

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf627t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN		Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	—	Analog comparator input
RA2/AN2/VREF	RA2			Bi-directional I/O port
	AN2	AN — Analog comparator input		Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port
	AN3	AN	—	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	—	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/Vpp	RA5	ST	—	Input port
	MCLR	ST	_	Master clear
	VPP	_	_	Programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port
	OSC2	XTAL	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	—	Oscillator crystal input
	CLKIN	ST		External clock source input. ER biasing pin.
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	—	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST		USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port.
	TX	_	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM I/O
Legend: O = Output — = Not used TTL = TTL Inpu		I = In	MOS Output put pen Drain Outp	P = Power ST = Schmitt Trigger Input AN = Analog

TABLE 2-1: PIC16F62X PINOUT DESCRIPTION

PIC16F62X

NOTES:

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module. Additional information available in the PICmicro™ Mid Pange MCLL Eamily Reference

PICmicro™ Mid-Range MCU Family Reference Manual, DS31010A.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles. The user can work around this by writing an adjusted value to TMR0.

Counter mode is selected by setting the T0CS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4,..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 TIMER0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP.

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-1). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device. See Table 17-7.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). Use the instruction sequences, shown in Example 6-1, when changing the prescaler assignment from Timer0 to WDT, to avoid an unintended device RESET.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCF	STATUS, RPO	;Skip if already in ;Bank 0
CLRWDT		;Clear WDT
		•
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111'b	;These 3 lines
		;(5, 6, 7)
MOVWF	OPTION_REG	;are required only
		;if desired PS<2:0>
		;are
CLRWDT		;000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION_REG	;desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new ;prescale value and ;clock source
MOVWF BCF	OPTION_REG STATUS, RP0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 m	odule regis	ster						xxxx xxxx	uuuu uuuu
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION ⁽²⁾	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

REGISTERS ASSOCIATED WITH TIMER0

Note 1: Shaded bits are not used by TMR0 module.

TABLE 6-1:

2: Option is referred by OPTION REG in MPLAB.

PIC16F62X

TER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)												
	R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x						
	SPEN RX9 SREN CREN ADEN FERR OERR RX9D												
	bit 7			·			bit 0						
bit 7	SPEN : Serial Port Ena (Configures RB1/RX/D 1 = Serial port enabled 0 = Serial port disabled	T and RB2/TX/	CK pins as se	erial port pins whe	en bits TRISE	3<2:17> are	set)						
bit 6	RX9 : 9-bit Receive En 1 = Selects 9-bit recep 0 = Selects 8-bit recep	able bit tion											
bit 5	SREN: Single Receive Asynchronous mode: Don't care Synchronous mode - r 1 = Enables single 0 = Disables single This bit is cleared a Synchronous mode - s	n <u>aster</u> : receive receive fter reception is	complete.										
	Unused in this mod												
bit 4	CREN: Continuous Re <u>Asynchronous mode</u> : 1 = Enables continu 0 = Disables continu <u>Synchronous mode</u> : 1 = Enables continu 0 = Disables continu	uous receive uous receive uous receive un		CREN is cleared (CREN overr	ides SREN)							
bit 3	ADEN: Address Detect Asynchronous mode 9 1 = Enables address 0 = Disables address Asynchronous mode 8 Unused in this mode Unused in this mode	<u>-bit (RX9 = 1)</u> : s detection, ena ss detection, all <u>-bit (RX9=0)</u> : e											
bit 2	FERR: Framing Error I 1 = Framing error (Car 0 = No framing error	oit	reading RCF	REG register and	receive next	valid byte)							
bit 1	OERR: Overrun Error 1 = Overrun error (Car 0 = No overrun error		clearing bit C	REN)									
bit 0	RX9D: 9th bit of receiv	ed data (Can b	e PARITY bit)										
	Legend: R = Readable bit	W = V	Vritable bit	U = Unimpl	emented b	it, read as '	0'						

REGISTER 12-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	ceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART T	ransmit I	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	9h SPBRG Baud Rate Generator Register									0000 0000	0000 0000

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

FIGURE 12-13: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is RESET by the hardware. In this case, it is RESET when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th

receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive F	Register						0000 0000	0000 0000
8Ch	PIE1	EEPIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

PIC16F62X

BCF	Bit Clear f	BTFSC	Bit Test f, Skip if Clear				
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[<i>label</i>]BTFSC f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0				
Status Affected:	None	Status Affected:	None				
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff				
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0' then the				
Words:	1		next instruction is skipped. If bit 'b' is '0' then the next				
Cycles:	1		instruction fetched during the				
Example	BCF REG1, 7		current instruction execution is				
	Before Instruction REG1 = 0xC7 After Instruction		discarded, and a NOP is executed instead, making this a two-cycle instruction.				
	REG1 = 0x47	Words:	1				
		Cycles:	1 ⁽²⁾				
BSF	Bit Set f	Example	HERE BTFSC REG1 FALSE GOTO PROCESS_CODE				
Syntax:	[<i>label</i>]BSF f,b		TRUE •				
Operands:	$0 \le f \le 127$		•				
	$0 \le b \le 7$		Before Instruction				
Operation:	$1 \rightarrow (f \le b >)$		PC = address HERE After Instruction				
Status Affected:	None		if REG<1> = 0,				
Encoding:	01 01bb bfff ffff		PC = address TRUE				
Description:	Bit 'b' in register 'f' is set.		if REG<1>=1,				
Words:	1		PC = address FALSE				
Cycles:	1						

