

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf628a-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified. NOTES:

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 1											
80h	INDF	Addressin register)	g this locatior	n uses cont	ents of FSF	R to address	s data memo	ory (not a pl	nysical	XXXX XXXX	25
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20
82h	PCL	Program (Counter's (PC) Least Sig	nificant Byte	e			•	0000 0000	25
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19
84h	FSR	Indirect da	ata memory a	ddress poir	nter			1	•	XXXX XXXX	25
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	29
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	34
87h	_	Unimplem	ented							—	—
88h	—	Unimplem	ented							—	_
89h	—	Unimplem	ented							—	_
8Ah	PCLATH		_		Write buffe	er for upper	5 bits of pro	ogram coun	ter	0 0000	25
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	21
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	22
8Dh	—	Unimplem	ented		•				•	_	_
8Eh	PCON	_	_	_	_	OSCF	_	POR	BOD	1-0x	24
8Fh	—	Unimplem	ented							—	—
90h	_	Unimplem	ented							—	_
91h	—	Unimplem	ented							—	—
92h	PR2	Timer2 Pe	riod Register							1111 1111	50
93h	—	Unimplem	ented							—	—
94h	—	Unimplem	ented							—	—
95h	—	Unimplem	ented							—	—
96h	—	Unimplem	ented							_	—
97h	—	Unimplem	ented			-				_	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	69
99h	SPBRG	Baud Rate	e Generator F	Register						0000 0000	69
9Ah	EEDATA	EEPROM	data register							xxxx xxxx	87
9Bh	EEADR	—	EEPROM a	ddress regi	ster	-				xxxx xxxx	87
9Ch	EECON1	—	—	_	—	WRERR	WREN	WR	RD	x000	87
9Dh	EECON2	EEPROM	control regist	ter 2 (not a	physical reg	gister)					87
9Eh	_	Unimplem	ented							—	—
9Fh	VRCON	VREN	VROE	VRR	-	VR3	VR2	VR1	VR0	000- 0000	59

|--|

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-7 and Table 14-8 on page 98.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). Use the instruction sequences, shown in Example 6-1, when changing the prescaler assignment from Timer0 to WDT, to avoid an unintended device RESET.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCF	STATUS, RPO	;Skip if already in
		;Bank 0
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111'b	;These 3 lines
		;(5, 6, 7)
MOVWF	OPTION_REG	;are required only
		;if desired PS<2:0>
		;are
CLRWDT		;000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION_REG	;desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the TMR0 module use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new ;prescale value and ;clock source
MOVWF BCF	OPTION_REG STATUS, RP0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 m	odule regis	ster						xxxx xxxx	uuuu uuuu
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION ⁽²⁾	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: — = Unimplemented locations, read as '0', u = unchanged, x = unknown

REGISTERS ASSOCIATED WITH TIMER0

Note 1: Shaded bits are not used by TMR0 module.

TABLE 6-1:

2: Option is referred by OPTION REG in MPLAB.

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF

Note 1: These values are for design guidance only. Consult AN826 (DS00826A) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The spe	The special event triggers from the CCP1										
	module	will	not	set	interrupt	flag	bit					
	TMR1IF (PIR1<0>).											

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

7.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	I	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 register								uuuu uuuu
0Fh	TMR1H	Holding re	Holding register for the Most Significant Byte of the 16-bit TMR1 register								uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

9.0 COMPARATOR MODULE

The Comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The On-chip Voltage Reference (Section 10.0) can also be an input to the comparators.

The CMCON register, shown in Register 9-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 9-1.

REGISTER 9-1: CMCON REGISTER (ADDRESS: 01Fh)

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0				
	bit 7					•		bit 0				
bit 7	C2OUT: Cor	mparator 2 Ou	utput									
	<u>When C2INV = 0:</u> 1 = C2 VIN+ > C2 VIN-											
	0 = C2 VIN + C2 VIN											
	When COINI	/ - 1.										
	1 = C2 Vin+	<u>< C2</u> VIN-										
	0 = C2 VIN+	> C2 VIN-										
bit 6	C1OUT: Cor	nparator 1 Οι	utput									
	<u>When C1IN</u> 1 = C1 Vint	$\sqrt{-0}$										
	0 = C1 VIN+	< C1 VIN-										
	When C1IN	/= 1.										
	1 = C1 VIN+	< C1 VIN-										
	0 = C1 VIN+	> C1 VIN-										
bit 5	C2INV: Comparator 2 Output Inversion											
	1 = G2 Output inverted 0 = C2 Output not inverted											
bit 4	C1INV: Com	parator 1 Out	tput Inversior	ı								
	1 = C1 Outp	ut inverted										
	0 = C1 Outp	ut not inverte	d									
bit 3	CIS: Compa	rator Input Sv	vitch									
	Then:	<u> 01110. – 001</u>										
	1 = C1 VIN-	connects to R	A3									
	0 = C1 VIN-	connects to R	2A0									
	<u>When CM2:CM0 = 010</u>											
	Then:											
	C2 VIN-	connects to R	A2									
	0 = C1 VIN-	connects to R	A0									
	C2 VIN-	connects to R	A1									
bit 2-0	CM2:CM0: Comparator Mode											
	Figure 9-1 shows the Comparator modes and CM2:CM0 bit settings											
	Legend:											
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimp	lemented b	it, read as 'C)'				

