

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628-20-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.0 MEMORY ORGANIZATION

3.1 Program Memory Organization

The PIC16F62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the PIC16F627 and 2K x 14 (0000h - 07FFh) for the PIC16F628 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space (PIC16F627) or 2K x 14 space (PIC16F628). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 3-1).

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK

3.2 Data Memory Organization

The data memory (Figure 3-2) is partitioned into four banks, which contain the general purpose registers and the Special Function Registers (SFR). The SFR's are located in the first 32 locations of each Bank. Register locations 20-7Fh, A0h-FFh, 120h-14Fh, 170h-17Fh and 1F0h-1FFh are general purpose registers implemented as static RAM.

The Table below lists how to access the four banks of registers:

	RP1	RP0
Bank0	0	0
Bank1	0	1
Bank2	1	0
Bank3	1	1

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

3.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F62X. Each is accessed either directly or indirectly through the File Select Register FSR (See Section 3.4).

IADEL J	-3. 51					501411417					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 2											
100h	INDF	Addressin ister)	ig this location	n uses cont	ents of FSF	R to address	s data mem	ory (not a pl	nysical reg-	XXXX XXXX	25
101h	TMR0	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	43
102h	PCL	Program (Counter's (PC) Least Sig	nificant Byt	e	•	•	•	0000 0000	25
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
104h	FSR	Indirect da	ata memory a	ddress poir	nter	1	•		•	XXXX XXXX	25
105h	_	Unimplem	nented							_	_
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	34
107h	_	Unimplem	nented							—	—
108h	_	Unimplem	nented							—	_
109h	_	Unimplem	nented							—	_
10Ah	PCLATH	_	_		Write	buffer for u	pper 5 bits o	of program of	counter	0 0000	25
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000	21
10Ch	—	Unimplem	nented							—	—
10Dh		Unimplem	nented							_	—
10Eh		Unimplem	nented							—	—
10Fh		Unimplem	nented							—	—
110h		Unimplem	nented							—	—
111h		Unimplem	nented							—	—
112h		Unimplem	nented							—	—
113h		Unimplem	nented							—	—
114h		Unimplem	nented							—	—
115h		Unimplem	nented							—	—
116h		Unimplem	nented							—	—
117h		Unimplem	nented							—	—
118h		Unimplem	nented							—	—
119h		Unimplem	nented							—	—
11Ah		Unimplem	nented							—	—
11Bh		Unimplem	nented							—	—
11Ch	_	Unimplem	Unimplemented								
11Dh	_	Unimplem	Inimplemented								
11Eh	-	Unimplem	nented							—	_
11Fh	—	Unimplem	nented							—	—

TABLE 3-3: SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented.

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 3											
180h	INDF	Addressin ister)	g this location	n uses cont	ents of FSF	R to address	s data mem	ory (not a pł	nysical reg-	XXXX XXXX	25
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20
182h	PCL	Program 0	Counter's (PC) Least Sig	nificant Byt	е				0000 0000	25
183h	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	19
184h	FSR	Indirect da	ata memory a	ddress poir	nter					xxxx xxxx	25
185h		Unimplem	ented							—	—
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	34
187h	_	Unimplem	ented							—	—
188h	_	Unimplem	ented							—	—
189h	_	Unimplem	ented							—	—
18Ah	PCLATH	_		_	Write buff	er for upper	5 bits of pr	ogram coun	ter	0 0000	25
18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000	21
18Ch		Unimplem	ented							_	—
18Dh		Unimplem	ented							_	—
18Eh		Unimplem	ented							—	—
18Fh		Unimplem	ented							—	—
190h		Unimplem	ented							—	—
191h		Unimplem	ented							—	—
192h		Unimplem	ented							—	—
193h		Unimplem	ented							—	—
194h		Unimplem	ented							—	—
195h	—	Unimplem	ented							_	—
196h	—	Unimplem	ented							_	—
197h		Unimplem	ented							—	—
198h		Unimplem	ented							—	—
199h		Unimplem	ented							—	—
19Ah		Unimplem	ented							—	—
19Bh		Unimplem	Jnimplemented								—
19Ch	_	Unimplem	ented		—	—					
19Dh	_	Unimplem	ented		—	—					
19Eh	_	Unimplem	ented							—	—
19Fh		Unimplem	ented							—	—

TABLE 3-4: SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). Use the instruction sequences, shown in Example 6-1, when changing the prescaler assignment from Timer0 to WDT, to avoid an unintended device RESET.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCF	STATUS, RPO	;Skip if already in
		;Bank 0
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111'b	;These 3 lines
		;(5, 6, 7)
MOVWF	OPTION_REG	;are required only
		;if desired PS<2:0>
		;are
CLRWDT		;000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION_REG	;desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new ;prescale value and ;clock source
MOVWF BCF	OPTION_REG STATUS, RP0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 m	odule regis	ster						xxxx xxxx	uuuu uuuu
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION ⁽²⁾	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

REGISTERS ASSOCIATED WITH TIMER0

Note 1: Shaded bits are not used by TMR0 module.

