 51 TOUTPS3 bit 51 TRISB 34
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TUSAR 29 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67 Asynchronous Receiver Mode 80 Block Diagram 78
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART Synchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TUSS 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TRISA 29 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67 Asynchronous Receiver Mode 80 Block Diagram 80 Section 80
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 82 USART, Asynchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TRISA 29 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67 Setting Up Reception 80 Timing Diagram 78 Asynchronous Receiver Mode 80 Block Diagram 80 USART 80
Timer0 139 Timer1 139 USART Asynchronous Master Transmission 75 USART RX Pin Sampling 73, 74 USART Synchronous Reception 84 USART Synchronous Reception 84 USART Synchronous Reception 76 Timing Diagrams and Specifications 135 TMR0 Interrupt 102 TMR1CS bit 46 TMR2ON bit 51 TOUTPS0 bit 51 TOUTPS1 bit 51 TOUTPS2 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TUSS 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TOUTPS3 bit 51 TRISA 29 TRISB 34 U Universal Synchronous Asynchronous Receiver Transmitter (USART) 67 Asynchronous Receiver 67 Asynchronous Receiver Mode 80 Block Diagram 80 Section 80

Asynchronous Reception	
Asynchronous Transmission	75
Asynchronous Transmitter	74
Baud Rate Generator (BRG)	69
Sampling70, 71, 7	72
Synchronous Master Mode	81
Synchronous Master Reception	83
Synchronous Master Transmission	81
Synchronous Slave Mode	84
Synchronous Slave Reception	
Synchronous Slave Transmit	84
Transmit Block Diagram	75
V	
Voltage Reference Module	59

W

V

Watchdog Timer (WDT)	103
WRITE	89
WRITING	88
WWW, On-Line Support	3

Х

XORLW Instruction	120
XORWF Instruction	120

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.