

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf627a-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.1 Clocking Scheme/Instruction Cycle

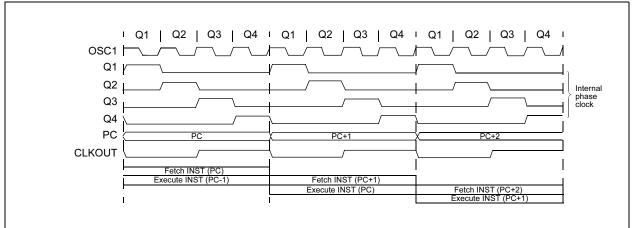
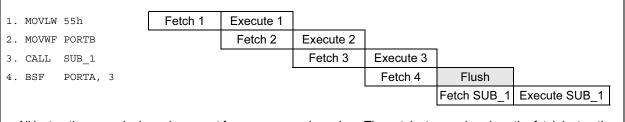
The clock input (OSC1/CLKIN/RA7 pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 2-2.

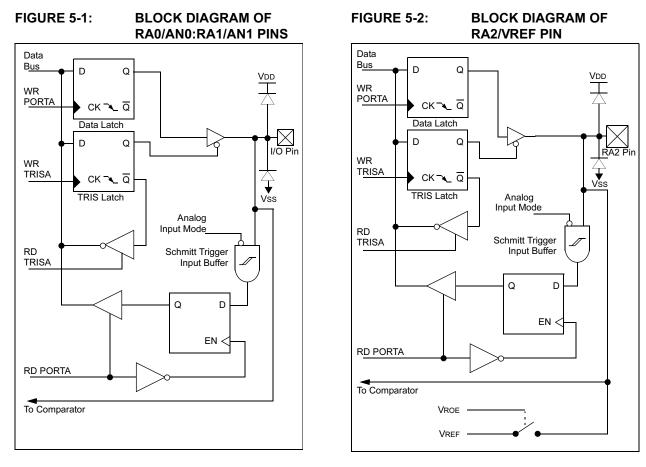
2.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change, (e.g., GOTO) then two cycles are required to complete the instruction (Example 2-1).

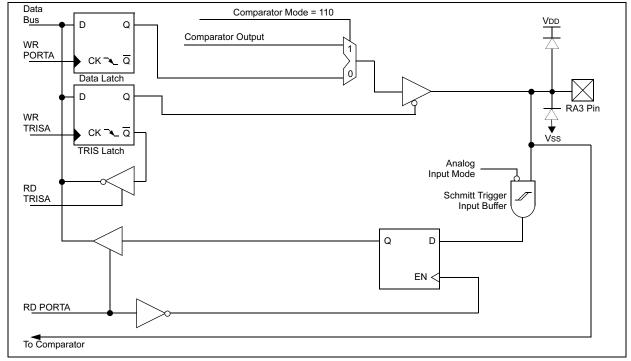
A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).


FIGURE 2-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 2-1: INSTRUCTION PIPELINE FLOW



All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

NOTES:

FIGURE 5-3: BLOCK DIAGRAM OF THE RA3/AN3 PIN

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	xxxu 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000

 TABLE 5-2:
 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA⁽¹⁾

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTA.

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a Hi-impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

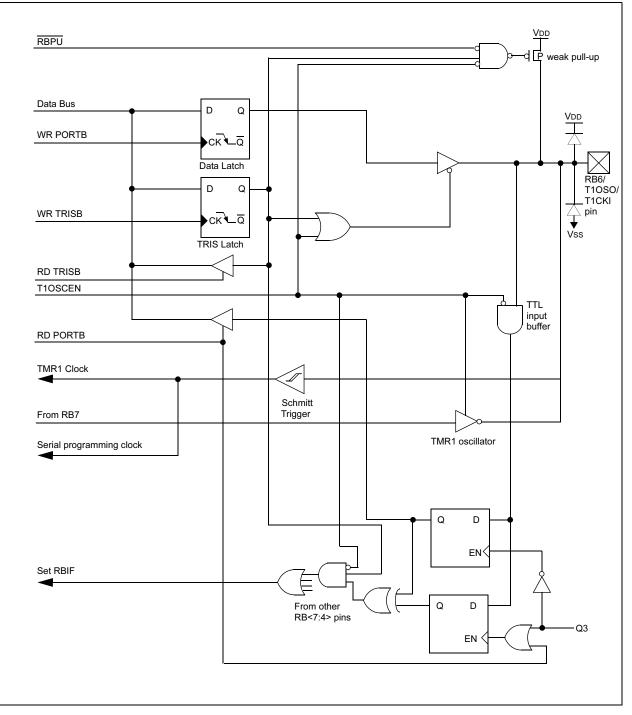
PORTB is multiplexed with the external interrupt, USART, CCP module and the TMR1 clock input/output. The standard port functions and the alternate port functions are shown in Table 5-3. Alternate port functions override TRIS setting when enabled.

