

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

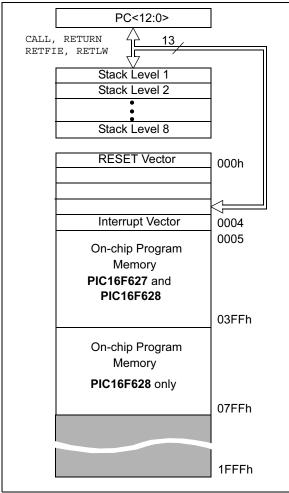
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628-20e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


NOTES:

3.0 MEMORY ORGANIZATION

3.1 Program Memory Organization

The PIC16F62X has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the PIC16F627 and 2K x 14 (0000h - 07FFh) for the PIC16F628 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 1K x 14 space (PIC16F627) or 2K x 14 space (PIC16F628). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 3-1).

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK

3.2 Data Memory Organization

The data memory (Figure 3-2) is partitioned into four banks, which contain the general purpose registers and the Special Function Registers (SFR). The SFR's are located in the first 32 locations of each Bank. Register locations 20-7Fh, A0h-FFh, 120h-14Fh, 170h-17Fh and 1F0h-1FFh are general purpose registers implemented as static RAM.

The Table below lists how to access the four banks of registers:

	RP1	RP0
Bank0	0	0
Bank1	0	1
Bank2	1	0
Bank3	1	1

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

3.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F62X. Each is accessed either directly or indirectly through the File Select Register FSR (See Section 3.4).

NOTES:

6.3 Timer0 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no postscaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

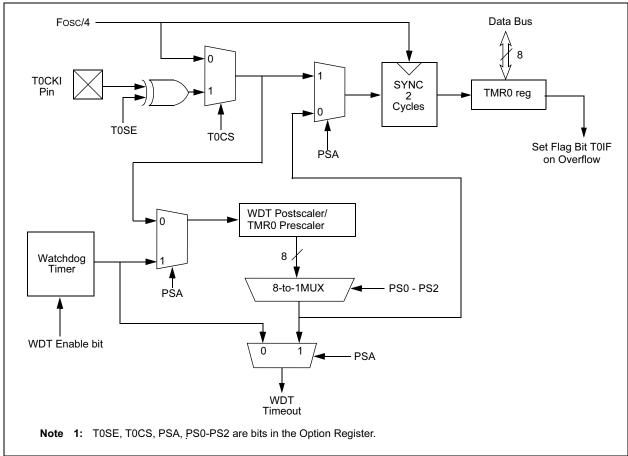


FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT

7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2).

In Asynchronous Counter mode, Timer1 can not be used as a time-base for capture or compare operations.

7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high-time and low-time requirements. Refer to the appropriate Electrical Specifications section, Timing Parameters 45, 46, and 47.