TABLE 6-1:

2: Option is referred by OPTION REG in MPLAB.

PIC16F62X

ER 12-2:	RCSTA: R	ECEIVE S	TATUS AI	ND CONTR	OL REGIST	ER (ADDR	ESS: 18h)				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Seria (Configures 1 = Serial po 0 = Serial po	al Port Enable RB1/RX/DT a ort enabled ort disabled	e bit and RB2/TX/	CK pins as se	rial port pins wh	en bits TRISI	3<2:17> are	set)				
bit 6	RX9 : 9-bit R 1 = Selects 9 0 = Selects 9	eceive Enabl 9-bit receptio 8-bit receptio	le bit n n									
bit 5	SREN: Sing Asynchronou Don't care Synchronou 1 = Enab 0 = Disab This bit is Synchronou Unused in	le Receive Er us mode: e s mode - mas les single rec les single rec cleared after s mode - slav n this mode	nable bit ster: seive ceive r reception is <u>/e</u> :	complete.								
bit 4	CREN : Cont <u>Asynchronou</u> 1 = Enab 0 = Disat <u>Synchronou</u> 1 = Enab 0 = Disat	inuous Rece us mode: les continuou oles continuou <u>s mode</u> : les continuou oles continuou	ive Enable bi us receive us receive us receive un us receive	t til enable bit C	REN is cleared	(CREN overr	ides SREN)					
bit 3	ADEN: Address Detect Enable bit <u>Asynchronous mode 9-bit (RX9 = 1)</u> : 1 = Enables address detection, enable interrupt and load of the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received, and ninth bit can be used as PARITY bit <u>Asynchronous mode 8-bit (RX9=0)</u> : Unused in this mode Synchronous mode											
bit 2	FERR: Fram 1 = Framing 0 = No frami	ning Error bit error (Can b ing error	e updated by	reading RCR	EG register and	receive next	valid byte)					
bit 1	OERR : Over 1 = Overrun 0 = No overr	rrun Error bit error (Can b un error	e cleared by	clearing bit CF	REN)							
bit 0	RX9D : 9th b	it of received	data (Can b	e PARITY bit)								
	Legend:											
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	lemented b	it, read as '	0'				

REGISTER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

12.3 USART Function

The USART function is similar to that on the PIC16C74B, which includes the BRGH = 1 fix.

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed so when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer. The ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if, and only, if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (='1'), all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = '1'). When ADEN is disabled (='0'), all data bytes are received and the 9th bit can be used as the PARITY bit.

The USART Receive Block Diagram is shown in Figure 12-8.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Steps to follow when setting up an Asynchronous or Synchronous Reception with Address Detect Enabled:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable asynchronous or synchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. Set bit RX9 to enable 9-bit reception.
- 5. Set ADEN to enable address detect.
- 6. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 9. If any error occurred, clear the error by clearing enable bit CREN if it was already set.
- If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

12.5 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RB2/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.5.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in Slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

1. Enable the synchronous master serial port by

setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART T	ransmit I	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera			0000 0000	0000 0000				

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive F	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

NOTES:

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC16F62X can be operated in eight different oscillator options. The user can program three configuration bits (FOSC2 thru FOSC0) to select one of these eight modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- ER External Resistor (2 modes)
- INTRC Internal Resistor/Capacitor (2 modes)
- EC External Clock In

14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 14-1). The PIC16F62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 14-4).