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ($\approx 200 \ \mu A$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-onchange comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:


- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552)

Note:	If a change on the I/O pin should occur							
	when a read operation is being executed							
	(start of the Q2 cycle), then the RBIF inter-							
	rupt flag may not get set.							

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

© 2003 Microchip Technology Inc.

REGISTER 8-1:	REGISTER 8-1: T2CON: TIMER CONTROL REGISTER (ADDRESS: 12h)												
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0					
	bit 7							bit 0					
bit 7	Unimplem	Unimplemented: Read as '0'											
bit 6-3	TOUTPS3:	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits											
	0000 = 1:1	0000 = 1:1 Postscale Value											
	0001 = 1:2	Postscale V	alue										
	•												
	•												
	1111 = 1:1	6 Postscale											
bit 2	TMR2ON:	Timer2 On bi	it										
	1 = Timer2	is on											
	0 = Timer2	is off											
bit 1-0	T2CKPS1:	T2CKPS0: T	imer2 Clock	Prescale Se	lect bits								
	00 = 1:1 P	rescaler Valu	е										
		rescaler Valu	-										
	1x = 1:16	Prescaler Val	ue										
													
	Legend:												

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

W = Writable bit

U = Unimplemented bit, read as '0'

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

R = Readable bit

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

9.0 COMPARATOR MODULE

The Comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-chip Voltage Reference (Section 10.0) can also be an input to the comparators.

The CMCON register, shown in Register 9-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 9-1.

REGISTER 9-1: CMCON REGISTER (ADDRESS: 01Fh)

IER 9-1.		EGISTER	(ADDRES	53. UTFII)						
	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0		
	bit 7	1	•			-	•	bit 0		
bit 7	C2OUT : Cor <u>When C2IN</u> 1 = C2 VIN+ 0 = C2 VIN+	> C2 VIN-	utput							
bit 6	When C2IN* 1 = C2 VIN+ 0 = C2 VIN+ C1OUT: Cor When C1IN* 1 = C1 VIN+ 0 = C1 VIN+	< C2 VIN- > C2 VIN- mparator 1 Or <u>V = 0:</u> > C1 VIN-	utput							
	<u>When C1IN</u> 1 = C1 Vin+ 0 = C1 Vin+	< C1 VIN-								
bit 5	1 = C2 Outp	nparator 2 Ou out inverted out not inverte		n						
bit 4	1 = C1 Outp	nparator 1 Ou out inverted out not inverte		n						
bit 3	<u>When CM2:</u> Then: 1 = C1 VIN-	rator Input Sv <u>CM0: = 001</u> connects to F connects to F	RA3							
	C2 VIN- 0 = C1 VIN-	<u>CM0 = 010</u> connects to F connects to F connects to F connects to F	RA2 RA0							
bit 2-0	CM2:CM0 : Comparator Mode Figure 9-1 shows the Comparator modes and CM2:CM0 bit settings									
	Legend:									
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	plemented b	it, read as '	0'		

-n = Value at POR

'1' = Bit is set

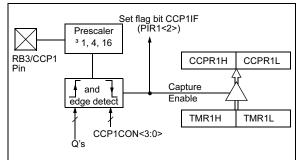
'0' = Bit is cleared

x = Bit is unknown

11.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the Interrupt Request Flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

11.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

TABLE 11-2:CAPTURE MODE OPERATION
BLOCK DIAGRAM

11.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

11.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

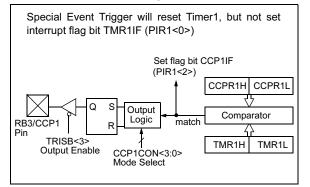
11.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 11-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value


11.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

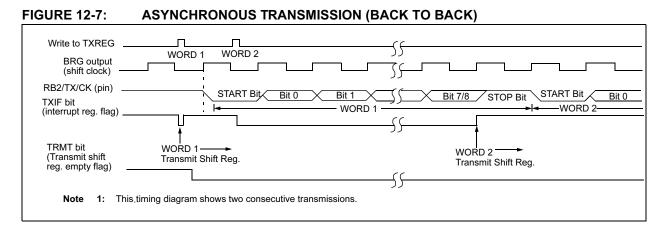
- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 11-1: COMPARE MODE OPERATION BLOCK DIAGRAM

11.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.