7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

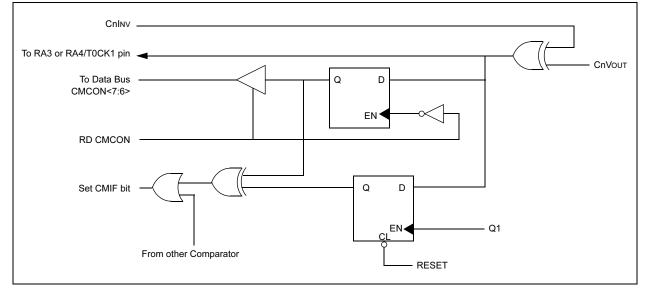
Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All interrupts are disabled
  MOVF TMR1H, W ;Read high byte
  MOVWF TMPH
  MOVF
         TMR1L, W ;Read low byte
  MOVWF TMPL
                   ;
  MOVF
         TMR1H, W ;Read high byte
  SUBWF
         TMPH, W
                   ;Sub 1st read
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
  GOTO
         CONTINUE ;Good 16-bit read
;
 TMR1L may have rolled over between the read
;
; of the high and low bytes. Reading the high
; and low bytes now will read a good value.
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
  MOVF
         TMR1L, W
                   ;Read low byte
  MOVWF TMPL
                   ;
; Re-enable the Interrupts (if required)
                   ;Continue with your code
CONTINUE
```


9.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110, multiplexors in the output path of the RA3 and RA4/T0CK1 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 9-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4/T0CK1 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 9-3: COMPARATOR OUTPUT BLOCK DIAGRAM

EXAMPLE 10-1: VOLTAGE REFERENCE CONFIGURATION

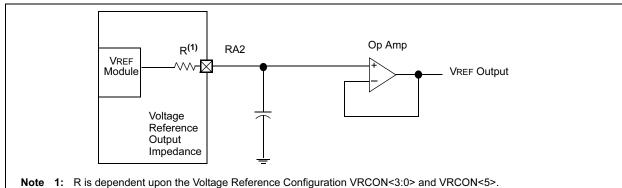
MOVLW	0x02	; 4 Inputs Muxed
MOVWF	CMCON	; to 2 comps.
BSF	STATUS, RPO	; go to Bank 1
MOVLW	0x07	; RA3-RA0 are
MOVWF	TRISA	; outputs
MOVLW	0xA6	; enable VREF
MOVWF	VRCON	; low range
		; set VR<3:0>=6
BCF	STATUS, RPO	; go to Bank 0
CALL	DELAY10	; 10µs delay

10.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 10-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the Voltage Reference can be found in Table 17-2.

10.3 Operation During SLEEP

When the device wakes-up from SLEEP through an interrupt or a Watchdog Timer timeout, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.


10.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.

10.5 Connection Considerations

The Voltage Reference module operates independently of the Comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 10-2 shows an example buffering technique.

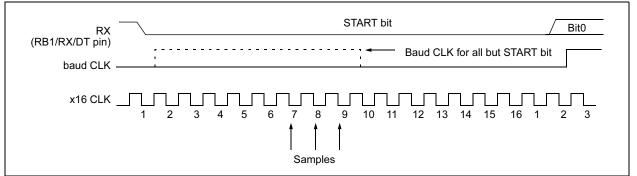
FIGURE 10-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

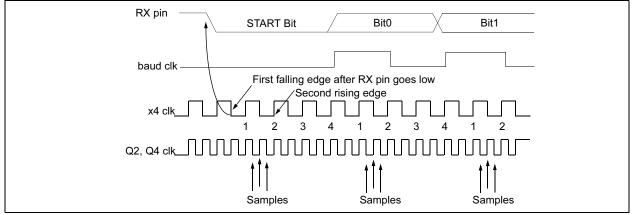
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS
9Fh	VRCON	VREN	VROE	VRR		VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Note 1: — = Unimplemented, read as '0'.

BAUD	Fosc = 20 M	Hz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	_


TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16 MHz		SPBRG	5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA		—	NA	—	_	NA	—	


BAUD	Fosc = 3.579 MHz SPBRG		1 MHz		SPBRG	32.768 MHz		SPBRG	
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

The data on the RB1/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

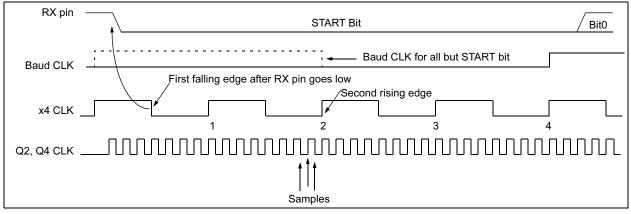

FIGURE 12-1: RX PIN SAMPLING SCHEME. BRGH = 0

FIGURE 12-2: RX PIN SAMPLING SCHEME, BRGH = 1

FIGURE 12-3: RX PIN SAMPLING SCHEME, BRGH = 1

Steps to follow when setting up an Asynchronous Reception:

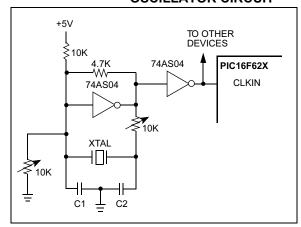
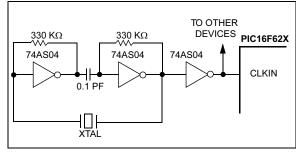
- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	ceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

NOTES:

FIGURE 14-2: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

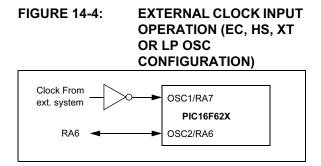

Figure 14-3 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-3: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 EXTERNAL CLOCK IN

For applications, where a clock is already available elsewhere, users may directly drive the PIC16F62X provided that this external clock source meets the AC/DC timing requirements listed in Section 17.4. Figure 14-4 shows how an external clock circuit should be configured.

14.2.5 ER OSCILLATOR

For timing insensitive applications, the ER (External Resistor) Clock mode offers additional cost savings. Only one external component, a resistor to VSs, is needed to set the operating frequency of the internal oscillator. The resistor draws a DC bias current which controls the oscillation frequency. In addition to the resistance value, the oscillator frequency will vary from unit to unit, and as a function of supply voltage and temperature. Since the controlling parameter is a DC current and not a capacitance, the particular package type and lead frame will not have a significant effect on the resultant frequency.

Figure 14-5 shows how the controlling resistor is connected to the PIC16F62X. For REXT values below 10k, the oscillator operation becomes sensitive to temperature. For very high REXT values (e.g., 1M), the oscillator becomes sensitive to leakage and may stop completely. Thus, we recommend keeping REXT between 10k and 1M.

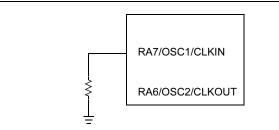


Table 14-3 shows the relationship between the resistance value and the operating frequency.

TABLE 14-3: RESISTANCE AND FREQUENCY RELATIONSHIP

Resistance	Frequency
0	10.4 MHz
1K	10 MHz
10K	7.4 MHz
20K	5.3 MHz
47K	3 MHz
100K	1.6 MHz
220K	800 kHz
470K	300 kHz
1M	200 kHz

