

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf628-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5
2.0	General Description PIC16F62X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	15
5.0	I/O Ports	29
6.0	Timer0 Module	43
7.0	Timer1 Module	46
8.0	Timer2 Module	50
9.0	Comparator Module Voltage Reference Module	53
10.0	Voltage Reference Module	59
11.0	Capture/Compare/PWM (CCP) Module	61
12.0	Universal Synchronous/Asynchronous Receiver/Transmitter (USART) Module	67
13.0	Data EEPROM Memory	87
14.0	Special Features of the CPU	91
15.0	Instruction Set Summary	. 107
16.0	Development Support	. 121
17.0	Electrical Specifications	. 127
18.0	DC and AC Characteristics Graphs and Tables	. 143
19.0	Packaging Information	. 157

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

2.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16F62X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16F62X uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional Von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single-word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The Table below lists program memory (FLASH, Data and EEPROM).

TABLE 2-1: DEVICE DESCRIPTION

	Memory					
Device	FLASH Program	RAM Data	EEPROM Data			
PIC16F627	1024 x 14	224 x 8	128 x 8			
PIC16F628	2048 x 14	224 x 8	128 x 8			
PIC16LF627	1024 x 14	224 x 8	128 x 8			
PIC16LF628	2048 x 14	224 x 8	128 x 8			

The PIC16F62X can directly or indirectly address its register files or data memory. All Special Function registers, including the program counter, are mapped in the data memory. The PIC16F62X have an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any Addressing mode. This symmetrical nature, and lack of 'special optimal situations' make programming with the PIC16F62X simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16F62X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 2-1, and a description of the device pins in Table 2-1.

Two types of data memory are provided on the PIC16F62X devices. Non-volatile EEPROM data memory is provided for long term storage of data such as calibration values, lookup table data, and any other data which may require periodic updating in the field. This data is not lost when power is removed. The other data memory provided is regular RAM data memory. Regular RAM data memory is provided for temporary storage of data during normal operation. It is lost when power is removed.

TABLE 2-1:PIC16F62X PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB4/PGM	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt- on-pin change. When low voltage program- ming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	—	XTAL	Timer1 oscillator output.
	T1CKI	ST	—	Timer1 clock input.
	PGC	ST	_	ICSP™ Programming Clock.
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 oscillator input. Wake-up from SLEEP on pin change. Can be software programmed for internal weak pull-up.
	PGD	ST	CMOS	ICSP Data I/O
Vss	Vss	Power	_	Ground reference for logic and I/O pins
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins
Legend: O = Output — = Not used TTL = TTL Input		CMOS = CI I = In OD = O		P = Power ST = Schmitt Trigger Input AN = Analog

FIGURE 3-2: DATA MEMORY MAP OF THE PIC16F627 AND PIC16F628

ndirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr. ⁽¹⁾
TMR0	01h	OPTION	81h	TMR0	101h	OPTION
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
	07h		87h		107h	
	08h		88h		108h	
	09h		89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
	0Dh		8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh		8Fh		10Fh	
T1CON	10h		90h			
TMR2	11h		91h			
T2CON	12h	PR2	92h			
	13h		93h			
	14h		94h			
CCPR1L	15h		95h			
CCPR1H	16h		96h			
CCP1CON	17h		97h			
RCSTA	18h	TXSTA	98h			
TXREG	19h	SPBRG	99h			
RCREG	1Ah	EEDATA	9Ah			
RONEO	1Bh	EEADR	9Bh			
	1Ch	EECON1	9Ch			
	1Dh	EECON2 ⁽¹⁾	9Dh			
	1Eh		9Eh			
CMCON	1Fh	VRCON	9Fh		11Fh	
GINOOIN	20h			General	120h	
General	2011	General	A0h	Purpose		
Purpose		Purpose		Register 48 Bytes	14Fh	
Register		Register			150h	
80 Bytes		80 Bytes				
-	6Fh		EFh		16Fh	
	70h		F0h		170h	
16 Bytes		accesses		accesses		accesses
	751	70h-7Fh		70h-7Fh	1754	70h - 7Fh
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3
Burne		_and i				
Unimplem	nented dat	a memory locations, i	read as '0'			

