

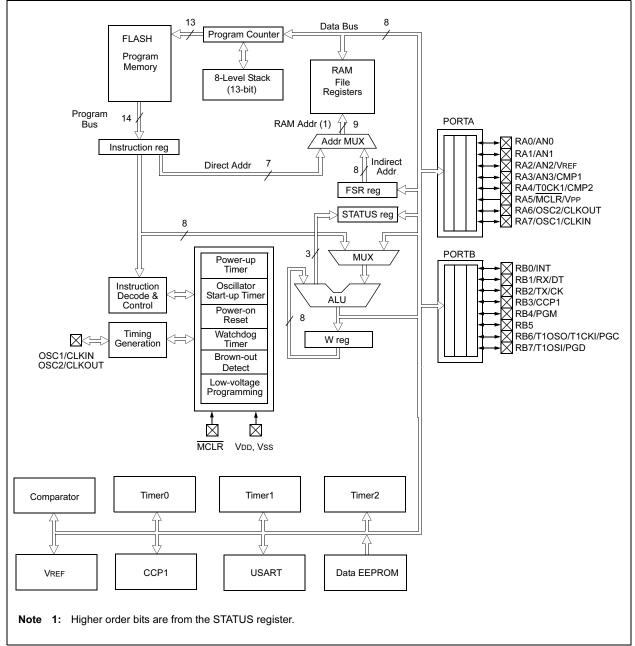
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf628at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.2.4 PIE1 Register

This register contains interrupt enable bits.

51ER 3-4:	PIET REGI	SIER (AL	DRESS:	ocn)									
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE					
	bit 7							bit 0					
bit 7		•	•	ot Enable Bit									
	1 = Enables 0 = Disable		•	•									
bit 6	CMIE: Com	parator Inte	errupt Enab	le bit									
	1 = Enables 0 = Disable												
bit 5	RCIE: USA	RT Receive	e Interrupt E	Enable bit									
		1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt											
bit 4	TXIE: USAF	RT Transmi	t Interrupt E	Enable bit									
	1 = Enables 0 = Disable												
bit 3	Unimpleme	ented: Rea	d as '0'										
bit 2	CCP1IE: CO	CP1 Interru	pt Enable b	oit									
	1 = Enables 0 = Disable												
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enable	e bit								
				itch interrupt atch interrup									
bit 0	TMR1IE: T	MR1 Overfle	ow Interrup	t Enable bit									
	1 = Enables	s the TMR1	overflow in	nterrupt									
	0 = Disable	s the TMR1	l overflow i	nterrupt									
	Legend:												
	R = Readat	ole bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '	D'					
	-n = Value a	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown					

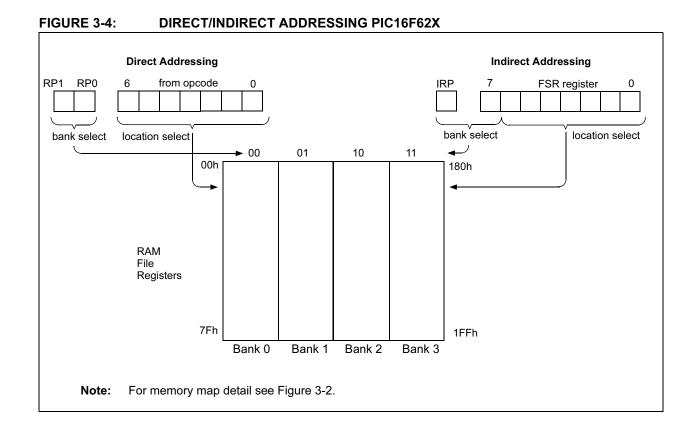
REGISTER 3-4: PIE1 REGISTER (ADDRESS: 8Ch)

3.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Detect.