FIGURE 14-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

F				
Mode	Freq	OSC1(C1)	OSC2(C2)	
ХТ	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF	
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF	
Note 1: Higher capacitance increases the stability of the oscilla- tor but also increases the start-up time. These values are for design guidance only. Since each resonator has				

TABLE 14-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

components

its own characteristics, the user should consult the res-

onator manufacturer for appropriate values of external

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
ХТ	100 kHz	68 - 150 pF	150 - 200 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15 - 30 pF	15 - 30 pF
	10 MHz	15 - 30 pF	15 - 30 pF
	20 MHz	15 - 30 pF	15 - 30 pF
Note 1:	Higher capacitance increases the stability of the oscilla- tor but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components		

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used, or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-2 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

TABLE 14-7: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during SLEEP	000h	0001 0uuu	1-uu
WDT Reset	000h	0000 uuuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Detect Reset	000h	000x xuuu	1-u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register	Address	Power-on Reset	 MCLR Reset during normal operation MCLR Reset during SLEEP WDT Reset Brown-out Detect Reset ⁽¹⁾ 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT timeout
W		xxxx xxxx	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
INDF	00h	-	-	-
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h	XXXX XXXX	սսսս սսսս	սսսս սսսս
PORTA	05h	xxxx 0000	xxxx u000	xxxx 0000
PORTB	06h	xxxx xxxx	uuuu uuuu	սսսս սսսս
T1CON	10h	00 0000	uu uuuu	uu uuuu
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
CCP1CON	17h	00 0000	00 0000	uu uuuu
RCSTA	18h	0000 -00x	0000 -00x	uuuu -uuu
CMCON	1Fh	0000 0000	0000 0000	uu uuuu
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	0000 -000	0000 -000	-q (2,5)
OPTION	81h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	11-1 1111	11 1111	uu-u uuuu
TRISB	86h	1111 1111	1111 1111	uuuu uuuu
PIE1	8Ch	0000 -000	0000 -000	uuuu -uuu
PCON	8Eh	1-0x	1-uq ^(1,6)	
TXSTA	98h	0000 -010	0000 -010	นนนน -นนน
EECON1	9Ch	x000	q000	uuuu
VRCON	9Fh	000- 0000	000- 0000	นนน- นนนน

 TABLE 14-8:
 INITIALIZATION CONDITION FOR REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-7 for RESET value for specific condition.

5: If wake-up was due to comparator input changing, then Bit 6 = 1. All other interrupts generating a wake-up will cause Bit 6 = u.

6: If RESET was due to brown-out, then Bit 0 = 0. All other RESETS will cause Bit 0 = u.

15.0 INSTRUCTION SET SUMMARY

Each PIC16F62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F62X instruction set summary in Table 15-2 lists byte-oriented, bitoriented, and literal and control operations. Table 15-1 shows the opcode field descriptions.

For byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For literal and control operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLA TH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASM[™] assembler.

Figure 15-1 shows the three general formats that the instructions can have.

- Note 1: Any unused opcode is reserved. Use of any reserved opcode may cause unexpected operation.
 - 2: To maintain upward compatibility with future PICmicro[®] products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16F62X

CLRW	Clear W					COMF
Syntax:	[label]	CLRW				Syntax
Operands:	None					Opera
Operation:	$\begin{array}{c} 00h \rightarrow 0\\ 1 \rightarrow Z \end{array}$	(W)				Opera
Status Affected:	Z					Status
Encoding:	00	0001	0000	0011		Encod
Description:	W regis (Z) is se	ter is cle et.	ared. Zer	o bit	1	Descri
Words:	1					
Cycles:	1					
Example	CLRW					Words
	Before Instruction					Cycles
	W = 0x5A After Instruction $W = 0x00$ $Z = 1$				Examp	

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	COMF REG1, 0
	Before Instruction REG1 = $0x13$ After Instruction REG1 = $0x13$ W = $0xEC$

CLRWDT	Clear Watchdog Timer	DECF
Syntax:	[label] CLRWDT	Syntax:
Operands:	None	Operands:
Operation:	$00h \rightarrow WDT$ $0 \rightarrow \underline{W}DT \text{ prescaler,}$ $1 \rightarrow \underline{TO}$ $1 \rightarrow \overline{PD}$	Operation: Status Affecte
Status Affected:	TO, PD	Encoding:
Encoding:	00 0000 0110 0100	Description:
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. STATUS bits TO and PD are set.	Words:
Words:	1	Cycles:
Cycles:	1	Example
Example	CLRWDT	
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1	

DECF	Decrement f				
Syntax:	[label] DECF f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	(f) - 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0011 dfff ffff				
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	DECF CNT, 1				
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1				

PIC16F62X

INCF	Increment f	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	Z	Status Affected:	None
Encoding:	00 1010 dfff ffff	Encoding:	00 1111 dfff ffff
Description: Words: Cycles:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. 1	Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded, A NOP is
Example	INCF REG1, 1		executed instead making it a two-cycle instruction.
	REG1 = 0xFF	Words:	1
	Z = 0	Cycles:	1 ⁽²⁾
	After Instruction REG1 = 0x00 Z = 1	Example	HERE INCFSZ REG1, 1 GOTO LOOP CONTINUE •
			•
			Before Instruction