3.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for				
	TMR0, assign the prescaler to the WDT				
	(PSA = 1). See Section 6.3.1				

REGISTER 3-2: OPTION REGISTER (ADDRESS: 81h, 181h)

101

110 111

Legend:

R = Readable bit

-n = Value at POR

1:64

1:128

1:256

			UBBILL	<i></i> ,,	,,			
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7							bit 0
bit 7	RBPU : PO	RTB Pull-up	o Enable bit	:				
	1 = PORTE	3 pull-ups ai	re disabled		port latch value	es		
bit 6	INTEDG: In	nterrupt Edg	je Select bi	t				
		pt on rising o pt on falling	0					
bit 5	TOCS: TM	R0 Clock Sc	ource Selec	t bit				
		ion on RA4/ I instruction		(CLKOUT)				
bit 4	TOSE: TMF	R0 Source E	Edge Select	bit				
		-			4/T0CKI pin 4/T0CKI pin			
bit 3	PSA: Pres	caler Assigr	ment bit					
		ller is assigr ller is assigr		/DT imer0 modu	le			
bit 2-0	PS2:PS0:	Prescaler R	ate Select k	oits				
	E	Bit Value T	MR0 Rate	WDT Rate				
	-	000 001	1:2 1:4	1:1 1:2				
		010 011 100	1 : 8 1 : 16 1 : 32	1:4 1:8 1:16				

1:32 1:64

1:128

W = Writable bit

'1' = Bit is set

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

3.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 3.2.2.4 and Section 3.2.2.5 for a description of the comparator enable and flag bits.

Note:	Interrupt flag bits get set when an interrupt
	condition occurs regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>).

REGISTER 3-3:		REGISTER	(ADDRES	S: 0Bh, 8	Bh, 10Bh, 18	Bh)				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF		
	bit 7									
bit 7	GIE: Globa	al Interrupt E	nable bit							
		s all unmas es all interru	•	ots						
bit 6	PEIE: Peri	oheral Interr	upt Enable	bit						
		s all unmas es all periph			S					
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit						
		s the TMR0 es the TMR0								
bit 4	INTE: RB0/INT External Interrupt Enable bit									
		s the RB0/II es the RB0/I								
bit 3	RBIE: RB Port Change Interrupt Enable bit									
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt 									
bit 2	TOIF: TMR	0 Overflow	nterrupt Fla	ag bit						
	 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow 									
bit 1	INTF: RB0	/INT Externa	al Interrupt	Flag bit						
		30/INT exter 30/INT exter		•	must be cleare	d in softwaı	e)			
bit 0	RBIF: RB Port Change Interrupt Flag bit									
	 1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state 									
	Levendu							1		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.0 GENERAL DESCRIPTION

The PIC16F62X are 18-Pin FLASH-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully static, 8-bit microcontrollers.

All PICmicro[®] microcontrollers employ an advanced RISC architecture. The PIC16F62X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16F62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F62X has eight oscillator configurations. The single pin ER oscillator provides a low cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, INTRC is a self-contained internal oscillator. The HS is for High Speed crystals. The EC mode is for an external clock source. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external interrupts, internal interrupts, and RESETS.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

Table 4-1 shows the features of the PIC16F62X midrange microcontroller families.

A simplified block diagram of the PIC16F62X is shown in Figure 2.1.

The PIC16F62X series fits in applications ranging from battery chargers to low power remote sensors. The FLASH technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F62X very versatile.