The ER Oscillator mode has two options that control the unused OSC2 pin. The first allows it to be used as a general purpose I/O port. The other configures the pin as an output providing the Fosc signal (internal clock divided by 4) for test or external synchronization purposes.

14.6 Interrupts

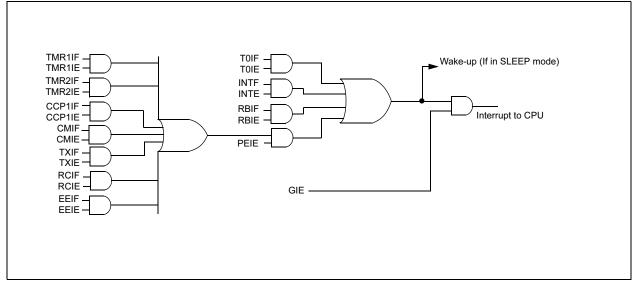
The PIC16F62X has 10 sources of interrupt:

- External Interrupt RB0/INT
- TMR0 Overflow Interrupt
- PORTB Change Interrupts (pins RB7:RB4)
- Comparator Interrupt
- USART Interrupt TX
- USART Interrupt RX
- CCP Interrupt
- TMR1 Overflow Interrupt
- TMR2 Match Interrupt
- EEPROM

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which reenable RB0/INT interrupts.


The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-15). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

- Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

FIGURE 14-14: INTERRUPT LOGIC

TABLE 15-2: PIC16F62X INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	•	Status	Notes
Operar	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	NTED F	ILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	0.0	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	0.0	1110	dfff	ffff	-, -,	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FILE	EREGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	01	11bb		ffff		3
LITERAL AN	ND CON	TROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	,	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	0.0	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
	IX.			**	T0T0	VVVV	VIVIV	-	

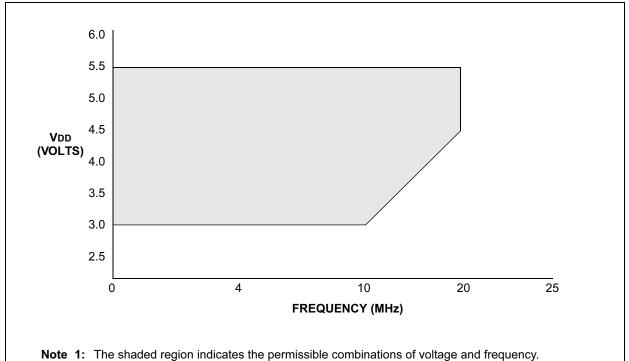
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

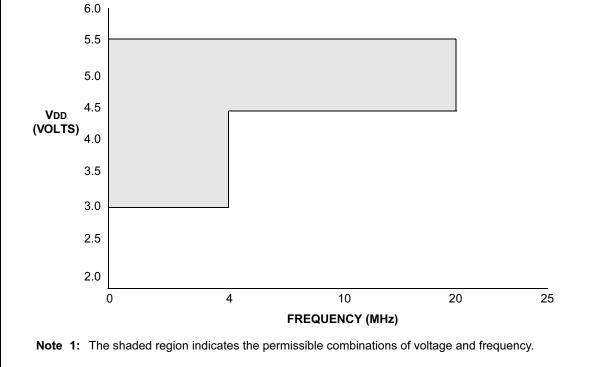
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16F62X

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF REG1
	Before Instruction REG1 = $0xFF$ W = $0x4F$ After Instruction REG1 = $0x4F$ W = $0x4F$

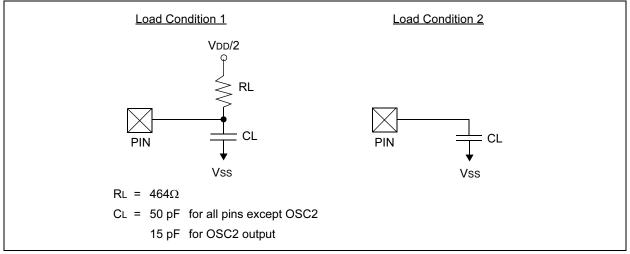

OPTION	Load Option Register								
Syntax:	[label]	OPTIO	N						
Operands:	None								
Operation:	$(W) \rightarrow OPTION$								
Status Affected:	None								
Encoding:	00	0000	0110	0010					
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. Using only register instruction such as MOVWF.								
Words:	1								
Cycles:	1								
Example									
	To maintain upward compatibil- ity with future PICmicro [®] prod- ucts, do not use this instruction.								

NOP	No Operation							
Syntax:	[label]	NOP						
Operands:	None							
Operation:	No oper	ation						
Status Affected:	None							
Encoding:	00 0000 0xx0 0000							
Description:	No oper	ation.	•					
Words:	1							
Cycles:	1							
Example	NOP							


