

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628-04e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN		Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	—	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	—	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	—	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	—	Input port
	MCLR	ST	_	Master clear
	VPP	_	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST		External clock source input. ER biasing pin.
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	—	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port.
	TX	_	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM I/O
Legend: O = Output — = Not used TTL = TTL Inpu		I = In	MOS Output put pen Drain Outp	P = Power ST = Schmitt Trigger Input AN = Analog

TABLE 2-1: PIC16F62X PINOUT DESCRIPTION

TABLE 2-1:PIC16F62X PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt- on-pin change. When low voltage program- ming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	—	XTAL	Timer1 oscillator output.
	T1CKI	ST	—	Timer1 clock input.
	PGC	ST	_	ICSP™ Programming Clock.
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 oscillator input. Wake-up from SLEEP on pin change. Can be software programmed for internal weak pull-up.
	PGD	ST	CMOS	ICSP Data I/O
Vss	Vss	Power	_	Ground reference for logic and I/O pins
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins
Legend: O = Output — = Not used TTL = TTL Input		CMOS = CI I = In OD = O		P = Power ST = Schmitt Trigger Input AN = Analog

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 3											
180h	INDF	Addressin ister)	ig this location	n uses cont	ents of FSF	R to address	s data mem	ory (not a p	hysical reg-	XXXX XXXX	25
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20
182h	PCL	Program (Counter's (PC) Least Sig	nificant Byt	e				0000 0000	25
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
184h	FSR	Indirect da	ata memory a	ddress poir	nter	. –	-		1-	xxxx xxxx	25
185h	_	Unimplem								_	_
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	34
187h	_	Unimplem	nented	•		•	•			_	—
188h		Unimplem	nented							_	_
189h	_	Unimplem	nented								_
18Ah	PCLATH	_	_	_	Write buff	er for upper	5 bits of pr	ogram cour	iter	0 0000	25
18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	21
18Ch	_	Unimplem	nented				•			_	_
18Dh		Unimplem	nented							_	_
18Eh		Unimplem	nented							_	_
18Fh	_	Unimplem	nented							_	_
190h	_	Unimplem	nented							_	_
191h	_	Unimplem	nented							_	_
192h	_	Unimplem	nented								_
193h	—	Unimplem	nented								_
194h	—	Unimplem	nented								_
195h	_	Unimplem	nented								_
196h	_	Unimplem	nented							_	—
197h	_	Unimplem	nented							_	—
198h	_	Unimplem	nented							_	—
199h	—	Unimplem	nented							_	—
19Ah	_	Unimplem	nented							_	
19Bh	_	Unimplem	nented							_	
19Ch	_	Unimplem	nented							_	
19Dh	—	Unimplem	nented							_	_
19Eh	_	Unimplem	nented							_	
19Fh	—	Unimplem	nented							—	—

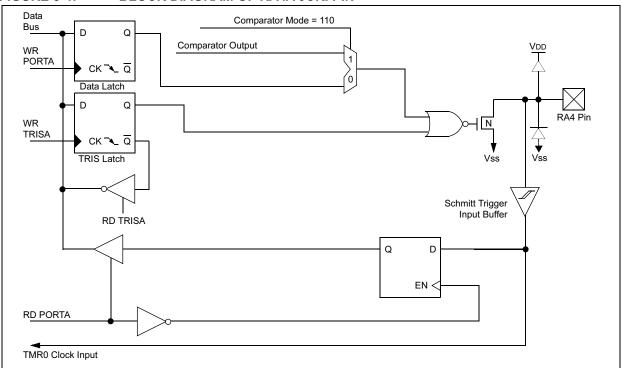
TABLE 3-4: SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

PIR1 Register 3.2.2.5

This register contains interrupt flag bits.


Note:	Interrupt flag bits get set when an interrupt condition occurs regardless of the state of
	0
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User
	software should ensure the appropriate
	interrupt flag bits are clear prior to enabling
	an interrupt.