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

11.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 11-1: PWM DUTY CYCLE

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

EQUATION 11-2: MAXIMUM PWM RESOLUTION

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

For an example on the PWM period and duty cycle calculation, see the PICmicro[™] Mid-Range Reference Manual (DS33023).

11.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 11-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								Value on all other RESETS
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
87h	TRISB	PORTB D	ata Directior		1111 1111	1111 1111					
11h	TMR2	Timer2 mo	mer2 module's register							0000 0000	0000 0000
92h	PR2	Timer2 mo	odule's perio	d register						1111 1111	1111 1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	uuuu
15h	CCPR1L	Capture/C	Capture/Compare/PWM register1 (LSB)								uuuu uuuu
16h	CCPR1H	Capture/C	Capture/Compare/PWM register1 (MSB)							xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

BALID	Fosc = 20 M	Hz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA			NA			NA		
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA		_	NA		_
300	312.5	+4.17%	0	NA			NA		
500	NA			NA			NA		
HIGH	312.5	_	0	250	_	0	156.3	—	0
LOW	1.221	—	255	0.977	—	255	0.6104		255

TABLE 12-4:	BAUD RATES FOR ASYNCHRONOUS MODE (B	BRGH = 0)
-------------	-------------------------------------	-----------

BAUD	Fosc = 7.15	909 MHz	SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA		_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_		79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2	_	0	62.500	_	0
LOW	0.437		255	0.3094	—	255	3.906		255

BAUD	Fosc = 3.579	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	—	—
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	—	—
9.6	9.322	-2.90%	5	NA		_	NA	_	_
19.2	18.64	-2.90%	2	NA		_	NA	_	_
76.8	NA		_	NA			NA	_	_
96	NA		_	NA			NA	_	_
300	NA	_	_	NA		_	NA	_	_
500	NA		_	NA			NA	_	_
HIGH	55.93		0	15.63		0	0.512	_	0
LOW	0.2185	_	255	0.0610		255	0.0020	—	255

BAUD	Fosc = 20 M	Hz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	—	NA		

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16	MHz	SPBRG	5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA	—	—	NA	—		NA	—	—

BAUD	Fosc = 3.57	9 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA		—	NA	NA	NA

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-7:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION
-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -00	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00:	x 0000 -00x
1Ah	RCREG	USART Re	ceive Re	egister						0000 000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -00	0000-0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -01	0 0000 -010
99h	SPBRG	RG Baud Rate Generator Register							0000 000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

12.5 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RB2/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.5.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

13.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers (SFRs). There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (Not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F62X devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The writetime will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits.

When the device is code protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

Additional information on the Data EEPROM is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

REGISTER 13-1: EEADR REGISTER (ADDRESS: 9Bh)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reserved	EADR6	EADR5	EADR4	EADR3	EADR2	EADR1	EADR0
bit 7							bit 0

bit 7 Unimplemented Address: Must be set to '0'

bit 6-0 **EEADR**: Specifies one of 128 locations of EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

13.1 EEADR

The EEADR register can address up to a maximum of 256 bytes of data EEPROM. Only the first 128 bytes of data EEPROM are implemented and only seven of the eight bits in the register (EEADR<6:0>) are required.

The upper bit is address decoded. This means that this bit should always be '0' to ensure that the address is in the 128 byte memory space.

13.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with five low order bits physically implemented. The upper-three bits are nonexistent and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Timeout Reset during normal operation. In these situations, following RESET, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF in the PIR1 register is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, H	RPO ;	Bank 1
MOVLW	CONFIG_AI	DDR ;	
MOVWF	EEADR	;	Address to read
BSF	EECON1, H	RD ;	EE Read
MOVF	EEDATA, V	vi ;	W = EEDATA
BCF	STATUS, H	RPO ;	Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

Required Sequence	BSF BSF MOVLW MOVWF MOVLW MOVWF BSF	STATUS, RP0 EECON1, WREN INTCON, GIE 55h EECON2 AAh EECCN2 EECON1,WR	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Bank 1 Enable write Disable INTs. Write 55h Write AAh Set WR bit begin write
	BSF	INTCON, GIE	;	Enable INTs.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC16F62X can be operated in eight different oscillator options. The user can program three configuration bits (FOSC2 thru FOSC0) to select one of these eight modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- ER External Resistor (2 modes)
- INTRC Internal Resistor/Capacitor (2 modes)
- EC External Clock In

14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 14-1). The PIC16F62X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 14-4).