Note: Clearing the CCP1CON register will force the RB3/CCP1 compare output latch to the default low level. This is not the data latch.

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16 MHz		SPBRG	5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA		—	NA	—	_	NA	—	

BAUD	Fosc = 3.579	osc = 3.579 MHz SPBRG 1		1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	USART Transmit Register							0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register								0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission. NOTES:

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, RPO	; Bank 1
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	EECON1, RD	; EE Read
MOVF	EEDATA, W	; W = EEDATA
BCF	STATUS, RPO	; Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

WOVWW SSN ; MOVWF EECON2 ; Write SSN ; MOVWF EECON2 ; WOVWF EECON2 ; Write AAh ; BSF EECON1,WR ; BSF EECON1,WR ; BSF INTCON, GIE ; Enable INTs.	Required Sequence	MOVLW AAh MOVWF EECON2 BSF EECON1,WR	; ; Write AAh ; Set WR bit ; begin write
---	----------------------	--	---

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine			
Syntax:	[<i>label</i>]BTFSS f,b	Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq f \leq 127$	Operands:	$0 \le k \le 2047$			
	$0 \le b \le 7$	Operation:	(PC)+ 1 \rightarrow TOS,			
Operation:	skip if (f) = 1		$k \rightarrow PC<10:0>$, (PCLATH<4:3>) $\rightarrow PC<12:11>$			
Status Affected:	None	Status Affected:	None			
Encoding:	01 11bb bfff ffff	Encoding:	10 0kkk kkkk kkkk			
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle			
Words:	1		instruction.			
Cycles:	1 ⁽²⁾	Words:	1			
Example	HERE BTFSS REG1	Cycles:	2			
	FALSE GOTO PROCESS_CODE TRUE •	Example	HERE CALL THERE			
	•		Before Instruction PC = Address HERE			
	• Before Instruction PC = address HERE After Instruction if FLAG<1> = 0,		After Instruction PC = Address THERE TOS = Address HERE+1			
	PC = address FALSE if FLAG<1> = 1,	CLRF	Clear f			
	PC = address TRUE	Syntax:	[label] CLRF f			
		Operands:	$0 \leq f \leq 127$			
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
		Status Affected:	7			

Status Affected:	Z			
Encoding:	00	0001	lfff	ffff
Description:			register 'l Z bit is se	
Words:	1			
Cycles:	1			
Example	CLRF	REG1		
	R After In	Instructic REG1 = struction REG1 =	= 0x5A	

16.14 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include analog input, push button switches and eight LEDs.

16.15 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

16.16 PICDEM 2 Plus Demonstration Board

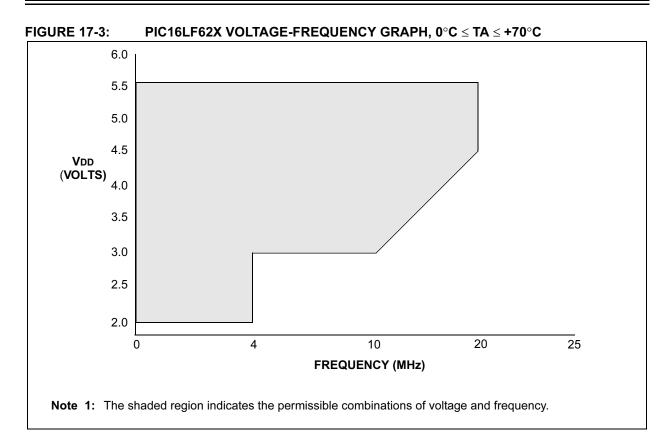
The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

16.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

16.18 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.


17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†


Ambient temperature under bias	40 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on MCLR and RA4 with respect to Vss	
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB	200 mA
Maximum current sourced by PORTA and PORTB	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-V	он) x Iон} + ∑(Vol x IoL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss

FIGURE 17-4: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA < 0°C, +70°C < TA \leq 85°C

© 2003 Microchip Technology Inc.

