

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

1.0 PIC16F62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F62X Product Identification System section (Page 167) at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

1.1 FLASH Devices

FLASH devices can be erased and reprogrammed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically-erasable FLASH is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus, or PRO MATE[®] II programmers.

1.2 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are standard FLASH devices but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

1.3 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

NOTES:

2.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16F62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16F62X uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional Von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single-word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The Table below lists program memory (FLASH, Data and EEPROM).

TABLE 2-1: DEVICE DESCRIPTION

	Memory						
Device	FLASH Program	RAM Data	EEPROM Data				
PIC16F627	1024 x 14	224 x 8	128 x 8				
PIC16F628	2048 x 14	224 x 8	128 x 8				
PIC16LF627	1024 x 14	224 x 8	128 x 8				
PIC16LF628	2048 x 14	224 x 8	128 x 8				

The PIC16F62X can directly or indirectly address its register files or data memory. All Special Function registers, including the program counter, are mapped in the data memory. The PIC16F62X have an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any Addressing mode. This symmetrical nature, and lack of 'special optimal situations' make programming with the PIC16F62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16F62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 2-1, and a description of the device pins in Table 2-1.

Two types of data memory are provided on the PIC16F62X devices. Non-volatile EEPROM data memory is provided for long term storage of data such as calibration values, lookup table data, and any other data which may require periodic updating in the field. This data is not lost when power is removed. The other data memory provided is regular RAM data memory. Regular RAM data memory is provided for temporary storage of data during normal operation. It is lost when power is removed.

3.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	TMR0, assign the prescaler to the WDT
	(PSA = 1). See Section 6.3.1

REGISTER 3-2: OPTION REGISTER (ADDRESS: 81h, 181h)

101

110 111

Legend:

R = Readable bit

-n = Value at POR

1:64

1:128

1:256

			UBBILL	<i></i> ,,	,,					
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7	RBPU : PO	RTB Pull-up	o Enable bit	:						
	1 = PORTE	3 pull-ups ai	re disabled		port latch value	es				
bit 6	INTEDG: In	nterrupt Edg	je Select bi	t						
		 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 								
bit 5	TOCS: TM	R0 Clock Sc	ource Selec	t bit						
		ion on RA4/ I instruction		(CLKOUT)						
bit 4	TOSE: TMF	R0 Source E	Edge Select	bit						
		-			4/T0CKI pin 4/T0CKI pin					
bit 3	PSA: Pres	caler Assigr	ment bit							
		ller is assigr ller is assigr		/DT imer0 modu	le					
bit 2-0	PS2:PS0:	Prescaler R	ate Select k	oits						
	E	Bit Value T	MR0 Rate	WDT Rate						
	-	000 001	1:2 1:4	1:1 1:2						
		010 011 100	1 : 8 1 : 16 1 : 32	1:4 1:8 1:16						

1:32 1:64

1:128

W = Writable bit

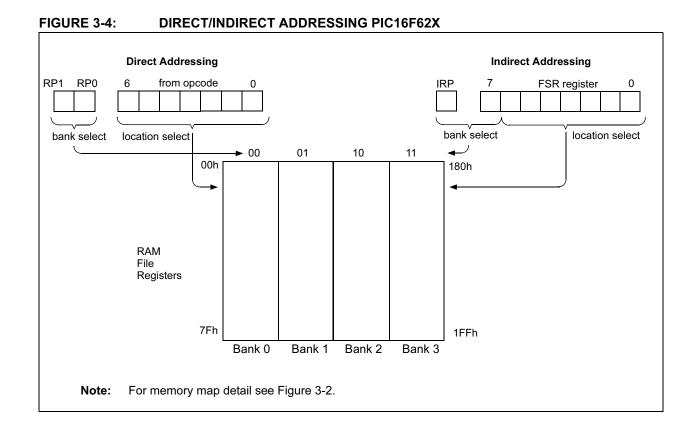
'1' = Bit is set

x = Bit is unknown

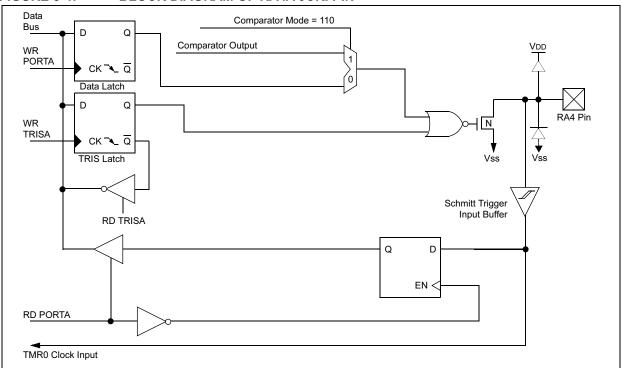
U = Unimplemented bit, read as '0'