RETFIE	Return from Interrupt							
Syntax:	[label] RETFIE							
Operands:	None							
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$							
Status Affected:	None							
Encoding:	00 0000 0000 1001							
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two- cycle instruction.							
Words:	1							
Cycles:	2							
Example	RETFIE							
	After Interrupt PC = TOS GIE = 1							

PIC16F62X

17.3 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

2. TppS				
т				
F	Frequency	Т	Time	
Lowercas	se subscripts (pp) and their meanings:	_		
рр				
ck	CLKOUT	osc	OSC1	
io	I/O port	tO	TOCKI	
mc	MCLR			
Uppercas	se letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-Impedance	

FIGURE 17-5: LOAD CONDITIONS

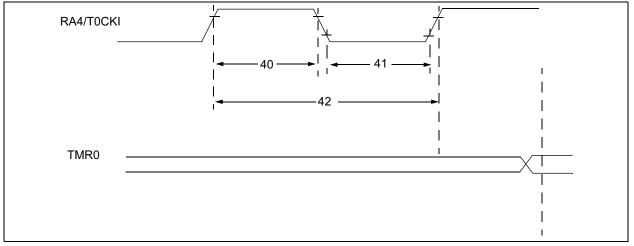
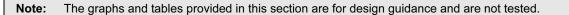

Param No.	Sym		Min	Тур†	Max	Units	Conditions		
50*	TccL	ССР	No Prescaler		0.5Tcy + 20	—	_	ns	
		input low time		16F62X	10	—	_	ns	
		With Prescaler	16LF62X	20	—	_	ns		
51*			No Prescaler		0.5Tcy + 20	—	_	ns	
	input high	input high time	e	16F62X	10			ns	
			With Prescaler	16LF62X	20			ns	
52*	TccP	CCP input period			<u>3Tcy + 40</u> N	_		ns	N = prescale value (1,4 or 16)
53*	TccR	CCP output rise time		16F62X		10	25	ns	
				16LF62X		25	45	ns	
54*	TccF	F CCP output fall time		16F62X		10	25	ns	
				16LF62X		25	45	ns	

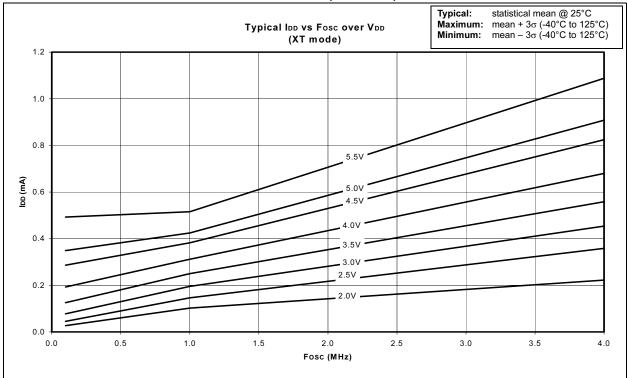
TABLE 17-8: CAPTURE/COMPARE/PWM REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

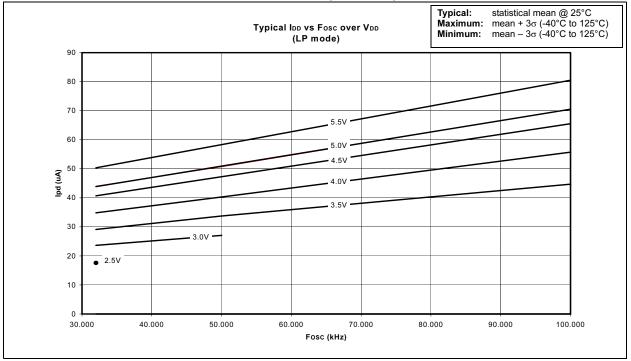
FIGURE 17-12: TIMER0 CLOCK TIMING

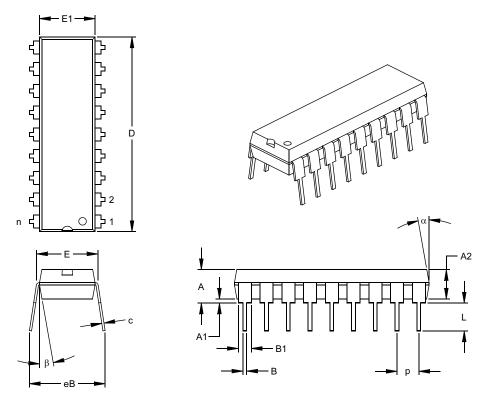



TABLE 17-9: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	—	ns	
			With Prescaler	10*	_	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	_	—	ns	
			With Prescaler	10*	_	—	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 18-4: TYPICAL IDD vs Fosc OVER VDD (XT MODE)

PIC16F62X

K04-007 18-Lead Plastic Dual In-line (P) - 300 mil

n Limits	MIN	11014			MILLIMETERS				
		NOM	MAX	MIN	NOM	MAX			
n		18			18				
р		.100			2.54				
А	.140	.155	.170	3.56	3.94	4.32			
A2	.115	.130	.145	2.92	3.30	3.68			
A1	.015			0.38					
E	.300	.313	.325	7.62	7.94	8.26			
E1	.240	.250	.260	6.10	6.35	6.60			
D	.890	.898	.905	22.61	22.80	22.99			
L	.125	.130	.135	3.18	3.30	3.43			
С	.008	.012	.015	0.20	0.29	0.38			
B1	.045	.058	.070	1.14	1.46	1.78			
В	.014	.018	.022	0.36	0.46	0.56			
eB	.310	.370	.430	7.87	9.40	10.92			
α	5	10	15	5	10	15			
β	5	10	15	5	10	15			
	A A2 A1 E E1 D L C B1 B1 B eB α	p A .140 A2 .115 A1 .015 E .300 E1 .240 D .890 L .125 C .008 B1 .045 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007