17.2 DC Characteristics: PIC16F62X (Commercial, Industrial, Extended) PIC16LF62X (Commercial, Industrial)

DC CHAF	RACTERIS	TICS	Standard Opera Operating tempe Operating voltage	rature	-40°C ≤ TA 0°C ≤ TA -40°C ≤ TA	≤ +85°0 ≤ +70° ≤ +125	rwise stated) C for industrial and °C for commercial and °C for extended C spec Table 17-1 and Table 17-2			
Param. No.	Sym	Characteristic/Device	Min	Conditions						
	VIL	Input Low Voltage								
		I/O ports								
D030		with TTL buffer	Vss	_	0.8	V	VDD = 4.5V to 5.5V			
					0.15 VDD	V	otherwise			
D031		with Schmitt Trigger input	Vss		0.2 VDD	V				
D032		MCLR, RA4/T0CKI,OSC1 (in ER mode)	Vss	—	0.2 VDD	V	(Note1)			
D033		OSC1 (in XT and HS)	Vss	_	0.3 VDD	V				
		OSC1 (in LP)	Vss	_	0.6 Vdd - 1.0	V				
	Vін	Input High Voltage					•			
		I/O ports								
D040		with TTL buffer	2.0V	—	Vdd	V	VDD = 4.5V to 5.5V			
			.25 VDD + 0.8V		Vdd	V	otherwise			
D041		with Schmitt Trigger input	0.8 VDD	—	VDD	V				
D042		MCLR RA4/T0CKI	0.8 VDD	_	VDD	V				
D043 D043A		OSC1 (XT, HS and LP)	0.7 VDD 0.9 VDD		Vdd	V V	(Noto1)			
D043A		OSC1 (in ER mode)	50	200	400		(Note1) VDD = 5.0V, VPIN = VSS			
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS			
	lı∟	Input Leakage Current ^{(2), (3)}					•			
		I/O ports (Except PORTA)			±1.0	μΑ	Vss \leq VPIN \leq VDD, pin at hi-impedance			
D060		PORTA	—	—	±0.5	μΑ	$VSS \le VPIN \le VDD$, pin at hi-impedance			
D061		RA4/T0CKI	—	_	±1.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063		OSC1, MCLR	—	—	±5.0	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc			
							configuration			
	Vol	Output Low Voltage	1		1					
D080		I/O ports	—	—	0.6	V	IOL=8.5 mA, VDD=4.5V, -40° to +85°C			
			—	_	0.6	V	IOL=7.0 mA, VDD=4.5V, +125°C			
D083		OSC2/CLKOUT (ER only)		_	0.6 0.6	V V	IOL=1.6 mA, VDD=4.5V, -40° to +85°C IOL=1.2 mA, VDD=4.5V, +125°C			
	Voн	Output High Voltage ⁽³⁾	1	1	0.0	v				
D090		I/O ports (Except RA4)	VDD - 0.7	_	_	V	Іон=-3.0 mA. VDD=4.5V40° to +85°С			
2000			VDD - 0.7 VDD - 0.7	_	_	v	IOH=-2.5 mA, VDD=4.5V, +125°C			
D092		OSC2/CLKOUT (ER only)	VDD - 0.7	_	_	v	IOH=-1.3 mA, VDD=4.5V, -40° to +85°C			
			VDD - 0.7	—	—	V	Іон=-1.0 mA, VDD=4.5V, +125°С			
D150	Vod	Open-Drain High Voltage			8.5	V	RA4 pin PIC16F62X, PIC16LF62X*			
		Capacitive Loading Specs on	Output Pins							
						-				
D100*	COSC2	OSC2 pin			15	pF	In XT, HS and LP modes when external clock used to drive OSC1.			

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In ER oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F62X be driven with external clock in ER mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