4.1 Development Support

The PIC16F62X family is supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

		PIC16F627	PIC16F628	PIC16LF627	PIC16LF628
Clock	Maximum Frequency of Operation (MHz)	20	20	4	4
	FLASH Program Memory (words)	1024	2048	1024	2048
Memory	RAM Data Memory (bytes)	224	224	224	224
	EEPROM Data Memory (bytes)	128	128	128	128
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Comparator(s)	2	2	2	2
Peripherals	Capture/Compare/PWM modules	1	1	1	1
	Serial Communications	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10
	I/O Pins	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Detect	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP			

TABLE 4-1:PIC16F62X FAMILY OF DEVICES

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16F62X Family devices use serial programming with clock pin RB6 and data pin RB7.

Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	INT	ST	_	External interrupt.
RB1/RX/DT	RB1	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
	RX	ST	_	USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	TTL	CMOS	Bi-directional I/O port
	ТХ	_	CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM RB4		TTL	CMOS	Bi-directional I/O port. Can be software programmed fo internal weak pull-up.
	PGM	ST	_	Low voltage programming input pin. Interrupt-on-pin change. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10SO	_	XTAL	Timer1 Oscillator Output
	T1CKI	ST	—	Timer1 Clock Input
	PGC	ST	_	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	_	Timer1 Oscillator Input
	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not TTL = TTL	used	CM(I OD	OS = CMOS = Input = Open	S Output P = Power ST = Schmitt Trigger Input Drain Output AN = Analog

PORTE FUNCTIONS

SUMMARY OF REGISTERS ASSOCIATED WITH PORTB⁽¹⁾ TABLE 5-4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown **Note 1:** Shaded bits are not used by PORTB.

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The spe	cial e	event	trigg	ers from tl	he CC	CP1
	module	will	not	set	interrupt	flag	bit
	TMR1IF	(PIR	1<0>).			

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	I	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	I	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	lolding register for the Most Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

BAUD	Fosc = 20 M	Hz		16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	value ERROR (decimal) KBAUD ERRO		ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	
0.3	NA	_	_	NA	_		NA	_	_
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA	_	_	NA	_	_
300	312.5	+4.17%	0	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	312.5	_	0	250	_	0	156.3	_	0
LOW	1.221	—	255	0.977		255	0.6104		255

TABLE 12-4:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH=0)
-------------	------------------------------------	---------

BAUD	Fosc = 7.15	909 MHz	SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_	_	79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA		_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2	_	0	62.500	_	0
LOW	0.437	_	255	0.3094		255	3.906		255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	_	_
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	_	_
9.6	9.322	-2.90%	5	NA	_	_	NA	_	_
19.2	18.64	-2.90%	2	NA	_	_	NA	_	_
76.8	NA	_	_	NA	_	_	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
LOW	0.2185	_	255	0.0610	_	255	0.0020	_	255

NOTES:

TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS	
9Ah	EEDATA	EEPROM	data regi		XXXX XXXX	uuuu uuuu						
9Bh	EEADR	EEPROM	address	register						xxxx xxxx	uuuu uuuu	
9Ch	EECON1	_	_		_	WRERR	WREN	WR	RD	x000	q000	
9Dh	EECON2 ⁽¹⁾	EEPROM	EEPROM control register 2									

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

Note 1: EECON2 is not a physical register

14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F62X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOD)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. SLEEP
- 10. Code protection
- 11. ID Locations
- 12. In-circuit Serial Programming