'0' = Bit is cleared

3.2.2.3 INTCON Register


The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

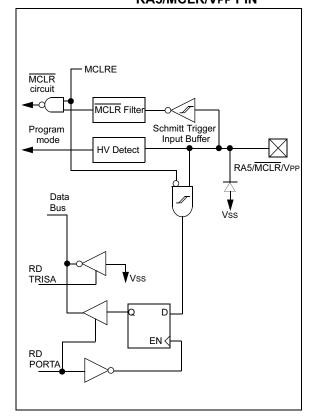
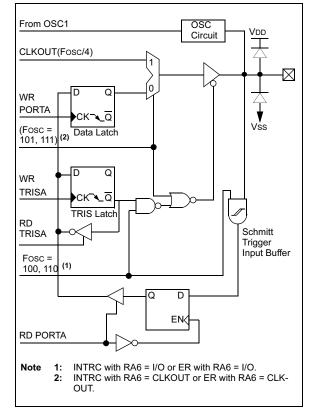
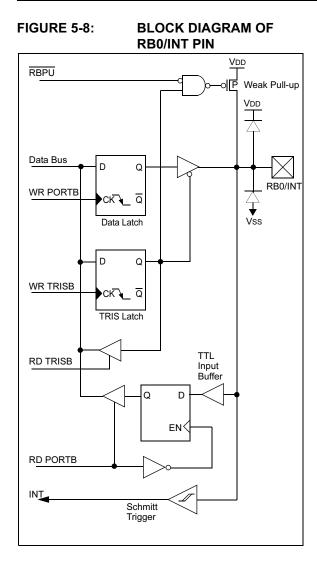
Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

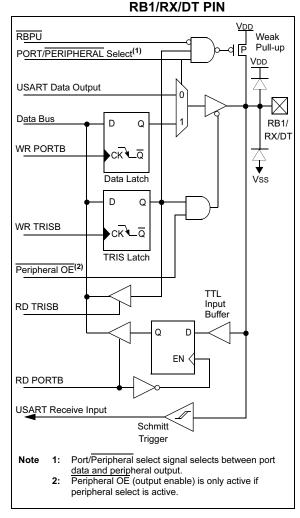

REGISTER 3-3:		REGISTER	(ADDRES	S: 0Bh, 8	Bh, 10Bh, 18	Bh)		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
		s all unmas es all interru	•	ots				
bit 6	PEIE: Peri	oheral Interr	upt Enable	bit				
		s all unmas es all periph			S			
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit				
		s the TMR0 es the TMR0						
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit				
		s the RB0/II es the RB0/I						
bit 3	RBIE: RB I	Port Change	e Interrupt E	nable bit				
		s the RB po es the RB po						
bit 2	TOIF: TMR	0 Overflow	nterrupt Fla	ag bit				
		register has register did			eared in softwa	are)		
bit 1	INTF: RB0	/INT Externa	al Interrupt	Flag bit				
		30/INT exter 30/INT exter		•	must be cleare	d in softwaı	e)	
bit 0	RBIF: RB I	Port Change	Interrupt F	lag bit				
		at least one of the RB7:R			nanged state (n state	nust be clea	ared in softw	vare)
	Levendu							1

Legend:				
R = Readable bit	it W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

PIC16F62X

BLOCK DIAGRAM OF THE RA5/MCLR/VPP PIN


FIGURE 5-6:

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

FIGURE 5-9: BLOCK DIAGRAM OF

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module. Additional information available in the PICmicro™ Mid Pange MCLL Eamily Reference

PICmicro™ Mid-Range MCU Family Reference Manual, DS31010A.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles. The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4,..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP.

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-1). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device. See Table 17-7.

7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2).

In Asynchronous Counter mode, Timer1 can not be used as a time-base for capture or compare operations.

7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high-time and low-time requirements. Refer to the appropriate Electrical Specifications section, Timing Parameters 45, 46, and 47.