REGISTER 3-5:	PIR1 REG	ISTER (AD	DRESS:	0Ch)	
	R/W-0	R/W-0	R-0	R-0	

	R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0			
	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF			
	bit 7					I		bit 0			
bit 7	EEIF: EEP	ROM Write	Operation I	nterrupt Flag	a bit						
	1 = The wri	ite operatior	n completed	l (must be c	leared in softwa has not been st						
bit 6	CMIF: Com	parator Inte	errupt Flag b	oit							
	•	 1 = Comparator output has changed 0 = Comparator output has not changed 									
bit 5	RCIF: USA	RT Receive	Interrupt F	lag bit							
			e buffer is f e buffer is e								
bit 4											
DIL 4			t Interrupt F nit buffer is	-							
			nit buffer is								
bit 3	Unimplem	ented: Rea	d as '0'								
bit 2	CCP1IF: C	CP1 Interru	pt Flag bit								
	0 = No T	IR1 register MR1 regist	r capture oc er capture c		at be cleared in	software)					
		IR1 register MR1 registe	•	natch occuri match occu	red (must be cle rred	eared in so	ftware)				
		<u>-</u> in this mode	9								
bit 1	TMR2IF: T	MR2 to PR2	2 Match Inte	errupt Flag b	it						
	1 = TMR2 1	o PR2 mate		(must be cl	eared in softwa	re)					
bit 0	TMR1IF: T	MR1 Overf	low Interrup	t Flag bit							
	TMR1IF : TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow										
	Legend:										
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '()'			
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown			

NOTES:

BLOCK DIAGRAM OF THE RA5/MCLR/VPP PIN

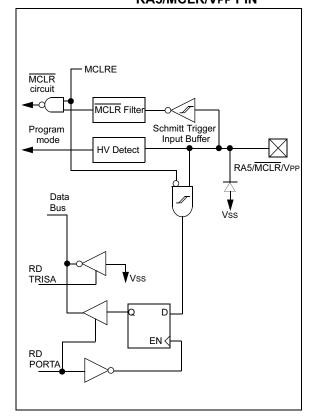
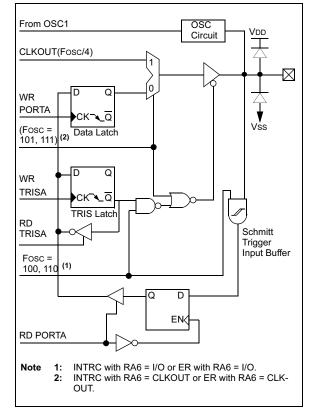



FIGURE 5-6:

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2).

In Asynchronous Counter mode, Timer1 can not be used as a time-base for capture or compare operations.

7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high-time and low-time requirements. Refer to the appropriate Electrical Specifications section, Timing Parameters 45, 46, and 47.