Note: BOD is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOD is cleared, indicating a brown-out has occurred. The BOD STATUS bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 3-6: PCON REGISTER (ADDRESS: 0Ch)


U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	_	—	—	OSCF	_	POR	BOD
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 OSCF: INTRC/ER oscillator frequency
 - 1 = 4 MHz typical⁽¹⁾
 - 0 = 37 KHz typical
- bit 2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset STATUS bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOD: Brown-out Detect STATUS bit

- 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)
 - **Note 1:** When in ER Oscillator mode, setting OSCF = 1 will cause the oscillator frequency to change to the frequency specified by the external resistor.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.0 GENERAL DESCRIPTION

The PIC16F62X are 18-Pin FLASH-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully static, 8-bit microcontrollers.

All PICmicro[®] microcontrollers employ an advanced RISC architecture. The PIC16F62X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16F62X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F62X devices have special features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F62X has eight oscillator configurations. The single pin ER oscillator provides a low cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, INTRC is a self-contained internal oscillator. The HS is for High Speed crystals. The EC mode is for an external clock source. The SLEEP (Power-down) mode offers power savings. The user can wake-up the chip from SLEEP through several external interrupts, internal interrupts, and RESETS.

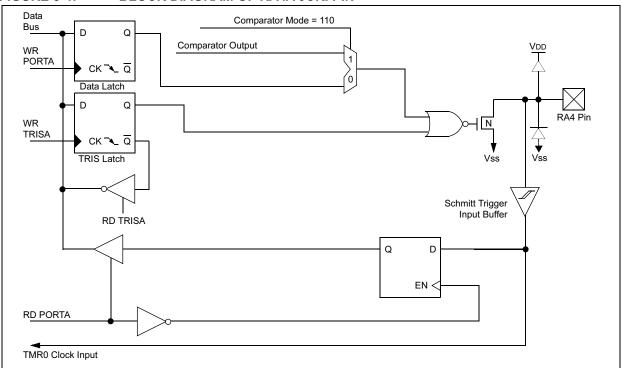
A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

Table 4-1 shows the features of the PIC16F62X midrange microcontroller families.

A simplified block diagram of the PIC16F62X is shown in Figure 2.1.

The PIC16F62X series fits in applications ranging from battery chargers to low power remote sensors. The FLASH technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F62X very versatile.

4.1 Development Support


The PIC16F62X family is supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

		PIC16F627	PIC16F628	PIC16LF627	PIC16LF628	
Clock	Maximum Frequency of Operation (MHz)	20	20	4	4	
	FLASH Program Memory (words)	1024	2048	1024	2048	
Memory	RAM Data Memory (bytes)	224	224	224	224	
	EEPROM Data Memory (bytes)	128	128	128	128	
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	
	Comparator(s)	2	2	2	2	
Peripherals	Capture/Compare/PWM modules	1	1	1	1	
	Serial Communications	USART	USART	USART	USART	
	Internal Voltage Reference	Yes	Yes	Yes	Yes	
	Interrupt Sources	10	10	10	10	
	I/O Pins	16	16	16	16	
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5	
	Brown-out Detect	Yes	Yes	Yes	Yes	
	Packages	18-pin DIP, SOIC, 20-pin SSOP				

TABLE 4-1:PIC16F62X FAMILY OF DEVICES

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16F62X Family devices use serial programming with clock pin RB6 and data pin RB7.