7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All interrupts are disabled
  MOVF TMR1H, W ;Read high byte
  MOVWF TMPH
  MOVF
         TMR1L, W ;Read low byte
  MOVWF TMPL
                   ;
  MOVF
         TMR1H, W ;Read high byte
  SUBWF
         TMPH, W
                   ;Sub 1st read
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
  GOTO
         CONTINUE ;Good 16-bit read
;
 TMR1L may have rolled over between the read
;
; of the high and low bytes. Reading the high
; and low bytes now will read a good value.
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
  MOVF
         TMR1L, W
                   ;Read low byte
  MOVWF TMPL
                   ;
; Re-enable the Interrupts (if required)
                   ;Continue with your code
CONTINUE
```

REGISTER 8-1:	T2CO	N: TIMER C		REGISTER	(ADDRESS:	12h)		
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimplem	ented: Read	as '0'					
bit 6-3	TOUTPS3:	TOUTPS0: 1	Timer2 Outpu	ut Postscale	Select bits			
	0000 = 1:1	Postscale V	alue					
	0001 = 1:2	Postscale V	alue					
	•							
	•							
	1111 = 1:1	6 Postscale						
bit 2	TMR2ON:	Timer2 On bi	it					
	1 = Timer2	is on						
	0 = Timer2	is off						
bit 1-0	T2CKPS1:	T2CKPS0: T	imer2 Clock	Prescale Se	lect bits			
	00 = 1:1 P	rescaler Valu	е					
		rescaler Valu	-					
	1x = 1:16	Prescaler Val	ue					
								1
	Legend:							

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

W = Writable bit

U = Unimplemented bit, read as '0'

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

R = Readable bit

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2 Timer2 module's register									0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2 Timer2 Period Register									1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

10.0 VOLTAGE REFERENCE MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Figure 10-1. The block diagram is given in Figure 10-1.

REGISTER 10-1: VRCON REGISTER (ADDRESS: 9Fh)

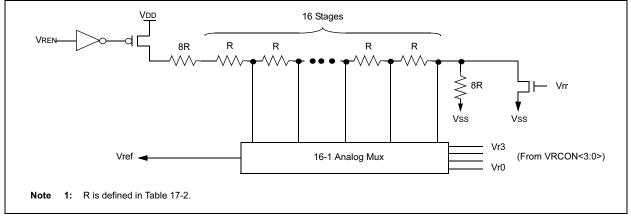
10.1 Configuring the Voltage Reference

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1: VREF = (VR<3:0>/24) x VDD

voltage of 1.25V with VDD = 5.0V.


if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD

The setting time of the Voltage Reference must be considered when changing the VREF output (Table 17-2). Example 10-1 shows an example of how to configure the Voltage Reference for an output

		LOISTER		5. 31 11)				
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	VREN	VROE	Vrr	_	VR3	VR2	VR1	VR0
	bit 7							bit
bit 7	Vren: Vrei	F Enable						
		ircuit power ircuit power		o IDD drain				
bit 6	VROE: VRE	F Output En	able					
		s output on F s disconnect	•	2 pin				
bit 5	VRR: VREF	Range sele	ction					
	1 = Low Ra 0 = High R	0						
bit 4	Unimplem	ented: Rea	d as '0'					
bit 3-0	When VRR	= 1: Vref =	(VR<3:0>/	≦ VR [3:0] ≤ 1 24) * VDD ⊦ (VR<3:0>/				

Legend:			
R = Readable bit	W = Writable bit	bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-1: VOLTAGE REFERENCE BLOCK DIAGRAM

12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is RESET by the hardware. In this case, it is RESET when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th

receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	USART Receive Register					0000 0000	0000 0000		
8Ch	PIE1	EEPIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Reg	ister					0000 0000	0000 0000

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, RPO	; Bank 1
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	EECON1, RD	; EE Read