The PIC16F62X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a Brown-out occurs, which provides at least a 72 ms RESET. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The ER oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h – 3FFFh), which can be accessed only during programming. See Programming Specification.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Encoding:	00 0010 dfff ffff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example 1:	SUBWF REG1, 1
	Before Instruction REG1 = 3 W = 2 C = ? After Instruction
	REG1 = 1 W = 2 C = 1; result is positive Z = DC = 1
Example 2:	Before Instruction
	REG1 = 2 W = 2 C = ?
	After Instruction
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1
Example 3:	Before Instruction
	REG1 = 1 W = 2 C = ?
	After Instruction
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)
Status Affected:	None
Encoding:	00 1110 dfff ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.
Words:	1
Cycles:	1
Example	SWAPF REG1, 0
	Before Instruction
	REG1 = 0xA5
	After Instruction
	REG1 = 0xA5 W = 0x5A
TRIS	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	$5 \le f \le 7$
Operation:	$(W) \rightarrow TRIS$ register f;
Status Affected:	None
Encoding:	00 0000 0110 0fff
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.
Words:	1
Cycles:	1
Example	
	To maintain upward compatibility with future PICmicro [®] products, do not use this instruction.

FIGURE 17-4: PIC16LF62X VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA < 0°C, +70°C < TA \leq 85°C

© 2003 Microchip Technology Inc.

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Puls	e Width	No Prescaler	0.5Tcy + 20	—		ns	
				With Prescaler	10	—	_	ns	
41*	TtOL	T0CKI Low Pulse	e Width	No Prescaler	0.5Tcy + 20	—	—	ns	
				With Prescaler	10	-	—	ns	
42*	Tt0P	T0CKI Period	Greater of: <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)		
45*	Tt1H	T1CKI High	Synchronous, N	lo Prescaler	0.5Tcy + 20	—	—	ns	
		Time	Synchronous,	16F62X	15	-	—	ns	
			with Prescaler	16LF62X	25	—	—	ns	
			Asynchronous	16F62X	30	_	-	ns	
			16LF62X	50	—	_	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, N	lo Prescaler	0.5Tcy + 20	—	—	ns	
			Synchronous,	16F62X	15	—	—	ns	
			with Prescaler	16LF62X	25	—	—	ns	
			Asynchronous	16F62X	30	-	Ι	ns	
				16LF62X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	16F62X	Greater of: <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
				16LF62X	Greater of: <u>Tcy + 40</u> N	_	—	—	
			Asynchronous	16F62X	60	_	-	ns	
				16LF62X	100	—	—	ns	
	Ft1	Timer1 oscillator (oscillator enable			DC	-	200	kHz	
48	TCKEZtmr1	Delay from exter increment	nal clock edge to	o timer	2Tosc	-	7Tosc	_	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-11: **CAPTURE/COMPARE/PWM TIMINGS**

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
50*	TccL	CCP input low time	No Prescaler		0.5Tcy + 20	—	_	ns	
			With Prescaler	16F62X	10	—	_	ns	
				16LF62X	20	—	_	ns	
51*	TccH	CCP input high time	No Prescaler		0.5Tcy + 20	—	_	ns	
			With Prescaler	16F62X	10			ns	
				16LF62X	20			ns	
52*	TccP	CCP input period			<u>3Tcy + 40</u> N	_		ns	N = prescale value (1,4 or 16)
53*	TccR			16F62X		10	25	ns	
				16LF62X		25	45	ns	
54*	TccF	CCP output fall time		16F62X		10	25	ns	
				16LF62X		25	45	ns	

TABLE 17-8: CAPTURE/COMPARE/PWM REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-12: TIMER0 CLOCK TIMING

TABLE 17-9: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteris	Min	Тур†	Мах	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*	—	—	ns	
			With Prescaler	10*	_	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	_	—	ns	
			With Prescaler	10*	_	—	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-16: MINIMUM, TYPICAL and MAXIMUM WDT PERIOD vs VDD (-40°C to +125°C)

© 2003 Microchip Technology Inc.

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-18: VOH VS IOH OVER TEMP (C) VDD = 5V

Note: The graphs and tables provided in this section are for design guidance and are not tested.

FIGURE 18-24: MAXIMUM IDD vs VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 37 kHz OSCILLATOR

FIGURE 18-25: TYPICAL IDD VS VDD OVER TEMPERATURE (-40 TO +125°C) INTERNAL 37 kHz OSCILLATOR