BLOCK DIAGRAM OF THE RA5/MCLR/VPP PIN

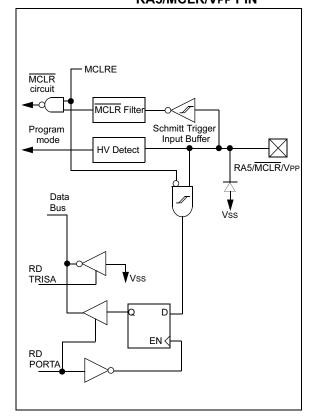
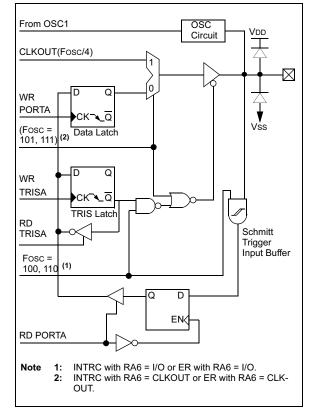
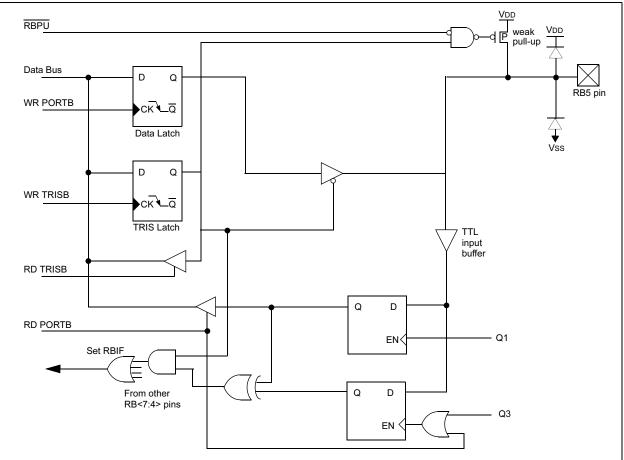




FIGURE 5-6:

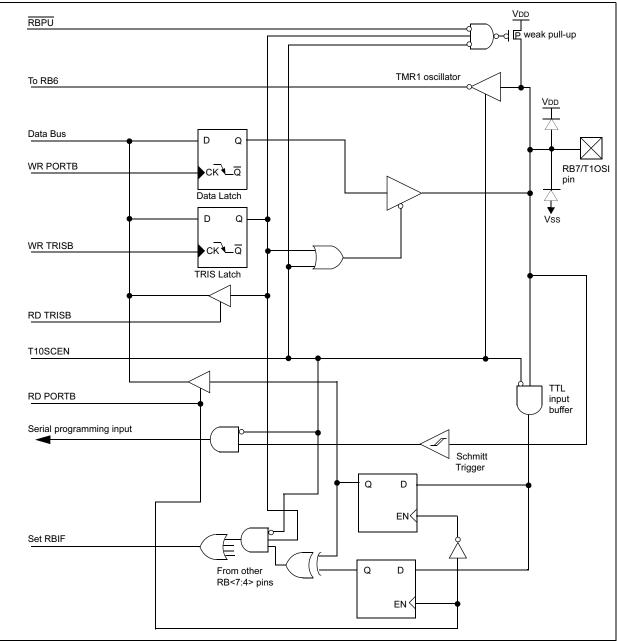

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

FIGURE 5-15: BLOCK DIAGRAM OF THE RB7/T10SI PIN

9.6 Comparator Interrupts

The Comparator Interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the Comparator Interrupt Flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	lf a	change	in	the	CMCON	register						
	(C1OUT or C2OUT) should occur when a											
	read operation is being executed (start of											
	the Q2 cycle), then the CMIF (PIR1<6>)											
	interr	upt flag m	nay	not g	et set.							

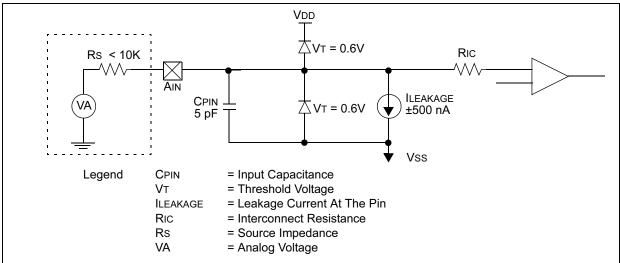
The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any write or read of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

9.7 Comparator Operation During SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes-up from SLEEP, the contents of the CMCON register are not affected.


9.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the Comparator module to be in the comparator RESET mode, CM2:CM0 = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.

