

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628-20e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F62X

Pin Diagrams

Device Differences

Device	Voltage Range	Oscillator	Process Technology (Microns)						
PIC16F627	3.0 - 5.5	(Note 1)	0.7						
PIC16F628	3.0 - 5.5	(Note 1)	0.7						
PIC16LF627	2.0 - 5.5	(Note 1)	0.7						
PIC16LF628	2.0 - 5.5	(Note 1)	0.7						
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.									

1.0 PIC16F62X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F62X Product Identification System section (Page 167) at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

1.1 FLASH Devices

FLASH devices can be erased and reprogrammed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically-erasable FLASH is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus, or PRO MATE[®] II programmers.

1.2 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are standard FLASH devices but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

1.3 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

NOTES:

3.0 MEMORY ORGANIZATION

3.1 Program Memory Organization

The PIC16F62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the PIC16F627 and 2K x 14 (0000h - 07FFh) for the PIC16F628 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space (PIC16F627) or 2K x 14 space (PIC16F628). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 3-1).

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK

3.2 Data Memory Organization

The data memory (Figure 3-2) is partitioned into four banks, which contain the general purpose registers and the Special Function Registers (SFR). The SFR's are located in the first 32 locations of each Bank. Register locations 20-7Fh, A0h-FFh, 120h-14Fh, 170h-17Fh and 1F0h-1FFh are general purpose registers implemented as static RAM.

The Table below lists how to access the four banks of registers:

	RP1	RP0
Bank0	0	0
Bank1	0	1
Bank2	1	0
Bank3	1	1

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

3.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F62X. Each is accessed either directly or indirectly through the File Select Register FSR (See Section 3.4).

3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 3-3:	INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x			
	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF			
	bit 7							bit 0			
bit 7	GIE: Globa	al Interrupt E	Enable bit								
	1 = Enable 0 = Disable	es all unmas es all interru	ked interrup pts	ots							
bit 6	PEIE: Peri	pheral Interr	upt Enable	bit							
bit 5	TOIE: TMR	0 Overflow	Interrupt Er	able bit							
	1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
bit 4	INTE: RB0	/INT Extern	al Interrupt	Enable bit							
	 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 										
bit 3	RBIE: RB Port Change Interrupt Enable bit										
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 										
bit 2	T0IF: TMR0 Overflow Interrupt Flag bit										
	1 = TMR0 register has overflowed (must be cleared in software)0 = TMR0 register did not overflow										
bit 1	INTF: RB0/INT External Interrupt Flag bit										
	 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur 										
bit 0	RBIF: RB Port Change Interrupt Flag bit										
	 1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state 										

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

PIC16F62X

	Functio	Input	Output	
Name	n	Туре	Туре	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN	—	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	_	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	—	Analog comparator input
	VREF		AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	—	Analog comparator input
	CMP1		CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	External clock input for TMR0 or comparator output. Output is open drain type
	CMP2		OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	_	Input port
	MCLR	ST	—	Master clear
	Vpp	ΗV	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port.
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal resonator in Crystal Oscillator mode.
	CLKOUT	_	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	_	Oscillator crystal input
	CLKIN	ST	_	External clock source input. ER biasing pin.
	44 Tui a a a i a		$\chi = 11$ sh χ	

TABLE 5-1: PORTA FUNCTIONS

Legend: ST = Schmitt Trigger input HV = High Voltage OD = Open Drain AN = Analog

FIGURE 5-9: BLOCK DIAGRAM OF

© 2003 Microchip Technology Inc.

6.3 Timer0 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no postscaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT

REGISTER 8-1:	T2CON	I: TIMER C	ONTROL F	REGISTER	(ADDRESS:	12h)				
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	as '0'							
bit 6-3	TOUTPS3:	TOUTPS0: 1	imer2 Outpu	ut Postscale	Select bits					
	0000 = 1:1	Postscale V	alue							
	0001 = 1:2 Postscale Value									
•										
	•									
	•									
	1111 = 1:1	6 Postscale								
bit 2	TMR2ON:	Timer2 On bi	t							
	1 = Timer2	is on								
	0 = Timer2	is off								
bit 1-0	T2CKPS1:	T2CKPS0: T	imer2 Clock	Prescale Se	lect bits					
	00 = 1:1 Pr	escaler Valu	е							
	01 = 1:4 Pr	escaler Valu	е							
	1x = 1:16 F	Prescaler Val	ue							
	Legend:									

	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknow
--	-------------------	------------------	----------------------	-------------------

W = Writable bit

U = Unimplemented bit, read as '0'

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

R = Readable bit

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2	Timer2 module's register								0000 0000	0000 0000
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

9.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 9-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-1.

Note: Comparator interrupts should be disabled during a Comparator mode change otherwise a false interrupt may occur.

FIGURE 9-4: ANALOG INPUT MODE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh	CMCON	C2OUT	C10UT	C2INV	C1NV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0'

NOTES:

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA			NA			NA		
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA	_	_	NA	_	_
300	312.5	+4.17%	0	NA		—	NA	_	
500	NA			NA		—	NA	_	
HIGH	312.5		0	250	_	0	156.3	_	0
LOW	1.221		255	0.977	_	255	0.6104	_	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 7.15909 MHz		SPBRG 5.0688 MHz				SPBRG		
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_	_	79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2	_	0	62.500	_	0
LOW	0.437	—	255	0.3094	—	255	3.906	—	255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	—	—
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	—	—
9.6	9.322	-2.90%	5	NA	_	_	NA	—	—
19.2	18.64	-2.90%	2	NA			NA	_	_
76.8	NA		—	NA	_		NA	—	—
96	NA		_	NA			NA	_	_
300	NA		_	NA			NA	_	_
500	NA		—	NA	_		NA	_	—
HIGH	55.93		0	15.63		0	0.512	_	0
LOW	0.2185	—	255	0.0610		255	0.0020	—	255

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in Slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

1. Enable the synchronous master serial port by

setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART TI	USART Transmit Register								0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	0000 0000	0000 0000							

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive F	0000 0000	0000 0000						
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

FIGURE 18-18: VOH VS IOH OVER TEMP (C) VDD = 5V

FIGURE 18-24: MAXIMUM IDD vs VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 37 kHz OSCILLATOR

FIGURE 18-25: TYPICAL IDD VS VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 37 kHz OSCILLATOR

FIGURE 18-26: MAXIMUM IDD vs VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 4 MHz OSCILLATOR