7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All interrupts are disabled
  MOVF TMR1H, W ;Read high byte
  MOVWF TMPH
  MOVF
         TMR1L, W ;Read low byte
  MOVWF TMPL
                   ;
  MOVF
         TMR1H, W ;Read high byte
  SUBWF
         TMPH, W
                   ;Sub 1st read
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
  GOTO
         CONTINUE ;Good 16-bit read
;
 TMR1L may have rolled over between the read
;
; of the high and low bytes. Reading the high
; and low bytes now will read a good value.
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
  MOVF
         TMR1L, W
                   ;Read low byte
  MOVWF TMPL
                   ;
; Re-enable the Interrupts (if required)
                   ;Continue with your code
CONTINUE
```

9.6 Comparator Interrupts

The Comparator Interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the Comparator Interrupt Flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	lf a	change	in	the	CMCON	register
	(C10	UT or C2	OU	T) sh	ould occur	r when a
	read	operation	is	being	executed	(start of
	the C	2 cycle),	the	en the	e CMIF (F	PIR1<6>)
	interr	upt flag m	nay	not g	et set.	

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any write or read of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

9.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes-up from SLEEP, the contents of the CMCON register are not affected.

9.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the Comparator module to be in the comparator RESET mode, CM2:CM0 = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

9.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 9-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A source impedance of maximum 10 kΩ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16 MHz		SPBRG	5.068 MHz	5.068 MHz SPBRG			4 MHz		
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25	
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12	
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6	
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3	
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1	
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0	
625000	NA	_	_	NA	_	_	NA	_	_	
1250000	NA		—	NA	—	_	NA	—		

BAUD	Fosc = 3.579	9 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Receive Register							0000 0000	0000 0000	
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

14.5 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Detect (BOD)

14.5.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

14.5.2 POWER-UP TIMER (PWRT)

The PWRT provides a fixed 72 ms (nominal) timeout on power-up only, from POR or Brown-out Detect Reset. The PWRT operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the PWRT. The PWRT should always be enabled when Brown-out Detect Reset is enabled. The Power-Up Time delay will vary from chip to chip and due to VDD, temperature and process variation. See DC parameters for details.

14.5.3 OSCILLATOR START-UP TIMER (OST)

The OST provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST timeout is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

14.5.4 BROWN-OUT DETECT (BOD) RESET