9.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 9-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latchup may occur. A source impedance of maximum 10 kΩ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 9-4: ANALOG INPUT MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
CMCON	C2OUT	C1OUT	C2INV	C1NV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
	CMCON INTCON PIR1 PIE1	CMCONC2OUTINTCONGIEPIR1EEIFPIE1EEIE	CMCONC2OUTC1OUTINTCONGIEPEIEPIR1EEIFCMIFPIE1EEIECMIE	CMCONC2OUTC1OUTC2INVINTCONGIEPEIET0IEPIR1EEIFCMIFRCIFPIE1EEIECMIERCIE	CMCONC2OUTC1OUTC2INVC1NVINTCONGIEPEIET0IEINTEPIR1EEIFCMIFRCIFTXIFPIE1EEIECMIERCIETXIE	CMCONC2OUTC1OUTC2INVC1NVCISINTCONGIEPEIET0IEINTERBIEPIR1EEIFCMIFRCIFTXIF—PIE1EEIECMIERCIETXIE—	CMCONC2OUTC1OUTC2INVC1NVCISCM2INTCONGIEPEIET0IEINTERBIET0IFPIR1EEIFCMIFRCIFTXIF—CCP1IFPIE1EEIECMIERCIETXIE—CCP1IE	CMCONC2OUTC1OUTC2INVC1NVCISCM2CM1INTCONGIEPEIET0IEINTERBIET0IFINTFPIR1EEIFCMIFRCIFTXIF—CCP1IFTMR2IFPIE1EEIECMIERCIETXIE—CCP1IETMR2IE	CMCONC2OUTC1OUTC2INVC1NVCISCM2CM1CM0INTCONGIEPEIET0IEINTERBIET0IFINTFRBIFPIR1EEIFCMIFRCIFTXIF—CCP1IFTMR2IFTMR1IFPIE1EEIECMIERCIETXIE—CCP1IETMR2IETMR1IE	NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 1Bit 0PORCMCONC2OUTC1OUTC2INVC1NVCISCM2CM1CM00000 0000INTCONGIEPEIET0IEINTERBIET0IFINTFRBIF0000 0000xPIR1EEIFCMIFRCIFTXIFCCP1IFTMR2IFTMR1IF0000 -0000PIE1EEIECMIERCIETXIECCP1IETMR2IETMR1IE0000 -0000

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0'

11.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

11.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

11.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on DR		e on ther ETS
0Bh/8Bh/ 10Bh/ 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	EEIE	CMIF	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
87h	TRISB	PORTB	Data Dii	rection Reg	ister					1111	1111	1111	1111
0Eh	TMR1L	Holding	register	for the Lea	st Significar	nt Byte of the	e 16-bit TM	R1 registe	r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	register	for the Mos	t Significan	t Byte of the	16-bit TM	R1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/	Capture/Compare/PWM register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/	Capture/Compare/PWM register1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 11-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	_
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16	Fosc = 7.16 MHz		5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD ERROR		value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA		—	NA	—	_	NA	—	

BAUD	Fosc = 3.579	9 MHz	SPBRG	1 MHz		SPBRG	32.768 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in Slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

1. Enable the synchronous master serial port by

setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART TI	ransmit I	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	SPBRG Baud Rate Generator Register								0000 0000	0000 0000

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive F	Register						0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, RPO	; Bank 1
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	; Address to read
BSF	EECON1, RD	; EE Read
MOVF	EEDATA, W	; W = EEDATA
BCF	STATUS, RPO	; Bank 0

13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

WOVWW SSN ; MOVWF EECON2 ; Write SSN ; MOVWF EECON2 ; WOVWF EECON2 ; Write AAh ; BSF EECON1,WR ; BSF EECON1,WR ; BSF INTCON, GIE ; Enable INTs.	Required Sequence	MOVLW AAh MOVWF EECON2 BSF EECON1,WR	; ; Write AAh ; Set WR bit ; begin write
---	----------------------	--	---

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

```
BSF
         STATUS, RP0 ; Bank 1
   MOVF
         EEDATA, W
   BSF
         EECON1, RD
                      ; Read the
                      ; value written
; Is the value written (in W reg) and
; read (in EEDATA) the same?
   SUBWF EEDATA, W
   BCF STATUS, RPO ; Bank0
   BTFSS STATUS, Z
                      ; Is difference 0?
   GOTO WRITE ERR
                      ; NO, Write error
                      ; YES, Good write
   :
                      ; Continue program
   .
```

13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

13.7 DATA EEPROM OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

15.0 INSTRUCTION SET SUMMARY

Each PIC16F62X instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F62X instruction set summary in Table 15-2 lists byte-oriented, bitoriented, and literal and control operations. Table 15-1 shows the opcode field descriptions.

For byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For literal and control operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLA TH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Timeout bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

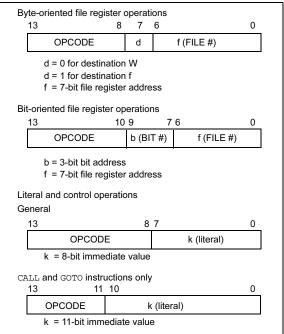
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

Figure 15-1 shows the three general formats that the instructions can have.

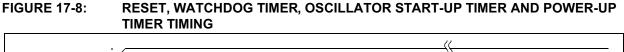

- Note 1: Any unused opcode is reserved. Use of any reserved opcode may cause unexpected operation.
 - 2: To maintain upward compatibility with future PICmicro[®] products, <u>do not use</u> the OPTION and TRIS instructions.

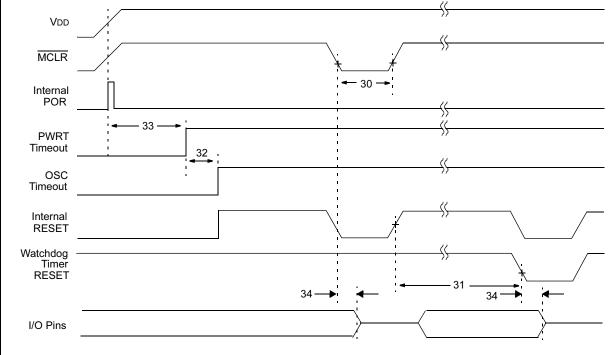
All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS


BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine			
Syntax:	[label] BTFSS f,b	Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq f \leq 127$	Operands:	$0 \le k \le 2047$			
	0 ≤ b < 7	Operation:	(PC)+ 1 \rightarrow TOS,			
Operation:	skip if (f) = 1		$k \rightarrow PC<10:0>$, (PCLATH<4:3>) $\rightarrow PC<12:11>$			
Status Affected:	None	Status Affected:	None			
Encoding:	01 11bb bfff	TITI Croading	10 0kkk kkkk kkkk			
Description:	If bit 'b' in register 'f' is '1' next instruction is skipped If bit 'b' is '1', then the nex instruction fetched during current instruction execut discarded and a NOP is ex instead, making this a two instruction.	the ion, is xecuted	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle			
Words:	1		instruction.			
Cycles:	1 ⁽²⁾	Words:	1			
Example	HERE BTFSS REG1	Cycles:	2			
	FALSE GOTO PROCE TRUE •	SS_CODE Example	HERE CALL THERE			
	•		Before Instruction PC = Address HERE			
	• Before Instruction PC = address After Instruction if FLAG<1> = 0,		After Instruction PC = Address THERE TOS = Address HERE+1			
	PC = address if FLAG<1> = 1,	FALSE CLRF	Clear f			
	PC = address	TRUE Syntax:	[label] CLRF f			
		Operands:	$0 \le f \le 127$			
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
		Status Affected:	7			

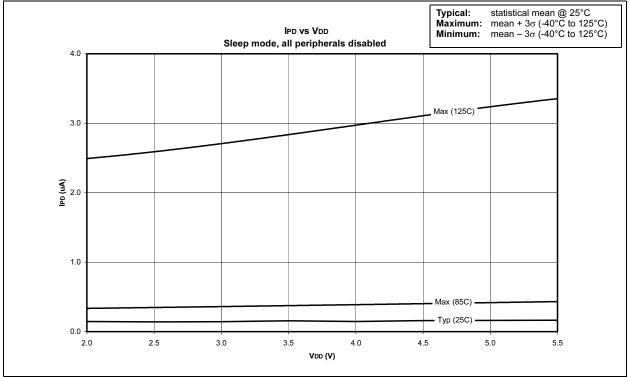

Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Example	CLRF	REG1					
	Before Instruction REG1 = 0x5A After Instruction REG1 = 0x00 Z = 1						