MOVF	EEDATA, W	; W = EEDATA
BCF	STATUS, RPO	; Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

WOVWW SSN ; MOVWF EECON2 ; Write SSN ; MOVWF EECON2 ; WOVWF EECON2 ; Write AAh ; BSF EECON1,WR ; BSF EECON1,WR ; BSF INTCON, GIE ; Enable INTs.	Required Sequence	MOVLW AAh MOVWF EECON2 BSF EECON1,WR	; ; Write AAh ; Set WR bit ; begin write
---	----------------------	--	---

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

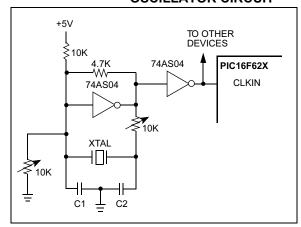
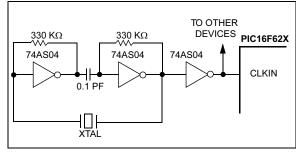
There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

FIGURE 14-2: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

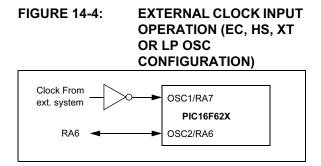

Figure 14-3 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-3: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

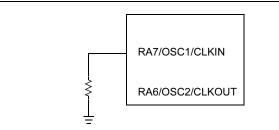
14.2.4 EXTERNAL CLOCK IN

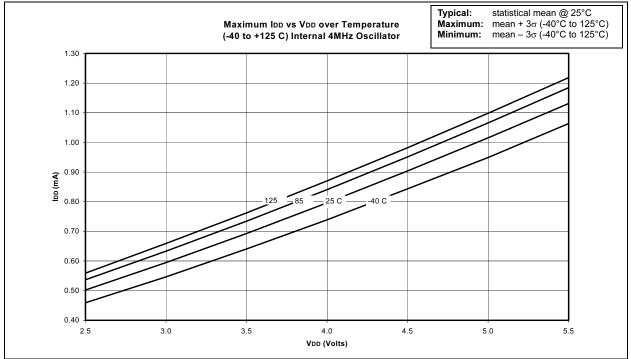
For applications, where a clock is already available elsewhere, users may directly drive the PIC16F62X provided that this external clock source meets the AC/DC timing requirements listed in Section 17.4. Figure 14-4 shows how an external clock circuit should be configured.

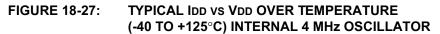
14.2.5 ER OSCILLATOR

For timing insensitive applications, the ER (External Resistor) Clock mode offers additional cost savings. Only one external component, a resistor to VSs, is needed to set the operating frequency of the internal oscillator. The resistor draws a DC bias current which controls the oscillation frequency. In addition to the resistance value, the oscillator frequency will vary from unit to unit, and as a function of supply voltage and temperature. Since the controlling parameter is a DC current and not a capacitance, the particular package type and lead frame will not have a significant effect on the resultant frequency.

Figure 14-5 shows how the controlling resistor is connected to the PIC16F62X. For REXT values below 10k, the oscillator operation becomes sensitive to temperature. For very high REXT values (e.g., 1M), the oscillator becomes sensitive to leakage and may stop completely. Thus, we recommend keeping REXT between 10k and 1M.



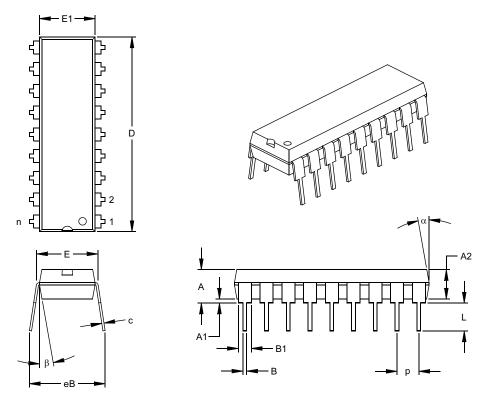

Table 14-3 shows the relationship between the resistance value and the operating frequency.


TABLE 14-3: RESISTANCE AND FREQUENCY RELATIONSHIP

Resistance	Frequency
0	10.4 MHz
1K	10 MHz
10K	7.4 MHz
20K	5.3 MHz
47K	3 MHz
100K	1.6 MHz
220K	800 kHz
470K	300 kHz
1M	200 kHz

The ER Oscillator mode has two options that control the unused OSC2 pin. The first allows it to be used as a general purpose I/O port. The other configures the pin as an output providing the Fosc signal (internal clock divided by 4) for test or external synchronization purposes. Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-26: MAXIMUM IDD vs VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 4 MHz OSCILLATOR



PIC16F62X

K04-007 18-Lead Plastic Dual In-line (P) - 300 mil

s MIN .140	NOM 18 .100	MAX	MIN	NOM 18	MAX
-	.100			18	
-				10	
-				2.54	
	.155	.170	3.56	3.94	4.32
.115	.130	.145	2.92	3.30	3.68
.015			0.38		
.300	.313	.325	7.62	7.94	8.26
.240	.250	.260	6.10	6.35	6.60
.890	.898	.905	22.61	22.80	22.99
.125	.130	.135	3.18	3.30	3.43
.008	.012	.015	0.20	0.29	0.38
.045	.058	.070	1.14	1.46	1.78
.014	.018	.022	0.36	0.46	0.56
.310	.370	.430	7.87	9.40	10.92
5	10	15	5	10	15
F	10	15	5	10	15