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

-

17.2 DC Characteristics: PIC16F62X (Commercial, Industrial, Extended) PIC16LF62X (Commercial, Industrial)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Sym	Characteristic/Device	Min	Тур†	Мах	Unit	Conditions
	VIL	Input Low Voltage					
D030		I/O ports with TTL buffer	Vss	_	0.8 0.15 Vdd	V V	VDD = 4.5V to 5.5V otherwise
D031 D032		with Schmitt Trigger input MCLR, RA4/T0CKI,OSC1 (in ER mode)	Vss Vss	_	0.2 Vdd 0.2 Vdd	V V	(Note1)
D033		OSC1 (in XT and HS) OSC1 (in LP)	Vss Vss	_	0.3 Vdd 0.6 Vdd - 1.0	V V	
	Vih	Input High Voltage					
D040		I/O ports with TTL buffer	2.0V .25 Vdd + 0.8V	_	Vdd Vdd	V V	VDD = 4.5V to 5.5V otherwise
D041 D042 D043		with Schmitt Trigger input MCLR RA4/T0CKI OSC1 (XT, HS and LP)	0.8 VDD 0.8 VDD 0.7 VDD		Vdd Vdd Vdd	V V V	
D043A		OSC1 (in ER mode)	0.9 Vdd			V	(Note1)
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS
	١L	Input Leakage Current ^{(2), (3)}					
D060 D061 D063		I/O ports (Except PORTA) PORTA RA4/T0CKI OSC1, MCLR	_ _ _		$\pm 1.0 \\ \pm 0.5 \\ \pm 1.0 \\ \pm 5.0$	μΑ μΑ μΑ	$\label{eq:VSS} \begin{array}{l} VPIN \leq VDD, \ \text{pin at hi-impedance} \\ VSS \leq VPIN \leq VDD, \ \text{pin at hi-impedance} \\ VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \ XT, \ HS \ \text{and} \ LP \ \text{osc} \\ configuration \end{array}$
	Vol	Output Low Voltage	•		•		
D080 D083		I/O ports OSC2/CLKOUT (ER only)		 	0.6 0.6 0.6 0.6	V V V V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C IOL=7.0 mA, VDD=4.5V, +125°C IOL=1.6 mA, VDD=4.5V, -40° to +85°C IOL=1.2 mA, VDD=4.5V, +125°C
	Vон	Output High Voltage ⁽³⁾			I		
D090 D092		I/O ports (Except RA4) OSC2/CLKOUT (ER only)	Vdd - 0.7 Vdd - 0.7 Vdd - 0.7			V V V	IOH=-3.0 mA, VDD=4.5V, -40° to +85°C IOH=-2.5 mA, VDD=4.5V, +125°C IOH=-1.3 mA, VDD=4.5V, -40° to +85°C
2002			VDD - 0.7	_	_	v	Iон=-1.0 mA, VDD=4.5V, +125°С
D150	Vod	Open-Drain High Voltage		_	8.5	V	RA4 pin PIC16F62X, PIC16LF62X*
		Capacitive Loading Specs on C	Output Pins				
D100*	COSC2	OSC2 pin		—	15	pF	In XT, HS and LP modes when external clock used to drive OSC1.
D101*	Cio	All I/O pins/OSC2 (in ER mode)		_	50	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In ER oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F62X be driven with external clock in ER mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Param No.	Sym	Characteristic		Min	Тур†	Max	Units
10*	TosH2ckL	OSC1↑ to CLKOUT↓	16F62X	—	75	200	ns
10A*			16LF62X	—	_	400	ns
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	16F62X	—	75	200	ns
11A*			16LF62X	—	_	400	ns
12*	TckR	CLKOUT rise time	16F62X	—	35	100	ns
12A*			16LF62X	—	_	200	ns
13*	TckF	CLKOUT fall time	16F62X	—	35	100	ns
13A*			16LF62X	—		200	ns
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	20	ns
15*	TioV2ckH	Port in valid before	16F62X	Tosc+200 ns	_	—	ns
		CLKOUT ↑	16LF62X	Tosc=400 ns	_	—	ns
16*	TckH2iol	Port in hold after CLKOUT 1		0	_	—	ns
17*	TosH2ioV	OSC1↑ (Q1 cycle) to	16F62X	—	50	150*	ns
		Port out valid	16LF62X	—	_	300	ns
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)		100 200	_	—	ns

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