CLRW	Clear W					COMF
Syntax:	[label]	CLRW			I	Syntax
Operands:	None					Opera
Operation:	$\begin{array}{l} 00h \rightarrow (V) \\ 1 \rightarrow Z \end{array}$	W)				Operat
Status Affected:	Z					Status
Encoding:	00	0001	0000	0011		Encod
Description:	W regist (Z) is set		ared. Zer	o bit	I	Descri
Words:	1					
Cycles:	1					
Example	CLRW					Words
	Before In					Cycles
	After Ins V	V = 0x truction V = 0x Z = 1				Examp

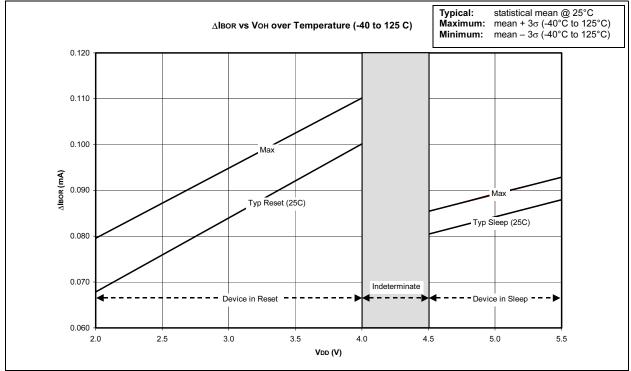
COMF	Complement f					
Syntax:	[<i>label</i>] COMF f,d					
Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	$(\overline{f}) \rightarrow (dest)$					
Status Affected:	Z					
Encoding:	00 1001 dfff ffff					
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	COMF REG1, 0					
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC					

CLRWDT	Clear Watchdog Timer	DECF	Decrement f
Syntax:	[label] CLRWDT	Syntax:	[<i>label</i>] DECF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow WDT$		d ∈ [0,1]
	$0 \rightarrow \frac{\text{WDT}}{\text{TO}}$ prescaler,	Operation:	(f) - 1 \rightarrow (dest)
	$1 \rightarrow TO$ $1 \rightarrow PD$	Status Affected:	Z
Status Affected:	TO, PD	Encoding:	00 0011 dfff ffff
Encoding: Description:	00000001100100CLRWDT instruction resets the Watchdog Timer. It also resets	Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
	the prescaler of the WDT. STATUS bits TO and PD are set.	Words:	1
Words:	1	Cycles:	1
Cycles:	1	Example	DECF CNT, 1
Example	CLRWDT Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1		Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1

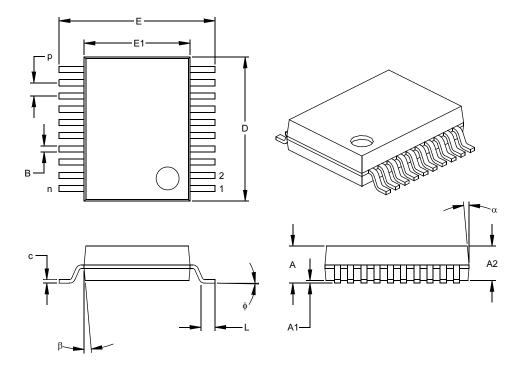
FIGURE 17-9: BROWN-OUT DETECT TIMING


TABLE 17-6:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000 TBD	 TBD	— TBD	ns ms	V _{DD} = 5V, -40°C to +85°C Extended temperature
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7 TBD	18 TBD	33 TBD	ms ms	V _{DD} = 5V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28 TBD	72 TBD	132 TBD	ms ms	V _{DD} = 5V, -40°C to +85°C Extended temperature
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.0	μS	
35	TBOD	Brown-out Detect pulse width	100	—	_	μs	$VDD \leq VBOD (D005)$


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note: The graphs and tables provided in this section are for design guidance and are not tested.



K04-072 20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ф	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072