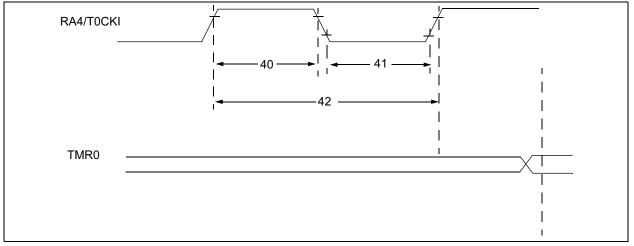

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
50*	TccL CCP No Prescaler		No Prescaler		0.5Tcy + 20	—	_	ns	
		input low time		16F62X	10	—	_	ns	
			With Prescaler	16LF62X	20	—	_	ns	
51*	TccH	ССР	No Prescaler	·	0.5Tcy + 20	—	_	ns	
		input high time		16F62X	10			ns	
			With Prescaler	16LF62X	20			ns	
52*	TccP	CCP input perio	CP input period		<u>3Tcy + 40</u> N	_		ns	N = prescale value (1,4 or 16)
53*	TccR	CCP output rise	time	16F62X		10	25	ns	
				16LF62X		25	45	ns	
54*	TccF	CCP output fall t	ime	16F62X		10	25	ns	
				16LF62X		25	45	ns	

TABLE 17-8: CAPTURE/COMPARE/PWM REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-12: TIMER0 CLOCK TIMING

TABLE 17-9: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	—	ns	
			With Prescaler	10*	_	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	_	—	ns	
			With Prescaler	10*	_	—	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

-xx	×	/ XX	XXX	Exa	imples:
equency Range	Temperature Range	Package	Pattern	a)	PIC16F627 - 04/P 301 = Commercial Temp., PDIP package, 4 MHz, normal VDD limits, QTF pattern #301.
PIC16F62 PIC16LF6	XT VDD range 3.0 2X: VDD range 2.0	√ to 5.5V (Tape √ to 5.5V	e and Reel)	b)	PIC16LF627 - 04I/SO = Industrial Temp., SOIC package, 200 kHz, extended VDD limits
04 = 4	4 MHz (XT and ÉR o	sc)			
SO = 5	SOIC (Gull Wing, 30	0 mil body)			
3-Digit Pat	ttern Code for QTP (blank otherwis	e).		
	equency Range PIC16F62 PIC16F62 PIC16LF6 PIC16LF6 Q4 Q4 20 - I E O SS SS	equency Range PIC16F62X: Standard VDD i PIC16F62XT VDD range 3.00 PIC16LF62X: VDD range 2.00 PIC16LF62XT: VDD range 2.00 04 = 200 kHz (LP osc) 04 = 200 kHz (LP osc) 04 = 4 MHz (XT and ER o 20 = 20 MHz (HS osc) - = 0°C to +70°C I = -40°C to +85°C E = -40°C to +125°C P = PDIP SO = SOIC (Gull Wing, 30 SS = SSOP (209 mil)	equency RangeTemperature RangePackage RangePIC16F62X: PIC16F62XTStandard VDD range 3.0V to 5.5V (Tape PIC16F62XTVDD range 3.0V to 5.5V (Tape PIC16LF62XT: VDD range 2.0V to 5.5V PIC16LF62XT: VDD range 2.0V to 5.5V (Tape04=200 kHz (LP osc) 04 = 4 MHz (XT and ER osc) 20 =20 MHz (HS osc)04=0°C to +70°C +85°C E =-40°C to +85°C E =P=PDIP SO =SOIC (Gull Wing, 300 mil body) SS =SS=SSOP (209 mil)	equency RangeTemperature RangePackage PatternPIC16F62X: PIC16F62XTStandard VDD range 3.0V to 5.5V PIC16F62XT VDD range 3.0V to 5.5V (Tape and Reel) PIC16LF62X: VDD range 2.0V to 5.5V PIC16LF62XT: VDD range 2.0V to 5.5V (Tape and Reel)04= 200 kHz (LP osc) 0404= 200 kHz (LP osc) 0404= 200 kHz (LP osc) 0404= 200 kHz (LP osc) 0404= 200 kHz (T and ER osc) 2020= 20 MHz (HS osc)-= 0°C to +70°C +85°C EI= -40°C to +125°CP= PDIP SO = SOIC (Gull Wing, 300 mil body)	equency RangeTemperature RangePackage PatternPattern a)PIC16F62X: PIC16F62XT VDD range 3.0V to 5.5V PIC16LF62XT VDD range 2.0V to 5.5V PIC16LF62XT: VDD range 2.0V to 5.5V (Tape and Reel)b)04=200 kHz (LP osc) 04 = 4 MHz (XT and ER osc) 20 =20 MHz (HS osc)-= 0° C to +70^{\circ}C I = -40^{\circ}C to +85^{\circ}C E = -40^{\circ}C to +125^{\circ}CP=PDIP SO =SOIC (Gull Wing, 300 mil body) SS =SS =SSOP (209 mil)

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.