FIGURE 14-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

F				
Mode	Freq OSC1(C1)		OSC2(C2)	
XT	455 kHz 2.0 MHz 4.0 MHz	22 - 100 pF 15 - 68 pF 15 - 68 pF	22 - 100 pF 15 - 68 pF 15 - 68 pF	
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF	
Note 1:	Higher capacitance increases the stability of the oscilla- tor but also increases the start-up time. These values are for design guidance only. Since each resonator has			

TABLE 14-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

components

its own characteristics, the user should consult the res-

onator manufacturer for appropriate values of external

Mode	Freq	OSC1(C1)	OSC2(C2)		
LP	32 kHz	68 - 100 pF	68 - 100 pF		
	200 kHz	15 - 30 pF	15 - 30 pF		
ХТ	100 kHz	68 - 150 pF	150 - 200 pF		
	2 MHz	15 - 30 pF	15 - 30 pF		
	4 MHz	15 - 30 pF	15 - 30 pF		
HS	8 MHz	15 - 30 pF	15 - 30 pF		
	10 MHz	15 - 30 pF	15 - 30 pF		
	20 MHz	15 - 30 pF	15 - 30 pF		
Note 1:	Higher capacitance increases the stability of the oscilla- tor but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components				

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used, or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-2 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-9: TIMEOUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 14-10: TIMEOUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

© 2003 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000

TABLE 14-9:SUMMARY OF INTERRUPT REGISTERS

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect Reset and Watchdog Timer Reset during normal operation.

14.7 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.

Example 14-2 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in a common memory location (i.e., W_TEMP is defined at 0x70 in Bank 0 and is therefore, accessible at 0xF0, 0x17 and 0xIFD). The Example 14-2:

- Stores the W register
- Stores the STATUS register
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 14-2: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, could be in either bank			
SWAPF	STATUS,W	;swap status to be saved into W			
BCF	STATUS, RPO	;change to bank 0 regardless of current bank			
MOVWF	STATUS_TEMP	;save status to bank 0 register			
:					
:	(ISR)				
:					
SWAPF	STATUS_TEMP,W	;swap STATUS_TEMP register into W, sets bank to origi- nal state			
MOVWF	STATUS	;move W into STATUS register			
SWAPF	W_TEMP,F	;swap W_TEMP			
SWAPF	W_TEMP,W	;swap W_TEMP into W			

14.8 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the ER oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 14.1).

14.8.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer timeout periods are desired, a postscaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

14.8.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT timeout occurs.

16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

16.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command-line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.

16.6 MPLAB ASM30 Assembler, Linker, and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

16.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	SC External CLKIN Frequency ⁽¹⁾			4	MHz	XT and ER Osc mode, VDD = 5.0V
			DC	_	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾		_	4	MHz	ER Osc mode, VDD = 5.0V
			0.1	—	4	MHz	XT Osc mode
			1	_	20 200	MHz kHz	HS Osc mode LP Osc mode
			3.65	4	4.28	MHz	INTRC mode (fast), VDD = 5.0V
				37		kHz	INTRC mode (slow)
4	INTRC	Internal Calibrated RC	3.65	4.00	4.28	MHz	VDD = 5.0V
5	ER	External Biased ER Frequency	10 kHz		8 MHz		VDD = 5.0V
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT and ER Osc mode
			50	—	—	ns	HS Osc mode
			5	—	—	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250		_	ns	ER Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
			5			μs	LP Osc mode
				250		ns	INTRC mode (fast)
				27		μs	INTRC mode (slow)
2	Тсу	Instruction Cycle Time	1.0	TCY	DC	ns	Tcy = 4/Fosc
3	TosL, TosH	External CLKIN (OSC1) High External CLKIN Low	100 *		_	ns	XT oscillator, Tosc L/H duty cycle*

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent				
RE:	Reader Response					
Fron	ו: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Appl	ication (optional):					
Wou	ld you like a reply?YN					
Devi	ce: PIC16F62X Lite	erature Number: DS40300C				
Que	stions:					
1 \	What are the best features of this do	cument?				
-						
2.	How does this document meet your h	nardware and software development needs?				
-						
-						
3. I	. Do you find the organization of this document easy to follow? If not, why?					
-						
-						
4.	What additions to the document do y	ou think would enhance the structure and subject?				
-						
5 \	Nhat deletions from the document or	ould be made without affecting the overall usefulness?				
5.		Sud be made without anecting the overall usefulness?				
-						
6. I	s there any incorrect or misleading in	nformation (what and where)?				
	. 0					
-						
7. I	How would you improve this docume	nt?				
-						