The PIC16F62X members have on-chip BOD circuitry. A configuration bit, BODEN, can disable (if clear/ programmed) or enable (if set) the BOD Reset circuitry. If VDD falls below VBOD for longer than TBOD, the brown-out situation will RESET the chip. A RESET is not guaranteed to occur if VDD falls below VBOD for shorter than TBOD. VBOD and TBOD are defined in Table 17-1 and Table 17-6, respectively.

On any RESET (Power-on, Brown-out, Watchdog, etc.) the chip will remain in RESET until VDD rises above VBOD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms.

If VDD drops below VBOD while the Power-up Timer is running, the chip will go back into a Brown-out Detect Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOD, the Power-Up Timer will execute a 72 ms RESET. The Power-up Timer should always be enabled when Brown-out Detect is enabled. Figure 14-7 shows typical Brown-out situations.

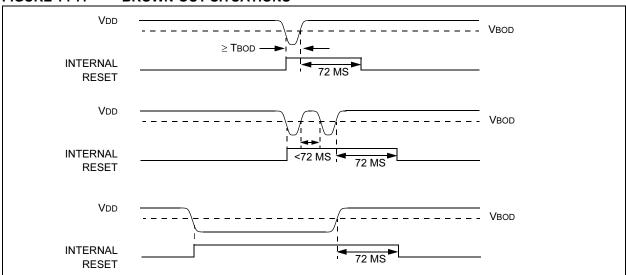


FIGURE 14-7: BROWN-OUT SITUATIONS

16.14 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include analog input, push button switches and eight LEDs.

16.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

16.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

16.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

16.18 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

17.1 DC Characteristics: PIC16F62X-04 (Commercial, Industrial, Extended) PIC16F62X-20 (Commercial, Industrial, Extended) PIC16LF62X-04 (Commercial, Industrial)

PIC16LF (Comm	62X-04 iercial, In	dustrial)	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F62X-04 PIC16F62X-20 (Commercial, Industrial, Extended)			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic/Device	Min	Тур†	Мах	Units	Conditions			
	Vdd	Supply Voltage								
D001		PIC16LF62X	2.0	_	5.5	V				
D001		PIC16F62X	3.0	_	5.5	V				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	—	V	Device in SLEEP mode*			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See section on Power-on Reset for details			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05	—	—	V/ms	See section on Power-on Reset for details*			
D005	VBOD	Brown-out Detect Voltage	3.65 3.65	4.0	4.35 4.4	V V	BODEN configuration bit is set BODEN configuration bit is set, Extended			
	IDD	Supply Current ^{(2), (5)}					•			
D010		PIC16LF62X	_	0.30	0.6	mA	Fosc = 4.0 MHz, VDD = 2.0 ⁽⁵⁾			
D010			—	1.10	2.0	mA	Fosc = 4.0 MHz, VDD = 5.5*			
D013			—	4.0	7.0	mA	Fosc = 20.0 MHz, VDD = 5.5			
			_	3.80	6.0 2.0	mA mA	Fosc = 20.0 MHz, VDD = 4.5* Fosc = 10.0 MHz, VDD = 3.0 ⁽⁶⁾			
			_	20	30	μΑ	Fosc = 32 kHz, VDD = 3.0 M			
D010		PIC16F62X	_	0.60	0.7	mA	Fosc = 4.0 MHz, VDD = 3.0			
			_	1.10	2.0	mA	Fosc = 4.0 MHz, VDD = 5.5*			
D013			—	4.0	7.0	mA	Fosc = 20.0 MHz, VDD = 5.5			
			—	3.80	6.0	mA	Fosc = 20.0 MHz, VDD = 4.5^*			
D014			—	20	2.0 30	mA	Fosc = 10.0 MHz, VDD = $3.0^{(6)}$			
D014				20	30	μA	Fosc = 32 kHz, VDD = 3.0			

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

- The test conditions for all IDD measurements in active Operation mode are:
- OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,
- MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.