Example

BSF

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

DECFSZ	Decrement f, Skip if 0	GOTO	Unconditional Branch
Syntax:	[<i>label</i>] DECFSZ f,d	Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le f \le 127$	Operands:	$0 \leq k \leq 2047$
Operation:	$d \in [0,1]$ (f) - 1 \rightarrow (dest); skip if result = 0	Operation:	k → PC<10:0> PCLATH<4:3> → PC<12:11>
Status Affected:	None	Status Affected:	None
Encoding:	00 1011 dfff ffff	Encoding:	10 lkkk kkkk kkkk
Description:	The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.	Description: Words: Cycles:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction. 1
Words:	1	Example	GOTO THERE
Cycles:	1(2)		After Instruction PC = Address THERE
Example	HERE DECFSZ REG1, 1 GOTO LOOP CONTINUE • • •		
	Before Instruction PC = address HERE After Instruction REG1 = REG1 - 1 if REG1 = 0, PC = address CONTINUE if REG1 \neq 0, PC = address HERE+1		

RETLW	Return with Literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	See description below
Status Affected:	None	Status Affected:	С
Encoding:	11 01xx kkkk kkkk	Encoding:	00 1101 dfff ffff
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1		
Cycles:	2	Words:	1
Example	CALL TABLE;W contains table	Cycles:	1
	 ;offset value ;W now has table 	Example	RLF REG1, 0
	value	Example	Before Instruction
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8		C = 0 After Instruction REG1 = 1110 0110 W = 1100 1100 C = 1
RETURN	Return from Subroutine		
Syntax:	[label] RETURN		
Operands:	None		
Operation:	$TOS\toPC$		
Status Affected:	None		
Encoding:	00 0000 0000 1000		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example	RETURN		
	After Interrupt PC = TOS		

16.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ®
 - PICDEM MSC
 - microID®
 - CAN
 - PowerSmart®
 - Analog

16.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High level source code debugging
- Mouse over variable inspection
- Extensive on-line help
- The MPLAB IDE allows you to:
- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - absolute listing file (mixed assembly and C)
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

16.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contains source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- · Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

16.19 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit Memory modes. The board includes 2 Mb external FLASH memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

16.20 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 FLASH microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.

16.21 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

16.22 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and RFLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor

Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.

FIGURE 17-4: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA < 0°C, +70°C < TA \leq 85°C

© 2003 Microchip Technology Inc.

TABLE 17-1: COMPARATOR SPECIFICATIONS

	Operating Conditions: 3.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.								
Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments		
D300	Input offset voltage	VIOFF	_	±5.0	±10	mV			
D301*	Input Common mode voltage	VICM	0	—	Vdd - 1.5	V			
D302*	Common Mode Rejection Ratio	CMRR	55	—	—	db			
300* 300A	Response Time ⁽¹⁾	TRESP		150	400 600	ns ns	16F62X 16LF62X		
301	Comparator Mode Change to Output Valid*	TMC2OV	_	-	10	μS			

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 17-2: VOLTAGE REFERENCE SPECIFICATIONS

	Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.								
Spec No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments		
D310	Resolution	VRES	VDD/24	—	Vdd/32	LSb			
D311	Absolute Accuracy	VRaa	_	_	1/4	LSb	Low Range (VRR = 1)		
			—		1/2	LSb	High Range (VRR = 0)		
D312*	Unit Resistor Value (R)	VRur	—	2k	—	Ω			
310*	Settling Time ⁽¹⁾	Tset	_	—	10	μs			

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

ABLE	1/-4.							
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4	MHz	XT and ER Osc mode,	
							VDD = 5.0V	
			DC	_	20	MHz	HS Osc mode	
			DC	—	200	kHz	LP Osc mode	
		Oscillator Frequency ⁽¹⁾			4		ER Osc mode, VDD = 5.0V	
		Oscillator Frequency ?	0.1	_		MHz		
				_	4			
			1		20 200	MHz kHz	HS Osc mode LP Osc mode	
			3.65	4	4.28	MHz		
			0.00	37	1.20	kHz	INTRC mode (slow)	
4	INTRC	Internal Calibrated RC	3.65	4.00	4.28	MHz		
5	ER	External Biased ER Frequency	10 kHz		8 MHz	-	VDD = 5.0V	
1	Tosc	External CLKIN Period ⁽¹⁾	250		_	ns	XT and ER Osc mode	
			50	_		ns	HS Osc mode	
			5	—	—	μs	LP Osc mode	
		Oscillator Period ⁽¹⁾	250		—	ns	ER Osc mode	
			250	_	10,000	ns	XT Osc mode	
			50	_	1,000	ns	HS Osc mode	
			5			μs	LP Osc mode	
				250		ns	INTRC mode (fast)	
				27		μs	INTRC mode (slow)	
2	Тсу	Instruction Cycle Time	1.0	Тсү	DC	ns	Tcy = 4/Fosc	
3	TosL,	External CLKIN (OSC1) High	100 *	_	—	ns	XT oscillator, Tosc L/H duty	
	TosH	External CLKIN Low					cycle*	

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