	.240 .890 .125 .008 .045 .014	.240 .250 .890 .898 .125 .130 .008 .012 .045 .058 .014 .018 .310 .370 5 .10	.240 .250 .260 .890 .898 .905 .125 .130 .135 .008 .012 .015 .045 .058 .070 .014 .018 .022 .310 .370 .430 5 10 15	.240 .250 .260 6.10 .890 .898 .905 22.61 .125 .130 .135 3.18 .008 .012 .015 0.20 .045 .058 .070 1.14 .014 .018 .022 0.36 .310 .370 .430 7.87 5 10 15 5	.240 .250 .260 6.10 6.35 .890 .898 .905 22.61 22.80 .125 .130 .135 3.18 3.30 .008 .012 .015 0.20 0.29 .045 .058 .070 1.14 1.46 .014 .018 .022 0.36 0.46 .310 .370 .430 7.87 9.40 5 10 15 5 10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

MOVLW	
MOVWF	116
NOP	
OPTION	
RETFIE	116
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	119
TRIS	119
XORLW	120
XORWF	120
Instruction Set Summary	
INT Interrupt	102
INTCON Register	21
Interrupt Sources	
Capture Complete (CCP)	62
Compare Complete (CCP)	63
TMR2 to PR2 Match (PWM)	64
Interrupts	101
Interrupts, Enable Bits	
CCP1 Enable (CCP1IE Bit)	62
Interrupts, Flag Bits	
CCP1 Flag (CCP1IF Bit)	62
IORLW Instruction	115
IORWF Instruction	

Μ

Memory Organization	
Data EEPROM Memory	
MOVF Instruction	
MOVLW Instruction	115
MOVWF Instruction	116
MPLAB C17 and MPLAB C18 C Compilers	122
MPLAB ICD In-Circuit Debugger	123
MPLAB ICE High Performance Universal In-Circuit	Emulator
with MPLAB IDE	123
MPLAB Integrated Development Environment Softw	vare 121
MPLINK Object Linker/MPLIB Object Librarian	122

Ν

0

OPTION Instruction	
OPTION Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	
Output of TMR2.	

Ρ

157
157
25
24
24
124
124
124
r 123
22

Pin Functions	
RC6/TX/CK	67–84
RC7/RX/DT	67–84
PIR1	23
PIR1 Register	23
Port RB Interrupt	
PORTA	29
PORTB	34
Power Control/Status Register (PCON)	
Power-Down Mode (SLEEP)	
Power-On Reset (POR)	
Power-up Timer (PWRT)	
PR2 Register	50
Prescaler	44
Prescaler, Capture	62
Prescaler, Timer2	65
PRO MATE II Universal Device Programmer	123
Program Memory Organization	
PROTECTION	
PWM (CCP Module)	
Block Diagram	
CCPR1H:CCPR1L Registers	
Duty Cycle	65
Example Frequencies/Resolutions	
Output Diagram	64
Period	64
Set-Up for PWM Operation	
TMR2 to PR2 Match	

Q

Q-Clock	65
Quick-Turnaround-Production (QTP) Devices	5

R

RC Oscillator	
Registers	
Maps	
PIC16C76	
PIC16C77	
Reset	
RETFIE Instruction	116
RETLW Instruction	117
RETURN Instruction	117
RLF Instruction	117
RRF Instruction	118

s

Serial Communication Interface (SCI) Module, See	USART
Serialized Quick-Turnaround-Production (SQTP) De	vices 5
SLEEP Instruction	118
Software Simulator (MPLAB SIM)	122
Special	95
Special Event Trigger. See Compare	
Special Features of the CPU	91
Special Function Registers	15
Stack	25
Status Register	19
SUBLW Instruction	118
SUBWF Instruction	119
SWAPF Instruction	119

т

T1CKPS0 bit	
T1CKPS1 bit	
T1OSCEN bit	46

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent		
RE:	Reader Response			
Fron	ו: Name			
	Company			
	Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Application (optional):				
Would you like a reply?YN				
Device: PIC16F62X Literature Number: DS40300C				
Questions:				
1. What are the best features of this document?				
-				
2.	2. How does this document meet your hardware and software development needs?			
-				
-				
3. I	B. Do you find the organization of this document easy to follow? If not, why?			
-				
-				
4.	What additions to the document do y	ou think would enhance the structure and subject?		
-				
5 \	Nhat deletions from the document or	ould be made without affecting the overall usefulness?		
5.		Sud be made without anecting the overall usefulness?		
-				
6. I	s there any incorrect or misleading in	nformation (what and where)?		
	. 0			
-				
7. I	How would you improve this docume	nt?		
-				