4: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

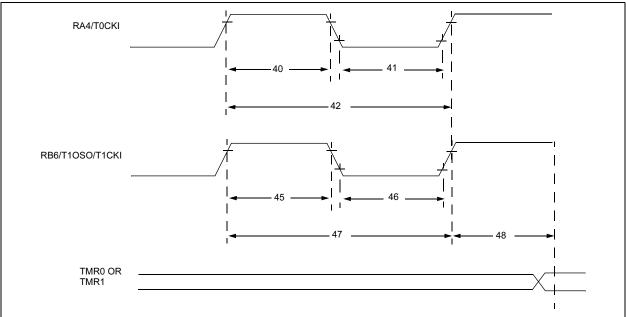
6: Commercial temperature only.

TABLE 17-1: COMPARATOR SPECIFICATIONS

	Operating Conditions: 3.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.									
Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments			
D300	Input offset voltage	VIOFF	_	±5.0	±10	mV				
D301*	Input Common mode voltage	VICM	0	—	Vdd - 1.5	V				
D302*	Common Mode Rejection Ratio	CMRR	55	—	—	db				
300* 300A	Response Time ⁽¹⁾	TRESP		150	400 600	ns ns	16F62X 16LF62X			
301	Comparator Mode Change to Output Valid*	TMC2OV	_	-	10	μS				

* These parameters are characterized but not tested.

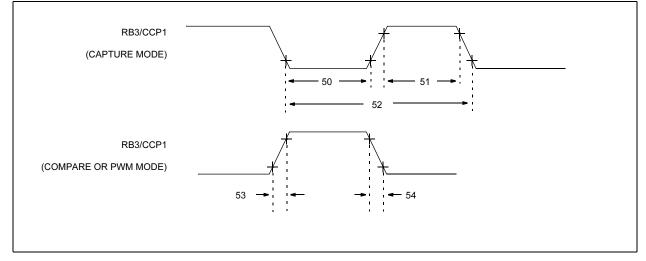
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

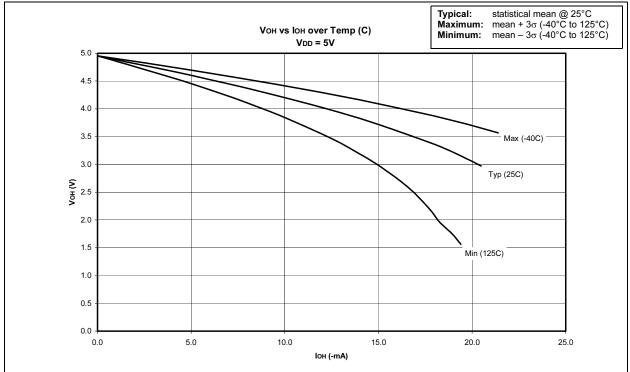

TABLE 17-2: VOLTAGE REFERENCE SPECIFICATIONS

	Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.									
Spec No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments			
D310	Resolution	VRES	VDD/24	—	Vdd/32	LSb				
D311	Absolute Accuracy	VRaa	_	_	1/4	LSb	Low Range (VRR = 1)			
			—		1/2	LSb	High Range (VRR = 0)			
D312*	Unit Resistor Value (R)	VRur	—	2k	—	Ω				
310*	Settling Time ⁽¹⁾	Tset	_	—	10	μs				

* These parameters are characterized but not tested.

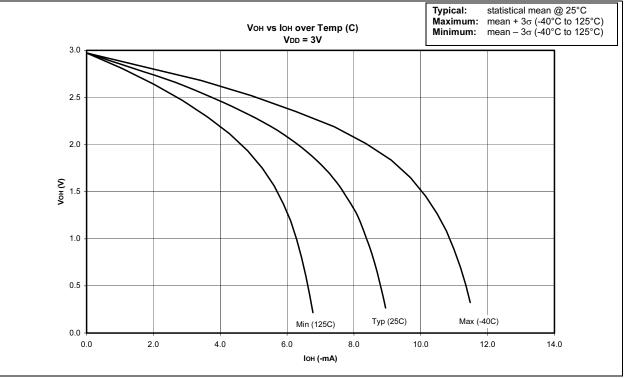
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.



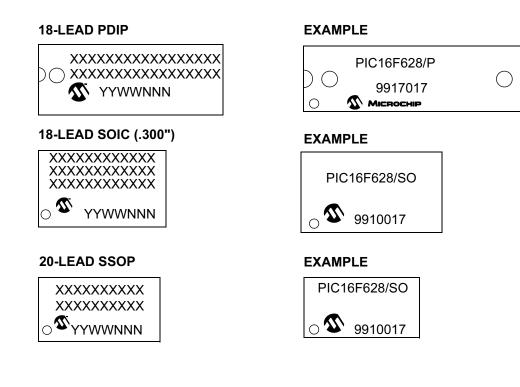

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Puls	e Width	No Prescaler	0.5Tcy + 20	—		ns	
				With Prescaler	10	—	_	ns	
41*	TtOL	T0CKI Low Pulse	e Width	No Prescaler	0.5Tcy + 20	—	—	ns	
				With Prescaler	10	-	—	ns	
42*	Tt0P	T0CKI Period	Greater of: <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)		
45*	Tt1H	T1CKI High	Synchronous, N	lo Prescaler	0.5Tcy + 20	—	—	ns	
		Time	Synchronous,	16F62X	15	-	—	ns	
			with Prescaler	16LF62X	25	—	—	ns	
			Asynchronous	16F62X	30	_	-	ns	
				16LF62X	50	—	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, No Prescaler		0.5Tcy + 20	—	—	ns	
			Synchronous,	16F62X	15	—	—	ns	
			with Prescaler	16LF62X	25	—	—	ns	
			Asynchronous	16F62X	30	-	Ι	ns	
				16LF62X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	16F62X	Greater of: <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
				16LF62X	Greater of: <u>Tcy + 40</u> N	_	—	—	
			Asynchronous	16F62X	60	_	-	ns	
				16LF62X	100	-	—	ns	
	Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN)				DC	-	200	kHz	
48	TCKEZtmr1	Delay from exter increment	2Tosc	-	7Tosc	_			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-11: **CAPTURE/COMPARE/PWM TIMINGS**



Note: The graphs and tables provided in this section are for design guidance and are not tested.


FIGURE 18-18: VOH VS IOH OVER TEMP (C) VDD = 5V

19.0 PACKAGING INFORMATION

19.1 Package Marking Information

Legend:	MMM	Microchip part number information
	XXX	Customer specific information(1)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
Note:		vent the full Microchip part number cannot be marked on one line, it will be carried he next line thus limiting the number of available characters for customer specific ion.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.